
UNCERTAINTY QUANTIFICATION OF AIRFOIL DESIGN FOR
ADVANCED PROPELLER MODELS

Henry D. Schwartz, Dimitri N. Mavris
Georgia Institute of Technology, School of Aerospace Engineering, Atlanta, GA

Keywords: physics-based modeling, multifidelity, probabilistic analysis, ensemble modeling

Abstract

There has been a recent push by industry and
government to make commercial air travel more
environmentally friendly by striving to meet ag-
gressive fuel burn, noise, and emissions goals si-
multaneously. This has forced engineers to move
away from traditional turbofan engines mounted
on tube-and-wing aircraft, and look toward ad-
vanced concepts. The development of advanced
concepts requires engineers to utilize paramet-
ric design space exploration techniques to facil-
itate their understanding of the concept. The re-
search presented in this paper focuses on formu-
lating a stochastic method to enable parametric
design space exploration for advanced concepts
by creating an accurate representation of the high
fidelity design space. As an initial step toward
propeller design, the method is implemented on
NACA 4-series airfoils as a proof of concept.
High fidelity data is used to bias lower fidelity
data using a distance based formulation. The
combined data set is then sampled and fit with
a Gaussian process regression to form the overall
combined model. The results indicate that using
a distance based method results in an improved
high fidelity design space representation.

Nomenclature

x vector of input variables
X matrix of input vectors
µ mean
k(·, ·) covariance function
K(·, ·) covariance matrix
λ hyperparameter

D number of design variables
l design variable index
n number of training points
n∗ number of test points
p,q indices for the covariance function inputs
σ2

f signal variance
f∗ Gaussian process predictions at test inputs
f vector of training outputs

1 Introduction

The aviation industry has become, and will
continue to be a vital part of the world economy.
In a report published in 2016, the FAA predicts
the available seat miles to increase by approxi-
mately 3.5% annually for the next 20 years[11].
Boeing and Airbus project a need for a approxi-
mately 33,000 new aircraft over the next 20 years
to replace aging aircraft and to increase the global
fleet which is expected to nearly double[6, 4].
While these projections are encouraging for the
aviation industry and the global economy, the en-
vironmental impact, namely noise and air pollu-
tion, is becoming a major source of concern for
local and global communities at large. Coupled
with these rapidly emerging environmental issues
is the ever-rising cost of fuel. In order to address
these economic and environmental concerns, in-
dustry and governments from around the world
are striving to meet aggressive goals to reduce
the fuel burn, noise, and emissions of commercial
aircraft. Existing technologies are capable reach-
ing these goals individually, but meeting them si-
multaneously creates additional challenges. This
has forced aircraft manufacturers to move away

1



SCHWARTZ, MAVRIS

from traditional technology and instead research
advanced airframe and propulsion concepts, such
as the blended wing body or the open rotor en-
gine.

There are many challenges associated with
conducting research on advanced concepts, most
importantly that these goals often cause conflict-
ing requirements. Due to these conflicting re-
quirements, engineers need the ability to para-
metrically explore the design space to conduct
trade-off studies. Representing a high fidelity
design space is challenging with advanced con-
cepts. Historical data do not exist so experiments
must be planned and performed to generate data.
However, experimental testing is expensive and
must be done in the most economical way pos-
sible. This results in a sparse amount of high fi-
delity tests. Low fidelity tests can be conducted at
numerous places throughout the design space, but
they are considered to be much less accurate due
to missing physics. Additional high fidelity com-
puter simulations can also be conducted in a lim-
ited manner. With this in mind, the bottom line
is that the data for advanced concepts is sparse at
the high fidelity levels and inaccurate at the lower
fidelity levels.

The ultimate use of experimental data is to
help technology development decision makers
determine which technologies to continue invest-
ing in. However, the lack of high fidelity data and
the uncertainty associated with the existing data
from lower fidelity tests can provide a misleading
depiction of the expected performance the tech-
nology or concept will provide. Therefore, deci-
sion makers need to have an understanding of the
uncertainty associated with a performance model
that is created from experimental data. A quanti-
tative definition of uncertainty will assist decision
makers when they are deciding which technolo-
gies to pursue and which experiments should be
conducted in the future. Given this information,
the overall objective of this research is to formu-
late a transparent and traceable methodology that
enables the performance prediction of an imma-
ture technology throughout a parametric design
space in the presence of sparse, uncertain data.

