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Abstract  

Propagation of three-dimensional (3D) 
disturbances through the flat plate boundary 
layer and 5.5-degree compression-corner near-
wall flow at the freestream Mach number 5.373 
is simulated numerically. 3D Navier–Stokes 
equations are solved using the in-house parallel 
solver “HSFlow” on a fine grid. The 
disturbances are generated by a suction-
blowing actuator placed on the wall working 
short time or permanently, producing wave 
packets or wave trains. The disturbances 
evolving downstream excite unstable waves 
relevant to the first and/or second mode 
instability depending on the actuator frequency 
and location. The instabilities propagating 
through the separation region exhibit nontrivial 
behavior. The growth of unstable waves 
ultimately leads to nonlinear breakdown and 
“young” turbulent wedge is formed. These 
numerical simulations will help to setup and 
perform controlled experiments in wind tunnels 
as well as develop holistic models of 
transitional boundary layer at hypersonic 
speeds. 

1 Introduction 

The problem of laminar-turbulent transition 
(LTT) in hypersonic flows over bodies is one of 
the main tasks of high-speed aerodynamics. 
Since LTT leads to significant increases in heat 
transfer, reliable estimates of LTT locations are 
needed to predict the aero-thermal loads and 
surface temperatures. LTT also has a significant 
effect on the aerodynamic performance because 

of a substantial increase of the skin friction. In 
the case of low free-stream disturbances typical 
for flight conditions, the LTT includes the three 
main stages [1]: receptivity to external 
disturbances; growth of unstable modes (such as 
first and second Mack modes, cross flow 
instability and Görtler vortices); nonlinear 
breakdown of disturbances leading to the fully 
turbulent flow regime. Physical mechanisms 
relevant to these stages can be investigated 
experimentally or numerically. 

For systematic investigations of linear and 
especially nonlinear stages of LTT, the 
“controlled” experiments are most suitable, 
where disturbances of known spectral content 
are introduced by an artificial actuator. 
However, relatively few experimental efforts of 
this type have been reported in the literature 
(see [2-9]). In direct numerical simulations 
(DNS) the complete Navier–Stokes equations 
are solved by proper numerical methods without 
making restrictions on the basic (unperturbed) 
flow and disturbance amplitudes. Therefore, 
DNS is well suited for a holistic modelling of 
the all LTT stages including nonlinear 
breakdown. In addition, as opposed to physical 
experiments, DNS gives full information about 
3D disturbance field, which enables to identify 
and study in detail different LTT mechanisms. 
The rapid development of supercomputers make 
it feasible to conduct such numerical studies for 
relatively simple configurations like a flat plate 
and a cone at zero angle of attack [10-11], 
where the boundary layer is attached to the wall 
and the mean flow weakly depends on the 
streamwise and spanwise coordinates. However, 
in the majority of practical cases we are dealing 
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with transition in locally separated boundary 
layers. One of the typical configurations is a 
compression corner, where the interaction 
between the oncoming boundary layer and the 
adverse pressure gradient drastically modifies 
the mean-flow field. 

In this paper we present some results of 
DNS of artificially excited 3D disturbances 
propagating through the near-wall flows over 
flat plate and 5.5 degree compression-corner at 
the freestream Mach number 5.373 and unit 

Reynolds number 6 1
,1Re 17.9 10  m

   . These 

flow parameters are relevant to the Hyper-X 
model tested in the NASA LaRC 20-Inch Mach 
6 Air Tunnel [12]. The earlier stability and 
numerical studies under these free-stream 
conditions were performed for 2D [13, 14] and 
3D disturbances [15, 16] on a 5.5 degree 
compression corner. The disturbances are 
introduced via forcing of suction–blowing type 
through a small hole on the wall. The 3D 
Navier-Stokes equations for unsteady 
compressible flows of viscous perfect gas are 
solved using the in-house solver “HSFlow” 
(High-Speed Flow). The solver implements a 
fully implicit finite-volume shock-capturing 
method with the second-order approximation in 
space and time on multi-block structured grids. 

Features of instability development in the 
linear and nonlinear stages are revealed using 
visualizations of the 3D vertical structures and 
wall pressure disturbances. It is shown that the 
forcing excites unstable disturbances relevant to 
the first and/or second mode of instability 
depending on the forcing frequency. The 
instabilities evolving through the separation 
region exhibits nontrivial behavior, which is not 
captured by 2D simulations. Distributions of the 
skin friction coefficient help to detect the 
beginning of LTT and estimate the length of 
transitional region. This study may help to setup 
and perform controlled experiments in quiet 
hypersonic wind tunnels. 

2 Problem formulation and numerical 
method 

2.1 Governing equations 

The equations to be solved are the 3D unsteady 
Navier–Stokes equations in conservative 
dimensionless form. The fluid is a perfect gas 
with the specific heat ratio 1.4   and Prandtl 

number Pr 0.72 . The dynamic viscosity is 
calculated using Sutherland’s formula 

   3 2 1 /T S S T    , where 110 K/S T 
 . 

The second viscosity is assumed to be zero. The 
dependent variables are normalized to the 
corresponding freestream parameters: pressure – 

to the doubled dynamic pressure 2U 
  ; the 

coordinates – to the reference length L  that is 
the distance from the leading edge to the corner 

point; time t  – to L U 
 . Hereafter asterisks 

denote dimensional quantities. 
The details of the governing equations used 

for the DNS may be found in e.g. [16]. 

