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Abstract  

This paper presents a new estimation method on 
wind velocity without an air velocity sensor for 
an air vehicle. The wind velocity can be 
obtained by calculating the difference between 
the air velocity and the ground velocity 
observed from the navigation system. In order 
to estimate air velocity using only GPS/INS 
navigation system, extended Kalman filter is 
designed using 6 DOF equations of motion. The 
measurements of the filter are angular rate and 
attitude from the GPS/INS integrated system. To 
improve the estimation performance, we 
consider the colored measurement noise in 
Kalman filter using matrix conjugate gradient 
method. Numerical simulations are performed 
to compare the proposed algorithm with the 
standard Kalman filter. 

1  Introduction  

The gliding and control performance of an 
unpowered air vehicle is affected by the wind 
velocity. In order to maximize its gliding 
distance, the gliding vehicle has to fly with the 
velocity that minimizes the path angle. As a 
result, the velocity can be described to a 
function of wind speed. Therefore, the wind 
velocity is one of the most important 
components of the unpowered gliding vehicle to 
achieve an appropriate control and gliding 
performance. In general, in order to estimate the 
wind velocity, a pitot tube is widely used for 
measuring air speed, and the ground velocity is 
observed by a GPS/INS integrated navigation 

system. Then the wind velocity can be obtained 
by calculating the difference between the 
measured air speed and ground velocity.  

Mulgund and Stengel proposed wind 
estimation algorithm using EKF(Extended 
Kalman Filter) that is based on the nonlinear 
longitudinal aircraft equations of motion, and it 
is designed to provide estimates of horizontal 
and vertical atmospheric wind input[1]. 
Langelaan and Neidhoefer described a method 
for estimating wind field(wind velocity, rate of 
change of wind velocity and wind gradient)[2]. 
The method utilizes sensors which are already 
part of a standard autopilot sensor suite. Petrich 
and Subbarao proposed simple methods for 
modeling the local wind flow that affects the 
vehicle’s trajectory[3]. This method deals with 
the estimation of the 3D wind components and 
shows that successful wind estimation is 
possible for any trajectory. Lee, Sevil, Dogan 
and Hullender presented and application of the 
Square Root unscented Kalman Filter(SR-UKF) 
to the estimation of aircraft system states and to 
the estimation of the total wind vector made up 
of a time-varying prevailing wind plus 
turbulence[4]. The estimations are computed 
using conventional auto-pilot sensors with 
exponentially correlated measurement errors.  

Above papers assume that there is an air 
velocity sensor such as a pitot tube for obtaining 
wind velocity measurement. However, using a 
pitot tube cause increment of the power 
consumption, and demands of additional 
equipment, such as a heating system in high 
altitude and power supply. As a result, the 
installation of a pitot tube makes the cost and 
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weight of the air vehicle increase and the 
gliding performance decrease[5].  

In this paper, we assume that there is no air 
speed sensor, so the wind velocity cannot be 
obtained directly by calculating difference the 
ground velocity and air velocity. In order to 
estimate the wind velocity using only GPS/INS 
navigation system without any additional 
equipment, extended Kalman filter is designed 
using 6 DOF equations of motion. The state 
variables of the filter are defined to air speed, 
rotational angular rate and attitude of the body 
frame axis. The measurements of the filter are 
the ground velocity of the body frame, 
rotational angular velocity and attitude from the 
GPS/INS integrated system.  

But there is a problem to estimate air 
velocity with colored measurement noise in the 
Kalman filter which is an optimal filter when 
the measurement and process error noise are 
white Gaussian. The estimation results of 
GPS/INS which are measurements of wind 
estimation filter have a property of colored 
noise then using standard Kalman filter makes 
the estimation performance of wind velocity 
degrade. So, it should be adopted to use Kalman 
filter with considering colored measurement 
noise for wind estimation.  

Generally, there are two approaches to treat 
the colored measurement noise in the Kalman 
filter, which are measurement differencing and 
state augmentation. The measurement 
differencing method has developed by Bryson 
for the first time[6]. However, there is a 1-epoch 
latency in the measurement updating. Petovello, 
recently proposed the modified measurement 
differencing approach to resolve the problem of 
Bryson’s method but Petovello’s approach is 
more likely to diverge because it need the 
inverse of system matrix[7]. The state 
augmentation approach makes the filter diverge 
because of the singularity of updating error 
covariance matrix. Kedong Wang resolves this 
problem using Tikhonov Kalman filter and 
perturbed-P algorithm and its performance is 
better than measurement differencing 
approaches[8]. Chein-Shan Liu, Honh-Ki Hong 
and Satya N. Atluri are proposed novel 
algorithm based on the conjugate gradient 
method for inverting ill-conditioned matrices[9]. 

They insist that the method using conjugate 
gradient method has better performance than 
Tikhonov regularization for inverting ill-
condition matrices.  

In this paper, we use the Kalman filter 
based matrix conjugate gradient method for 
wind estimation algorithm. Because the state 
transition matrix of colored measurement error 
model and white Gaussian variance are 
unknown, the adaptive Kalman filter is applied 
additionally. Some numerical simulations are 
performed to compare the proposed algorithm to 
the result of the standard Kalman filter.  

2  Adaptive Kalman Filter based Wind 
Estimation Algorithm   

2.1 System and Measurement Model of 
Extended Kalman Filter  

In this paper, a six degree-of-freedom model 
of aircraft is used for system model of extended 
Kalman. Its aerodynamic coefficients are 
nonlinear functions of position, air velocity, 
attitude, rotation rates and control input and the 
wind can be modeled random walk model 
whose variance is changed depending on 
altitude. The state variables and system model 
are [10]  
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where av denotes air velocity vector along the 
body frame axis,   denotes angular rate vector, 
 denotes attitude vector, ,  ,  denote roll, 

pitch, yaw, wv is wind velocity vector, F is 

aerodynamic force, M is the aerodynamic 
moment and 

avn , n , n  are white noise error of 

each states.  
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The measurements are angular rate along 
the body frame and attitude represented by roll, 
pitch, yaw from the INS/GPS navigation system.  
So, the measurement equation is   
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where z denotes the measurement vector 
obtained from INS/GPS system, v is white 
Gaussian noise error of the measurement and 
H is the measurement matrix. 