A multifidelity approach is outlined to more
efficiently use the limited amount of available

data. Multifidelity methods use a limited amount
of high fidelity data to augment the results of
the low fidelity simulations[14, 17]. Further-
more, surrogate modeling techniques will be used
to further reduce the necessary amount of re-
sources required for high fidelity performance
prediction[12, 15, 23]. The methodology will
utilize the uncertainty of each data set to cre-
ate one combined set and then use Gaussian pro-
cess regression models to create a probabilistic
parametric performance prediction space. This
research concludes with a demonstration of the
methodology on NACA 4-series airfoils where
three design variables, maximum camber, max-
imum camber location, and thickness ratio, and
the angle of attack will be used to predict the co-
efficient of lift. A demonstration using airfoils
was chosen because the design space is not overly
complicated, yet it is a meaningful demonstration
step in the overall goal of advanced propeller de-
sign since airfoil design is a major portion of pro-
peller design.

The following section will provide an outline
of the technical approach. Relevant background
information for the development of the technical
approach will be presented where appropriate in
the section. Section 3 provides an explanation of
the use case utilized to demonstrate the method-
ology as well as the results. The paper concludes
with the conclusions presented in Section 4.

2 Technical Approach

The approach formulated for this research has
four main steps: defining the uncertainty for the
different datasets, combining the datasets, fitting
the performance model, and representation of the
model uncertainty. The approach is depicted in
Figure 1, and the process starts at the top left of
the figure. The process is divided into two tracks,
one for the low fidelity (LF) data and one for the
high fidelity (HF) data so the reader can visu-
ally determine where the data is combined and
the steps that happen before/after the combina-
tion. In reality several datasets may be used, but
only two are shown in the flowchart.

Furthermore it is important to note that this
methodology as a whole is not globally applica-
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Fig. 1 Methodology flow chart

ble and two key assumptions are made with re-
gard to the type of problem for which this method
can be applied. The assumptions are as follows:

1. There is a limited amount of experimental
data from prior feasibility studies.

2. The data is smooth, meaning the responses
from two inputs located a short distance
from each other are similar.

The first assumption reiterates the motivation
behind the problem this research is attempting
to tackle. In situations where a large amount
of high fidelity data is available, other existing
methods may provide a more efficient model.
The assumption regarding the ‘smoothness’ of
the data is important because the methodology
cannot handle large or discrete changes in func-
tion values.

The remainder of this section will focus on
providing details and background research rele-
vant to each step of the process, as well as im-
portant assumptions that were made during the
formulation.

2.1 Defining the Uncertainty

The first step of the process is to define the un-
certainty associated with each data set that will
be utilized. It is important that the uncertainties

are established prior to combining or fitting any
of the data because it will impact the final results.
In general one would only be dealing with two
different types of data: data from physical exper-
iments and computational data.

For the experimental data, Oberkampf and
Roy state that the uncertainty surrounding exper-
imental data should be represented by a Gaus-
sian distribution[19]. This is a sentiment that is
echoed in the literature by many other experts and
one that is utilized in practice throughout many
technology development programs. Therefore,
the experimental data utilized will be represented
with a Gaussian distribution.

Next, the uncertainty for the computational
data was determined. In the literature there are
differing opinions regarding how the uncertainty
for computational data should be represented.
Kennedy and O‘Hagan believe data from a com-
putational simulation should be represented by
a Gaussian distribution similar to experimental
data[16]. However, Oberkampf and Roy believe
that computational simulations should be repre-
sented by an interval[19].

For this research it is important that all of
the distributions have a peak, or a most expected
value for the random variables, which aligns most
with Kennedy and O‘Hagan. Any number of dis-
tributions will likely work. The authors used
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triangular distributions on a previouse research
project with industry. Thus, the authors elected
to utilize triangular distributions to represent the
uncertainty for computational data. The triangu-
lar distributions will be set by defining the peak
of the distribution by the results of the computa-
tional simulations. The upper and lower bounds
will be defined through comparison to the highest
fidelity data.

There are a myriad of other methods for
defining the uncertainty of a data set, but defining
the best definition of uncertainty for this applica-
tion is beyond the scope of this research. The in-
tent of this research is to formulate a method for
accurately representing disparate uncertain data
sources. The reader in encouraged to research
the most appropriate uncertainty representation
for their application.

2.2 Data Set Combination

The next step in the process is to combine the
data sets. It was observed in the literature that
methods that use likelihood ratio tests such as
Bayesian model averaging or Bayesian model
combination are commonly used to combine data
sets[24, 13]. The problem with these methods is
that they use some or all of the existing high fi-
delity data for the model combination process.
This can cause problems when the data set is
sparse because there is not enough data left for
the final model after the combination process.
The authors came across this problem during pre-
vious research where they fit separate regressions
to each data set and then used the likelihood ratio
to combine the separate regressions into one[22].

This current research combines the data sets
into one set prior to fitting any sort of regression.
However, the low fidelity data cannot simply be
appended to the high fidelity data. The regression
method therefore needs to be biased toward the
high fidelity data. The low fidelity data is biased
toward the high fidelity data depending on the
distance between the high and low fidelity data
points. The squared exponential distance func-
tion, Equation 1, is used to define the magnitude
of the bias based on distance.

k(x,x′) = e(−
1
2 (x−x′)∗(x−x′)T ) (1)

Gaussian processes and other kernel methods
use similar distance based techniques, but what is
different about this research is that it uses the dis-
tances between the inputs as well as the responses
to bias the data. The squared exponential distance
is calculated between every low and high fidelity
point in the input and response spaces. If the two
points are close in the input space, then the high
fidelity point will have a strong influence on the
low fidelity point. If the responses of the two
points are far away from each other, then the high
fidelity point will again have a strong influence
on the low fidelity point. The results from the dis-
tance calculations in both the input and response
spaces are combined to give an overall influence
on the lower fidelity point. This overall influence
is used to bias the mean of the lower fidelity un-
certainty distribution. So a low fidelity point that
is close to a high fidelity point in the input space,
but far away in the response space will be heav-
ily biased by the high fidelity point. This results
in a new data set where the presence of higher fi-
delity data points has been used to bias the lower
fidelity data points. Recall that triangular distri-
butions are used to represent the uncertainty for
the low fidelity data points. The data combina-
tion process described results in a shifting of the
peak of each low fidelity data point toward a high
fidelity data points.

2.3 Gaussian Process Regression

The next step of the process is to fit the combined
data set with a regression. A Gaussian process
regression method was chosen for this research
because of its versatility and it has been observed
to work well with smooth data sets. In machine
learning, Gaussian processes fall under the cate-
gory of kernel methods which are a class of al-
gorithms used for pattern analysis. See Pattern
Recognition and Machine Learning by Bishop
for a detailed explanation of kernel methods[5].
The squared exponential kernel will be used for
this research. Another reason for using a Gaus-
sian process is that future work on this topic will
likely involve experimenting with different ker-
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nels. If the reader is familiar with Bayesian lin-
ear regression, then it may be helpful to know that
Gaussian process regression with the squared ex-
ponential kernel is the same as Bayesian linear
regression with an infinite number of radial basis
functions[20].

A Gaussian process is defined as a collection
of random variables where any finite number of
which have a joint Gaussian distribution. It is a
class of stochastic processes that, given a set of
data, uses the multivariate Gaussian distribution
to make predictions at unobserved locations in
the input space. It is a statistically rigorous ap-
proach for constructing surrogate models of de-
terministic computer codes[20]. A Gaussian pro-
cess is commonly derived from a Bayesian per-
spective, similar to kriging[9, 18]. Gaussian pro-
cesses are also commonly referred to as kriging
(given a specific kernel) or Design and Analysis
of Computer Experiments (DACE)[15, 8]. The
DACE approach was popularized by Sacks et al.
and Cressie[21, 7]. Different distance based ker-
nels can be chosen based on the user’s preference.

The following brief explanation given on
Gaussian processes comes from chapter 2 of
Gaussian Processes for Machine Learning by
Rasmussen and Williams[20]. The reader is en-
courage to read this chapter for a more detailed
explanation.

A Gaussian process is specified by its mean
function m(x) and covariance function k(x,x′)
which are defined as

m(x) = E[ f (x)] (2)

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))]. (3)

The mean function is typically set to zero in prac-
tice which makes the derivation easier to follow.
The covariance function specifies the covariance
between pairs of inputs. The reader can think of
the covariance function as a representation of the
similarity between variables. For this research
the squared exponential coveriance function is
used. When no additional noise is added, the
function is a follows.

cov( f (xp), f (xq)) = k(xp,xq) =

σ
2
f exp

(
− 1

2λl (x
l
p− xl

q)
2
)

(4)

where λ1,λ2, ...,λD are the hyperparameters for a
D dimensional space, and σ f is the signal vari-
ance. The hyperparameters are referred to as
the characteristic length scale for each dimen-
sion. They show the degree of nonlinearity in
the dimension they are associated with. There-
fore, they can be used as a sensitivity study. For
instance, the dimension with the largest hyperpa-
rameter is responsible for the largest amount of
variability in the response for the given ranges.