 

2.2 Wind Estimation Algorithm  

The wind velocity can be obtained by 
calculation of difference air velocity and ground 
velocity.  

 

w a gv v v               (8) 

 
where gv is the ground velocity which can be 

measured from INS/GPS system, av is the air 

velocity which is estimated by extended Kalman 
filter using equation (1)~(7) by system and 
measurement model. Figure. 1 shows the wind 
estimation algorithm.  
 

 
Figure. 1 Wind Estimation Algorithm Block 

Diagram 
 

The wind profile is generated by using data 
which provided by the weather center and the 
wind profile is at an altitude of 10km to the 
ground as Figure. 2.  
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Figure. 2 Wind Speed Profile 

 

3 Consideration of Colored Measurement 
Noise   

3.1 Colored Measurement Noise Problem  

The discrete system with the colored 
measurement noise error can be expressed by 
the following equations.  
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where kx  is the state vector, kF  is the state 

transition matrix, kw is the process noise vector, 

kz is the measurement vector, kH is the 

measurement matrix, kv  is the measurement 

error, k is the transition matrix of the colored 

noise error and k  is white noise error.  E x  is 

the expectation of the x, kQ  and kR  are the 

covariance matrices of kw  and k , respectively.  

The system and measurement equation 
cannot be applied to standard Kalman filter, 
because the measurement error has a colored 
noise error. To apply the standard Kalman filter 
with colored measurement noise, the state 
vector can be augmented with the colored 
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measurement error so that the system of eq (8) 
becomes  
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There is no measurement error in the 

augmented system. If the standard Kalman filter 
is applied, the filter can be diverged[9]. The 
standard Kalman filter equation with above 
augmented system and measurement equations 
is following equations.  

   
- Time update 
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- Measurement update  

   
 

 

1

ˆ ˆ ˆ

T Ta a a
k k k k k k

a a a a
k k k k k k

a
k k k k

K P H H P H

x x K z H x

P I K H P


 

  

 

    

  

 

            (12) 

 

The innovation covariance  Ta a
k k kH P H is 

singular when kP  is converged, so the 

measurement update state ˆa
kx   is easily 

divergent. For this reason, we choice matrix 
conjugate gradient method to find an inversion 

of  Ta a
k k kH P H .  

3.2 Matrix Conjugate Gradient Method  

The conjugate gradient method is used to 
solve a linear system. The matrix conjugate 
gradient method (MCGM) is extended form of 
conjugate gradient method to solve matrix 

inversion. MCGM is used to solve the matrix Eq 
(13). 

 
AC I                      (13) 

 
where C is inversion of A.  

Assume an initial 0C  and calculate 

0 0 1 0,R I AC P R   . Repeat the following 

iterations.  
 

 

2

1

1

2

2

1

1

k
k

k k

k k k k

k k

k
k

k

k k k k

R

P AP

C C P

R I AC

R

R

P R P




















 

 



 

              (14) 

 
If kC  converges according to a given 

stopping criterion, 1kR   , then stop. When 

kC  is calculated, the inversion of A is given by 

kC . Because the calculation of the inverse of 

matrix  Ta a
k k kH P H  in Eq (12) causes 

divergence of the filter, we proposed to replace 

A with  Ta a
k k kH P H  to calculate inverse matrix 

of  Ta a
k k kH P H . 

3.3 Innovation Covariance Based Adaptive 
Kalman Filter   

The state transition matrix of colored 
measurement error model and white Gaussian 
variance cannot be known. Therefore, 
adaptation logic should be applied to the filter. 
We choose the innovation covariance based 
adaptation logic and its equations as follows[11].  

1) Project the state ahead  

1ˆ ˆa a a
k k kx F x 

  

2) Compute the innovation  
ˆa a

k k k kz H x    

3) Estimate the innovation covariance  



 

5  

WIND VELOCITY ESTIMATION WITHOUT AN AIR SPEED SENSOR UISNG 
KALMAN FILTER CONSIDERING COLORED MEASUREMENT NOISE  

1

1

1

k
T

k k k
i k M

C
M

 
  


   

4) Compute   
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5) Project the error covariance  

 a aT a
k k k k k kP F P F Q    

4  Simulation Results 

The system is a six degree of freedom 
aircraft model and INS/GPS navigation system 
provides the angular rate and Euler angle for the 
measurement of the Kalman filter. The 
measurement error of Euler angle has the 
colored noise as Figure. 3. 
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Figure. 3 Euler Angle Error 
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Figure. 4 Wind Estimation Error 

 

Simulation result shows the wind 
estimation error. The adaptive MCGM 
algorithm has the best performance of wind 
estimation.  

5 Conclusion  

In this paper, we proposed the wind 
velocity estimation algorithm with angular rate 
and Euler angle of the aircraft from INS/GPS 
navigation system as measurements. To 
consider colored noise measurement error, the 
matrix conjugate gradient method(MCGM) was 
applied to calculate innovation covariance of the 
Kalman filter. In addition, the parameter of 
colored measurement error model was unknown, 
so we applied the innovation based adaptive 
logic to MCGM Kalman filter. Finally, a 
numerical simulation was performed to verify 
performance of the proposed algorithm. As a 
result, the adaptive MCGM Kalman filter 
improved the estimation performance of the 
wind velocity.  
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