Next, the user chooses a set of test inputs X∗

and then uses the covariance function to create a
n∗×n∗ covariance matrix K(X∗,X∗). The covari-
ance matrix can then be used to create random
multivariate Gaussian prior.

f∗ ∼N (0,K(X∗,X∗)) (5)

The usefulness of a Gaussian process comes
when knowledge gained through experimentation
is incorporated to train the function. The joint
distribution of the training outputs, f, and the test
outputs f∗, based on the prior is

[
f
f∗

]
∼N

(
0,
[

K(X ,X) K(X ,X∗)
K(X∗,X) K(X∗,X∗)

])
, (6)

where the ∗ represents the test data. Thus,
K(X ,X∗) represents the n×n∗ covariance matrix
of n training points and n∗ test points. The poste-
rior distribution is found by conditioning the joint
Gaussian prior distribution on the training data.
Think about it as if you are restricting the joint
prior distribution to contain only those functions
that agree with the observed data points. The pre-
dictive equations for the Gaussian process regres-
sion are

f∗|X , f,X∗ ∼N (f̄∗,cov(f∗)) (7)

where
f̄∗ = K(X∗,X)K(X ,X)−1f (8)
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cov(f∗) = K(X∗,X∗)−K(X∗,X)

K(X ,X)−1K(X ,X∗) (9)

The MATLAB code that accompanies the
text by Rasmussen and Williams is used to gen-
erate the Gaussian process regressions.

2.4 Overall Uncertainty Representation

The final step of the process is to assess the com-
bined uncertainty of the newly generated model.
The previous section regarding data set combina-
tion describes how the mean of the lower fidelity
model is biased in this multifidelity model.

The combined uncertainty is determined by
sampling each distribution and fitting the result-
ing data with a regression model. The maximum
upper and lower bounds of all the regression fits
represent the overall bounds of the uncertainty
for the combined model. There is no need to cre-
ate a new fit for every sample set because the fit
should be similar to the original combined data
set. Creating new Gaussian process models for
every sample set would be unnecessarily expen-
sive. Therefore, the same model is fit to every
sample set.

3 Methodology Demonstration

The methodology outlined in Section 2 was im-
plemented on a simplified problem to demon-
strate its capabilities. The design of an airfoil was
chosen as a preliminary test case to demonstrate
the process because it is an important aspect of
propeller design, the performance can be repre-
sented simply through four input variables, and
a variety of data was readily available to the au-
thors. The NACA 4-series airfoils were utilized
for this demonstration. Three different design
variables (maximum camber, maximum camber
location, and thickness ratio) were used in con-
junction with the angle of attack to develop a per-
formance model that predicts the coefficient of
lift.

NACA 4-series experimental data from the
Theory of Wing Sections by Abbott and Von
Doenhoff was used as the high fidelity data[2].
The experimental results given by Abbott and

Table 1 NACA 4-series airfoil geometries from
Abbott and Von Doenhoff[2]

Airfoil AoA Range Number of Points
0006 0−14 6
0009 0−16 5
0012 0−16 6
1408 0−16 6
1410 0−16 5
1412 0−16 6
2408 0−14 6
2410 0−16 5
2412 0−16 6
2415 0−16 6

Von Doenhoff are input as the mean and the stan-
dard deviation as defined by the measurement er-
ror documented in the experimental report. The
standard deviation of the distribution is defined
such that the total error defined in the experimen-
tal report represents the 95% confidence interval.
The airfoil experiments were conducted in the
Langley two-dimensional low-turbulence model
pressure tunnel. Unfortunately the documenta-
tion describing the measurement error for these
tests says that the error is negligible[3]. There-
fore, the authors have decided to use the measure-
ment error from a modern wind tunnel apparatus
which is 0.5% [1].

The different airfoil geometries and the an-
gles of attack used as part of this research are
listed in Table 1. A total of 45 data points make
up the full high fidelity data set.

Table 2 NACA 4-series airfoil ranges for the data
generated by XFOIL.

Lower Upper
Bound Bound Step

Max Camber 0 4 1
Max Camber Location 0 4 1
Thickness Ratio 6% 24% 2%
Angle of Attack 0 16 4

The lower fidelity data for the NACA 4-series
airfoils was generated using XFOIL, which is a
potential flow solver that can optionally include
an interactive boundary layer formulation and
stability model[10]. The coefficient of lift was
predicted for sweeps of all four input variables.
The overall ranges for each variable are shown in
Table 2 resulting in a total of 630 data points.
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Fig. 2 Plot of the actual lift coefficient from the wind tunnel data versus the predicted lift coefficient
from XFOIL. A histogram of the error is shown to the right of the plot.

The uncertainty for the XFOIL data points
was determined by comparing the XFOIL pre-
dicted lift coefficient values to the experimental
data. A subset of the high fidelity, experimental
data points were selected and the lift coefficient
values were compared to the predicted lift coef-
ficient values from XFOIL for the same points in
the design space. The maximum error between
the points was utilized as the overall uncertainty
for the XFOIL data points. An actual versus pre-
dicted plot is shown in Figure 2 where the actual
lift coefficient from the wind tunnel data is com-
pared against the predicted lift coefficient from
XFOIL. Note that a line starting from the origin
with a positive slope of one would indicate a per-
fect fit. The airfoil data follows the ideal trend
well, but there is some error, especially toward
the higher values for lift coefficient. A histogram
of the error has also been included on the right
side of the figure as well. The mean of the error
is 6.88% and the maximum error is 20.26%. Re-
call, it was decided that triangular distributions
would be used for the computer simulations. The
peak values of the distributions were set to equal
the XFOIL prediction values and the upper and
lower bounds were set to equal +/−20% of the
peak value.

The next step is to combine the data so that

it can be used to create a performance predic-
tion model. As a test case for this methodology,
a model was created to predict the performance
of the NACA 2410 airfoil. For this prediction
model, the wind tunnel data for the NACA 2410
airfoil was removed from the high fidelity data
set. This subset of the high fidelity data was com-
bined using the method described in Section 2.2.
A Gaussian process regression was then fit to the
combined data set. This initial regression fit rep-
resents the mean of the model. Next, 100 sam-
ple data sets were generated by sampling the un-
cerainty distributions for each data point. Each
new data set was individually fit with the same
Gaussian process model that was used to create
the overall mean of the model. The upper and
lower bounds from these sample regression fits
is used to represent the overall uncerainty of the
model. Figure 3 show the results of the model
prediction of the lift curve for a NACA 2410 air-
foil. The black dashed line represents the mean of
the prediction and the dashed red lines represent
the uncertainty bounds. The blue circles are the
actual wind tunnel results that were left out of the
high fidelity data set. Notice how the model pre-
dicts the wind tunnel data well, and that the wind
tunnel data falls within the uncertainty bounds.
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Fig. 3 Lift coefficient predictions of a NACA 2410 airfoil as a function of angle of attack.

Fig. 4 Lift coefficient predictions of a NACA 24XX airfoils as a function of angle of attack and thickness.
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The next set of results show how this method
can be used to create surfaces in multiple dimen-
sions. The same data set, excluding the 2410
again, was used in this prediction. Figure 4 shows
the prediction of the lift curve as a function of
both angle of attack and thickness. Predictions
were made for the 2408, 2410, and 2412 airfoils
to create a surface. Again the black lines repre-
sent the mean of the prediction and the red lines
represent the uncertainty bounds. The blue cir-
cles represent the wind tunnel data for the 2410
airfoil that was left out of the data set. Notice
how the method predicts the actual wind tunnel
results well.

4 Conclusions

The aviation industry forecasts the need for a
large fleet of next generation aircraft that can
provide a high level of performance while re-
ducing the environmental impact of the indus-
try as a whole. The design of these advanced
concepts can be aided by enabling parametric
design space exploration. It was observed that
traditional methods for creating these paramet-
ric models are not compatible in situations where
sparse data sets exist. This research helps engi-
neers overcome this issue by providing a method-
ology where uncertainty surrounding the data can
be used to bias the data sets to allow the combi-
nation of the data and formulation of a model in
a more efficient and informative manner than tra-
ditional Bayesian techniques.

As mentioned in Section 1, advanced pro-
peller design is an area that could benefit from
this kind of methodology. Due to the importance
of airfoil design when it comes to designing ad-
vanced propellers, an airfoil use case was seen
as a usefull demonstration step for this method-
ology. Therefore, this multifidelity approach was
applied to a NACA 4-series airfoil use case and
it was demonstrated that the combined data sets
can provide more insight into the performance,
and uncertainty surrounding the performance, for
a given design space. The next step for this re-
search will be to apply the methodology to ad-
vanced propeller concepts. Additionally, future
work will focus on investigating the different op-

tions within the Gaussian process formulation,
such as the selection of the appropriate kernel and
optimization of the hyper-parameters, as well as
different distance calculation methods for biasing
the mean of the lower fidelity data. Furthermore,
the methodology could be used in the future to
investigate areas of the design space where high
levels of uncertainty exist and future experimen-
tation should be focused.
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