2.2 Numerical method 

The Navier–Stokes equations are integrated 
using the in-house solver HSFlow (High Speed 
Flow), which implements an implicit finite-
volume shock-capturing method with the 
second-order approximation in space and time. 
Godunov-type TVD scheme with Roe 
approximate Riemann solver is used. 
Reconstruction of dependent variables at the 
grid cell boundaries is performed using WENO 
(Weighted Essentially Non-Oscillatory) 
approach, which effectively gives the third-
order space approximation. The system of 
nonlinear algebraic equations, which 
approximates the governing partial differential 
equations, is solved using the Newton iteration 
method. At every iteration step, the 
corresponding linear algebraic system is solved 
using the GMRes (Generalized Minimal 
Residual) method. Note that this approach is 
most efficient if the computational domain 
contains shock waves and other strong spatial 
inhomogeneities of the flow, such as boundary-
layer separations. Despite dissipative nature of 
the TVD scheme, using the 2D HSFlow solver it 
was feasible to perform numerical simulations 
of boundary-layer receptivity and stability 
including configurations with separation 
bubbles [14, 16, 17]. 
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The HSFlow solver employs MPI 
technology and PETSc framework for 
distributed calculations on a high-performance 
computing cluster. For parallel computations, 
the source structured grid is split up into 
multiple zones with one-to-one interzone 
connectivity. The discretization is done in each 
zone independently and fully parallel. The 
resulting algebraic equations are solved 
collectively by parallel methods implemented in 
PETSc library. The details on numerical method 
may be found in [18]. 

2.3 Flow parameters and computation 
domain 

Computations are carried out for the flow over a 
5.5  compression corner and flat plate at the 
freestream Mach number 5.373M  , the 

Reynolds number 
* * * * 6Re / 5.667 10LU        , and 

temperature * 74.194KT  . The wall is 

isothermal with the surface temperature 
* 300 KwT  , 4.043wT  . This configuration and 

flow parameters are the same as in [13, 14]. 
The boundary conditions are: no-slip 

condition 0u v w    on the bottom 
( miny y ) boundary of computational domain; 

the free-stream conditions 1u  , 0v  , 
21 Mp   , 1T   on the left ( minx x , inlet) 

and upper ( maxy y ) boundaries; the linear 

extrapolation from the interior for all the 
dependent variables on the right ( maxx x , 

outlet) and front ( maxz z ) boundaries with 
2 2( , , , , ) / 0u v w p T x    and 
2 2( , , , , ) / 0u v w p T z   , respectively; and the 

symmetry condition ( , , , ) / 0u w p T z   , 0w   

on the back ( minz z ) boundary. 

Computations are performed on a curved 
orthogonal grids with 2801 221 141   nodes 
(86.24 million cells). The 2D grid for corner 
case with 2801 221  nodes (same as in [14]) is 
generated using numerical conformal mapping 
of a rectangle onto the computational domain. 
The grids is clustered near the surface so that 
55% of nodes are within the boundary layer or 

in the separation region including the mixing 
layer. Then a 3D grid is obtained by translating 
the 2D grid equidistantly. 

2.4 Disturbances actuator 

The problem is solved in two steps. First, a 
steady laminar flow field (basic flow) is 
computed using the time-dependent method. 
Then, unsteady disturbances are imposed onto 
the steady solution on the wall via the boundary 
condition for the vertical mass-flow perturbation 

 

 1 1
0

2 1 2 1

( ) sin 2 sin sinw

x x z z
v t

x x z z
    

    
    

    
, 
 1 2x x x  , 1 2z z z  , 10 t t  , (1) 

where 1 0x x d  , 2 0x x d  , 1 / 2z d  , 

2 / 2z d  are boundaries of the forcing 

rectangular region of the side ratio 2 with 
central point 0x  and size 0.00815d  . The 

forcing duration was chosen to be whether half 
of period 1 0/t    for wave packets 

generation, or infinity 1t    for wave trains. To 

ensure linear evolution of the disturbances in the 
upstream region 0 1x x  , the forcing 

amplitude is chosen small, 310  . 

3. DNS results 

3.1 Steady flow 

Figure 1 shows near-wall fragments of the 
u -velocity fields computed on the flat plate and 
the compression corner. In the compression 
corner case, the boundary layer separates 
upstream of the corner point and reattaches 
somewhere downstream. Using the wall shear 
stress distributions, the coordinates of 
separation and reattachment points are detected 
as 0.857sepx   and 1.136attx  , respectively. In 

between of these points, a shallow separation 
bubble is formed. The bubble contains a 
recirculation flow zone whose upper boundary 
is approximately a straight line that is typical for 
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supersonic separations. As expected, the 
boundary layer flows on a flat plate and the 
compression corner are very similar upstream of 
the separation point. More details on the basic 
(undisturbed) flow field can be found in [14]. 

 

 
Fig. 1. The u-velocity field and streamlines in the 
boundary layer on the flat plate (upper) and on the 

compression corner (lower). Dashed line –boundary layer 
edge. 

3.2 Simulation of wave packets 

The wave packets are generated by a short pulse 
of suction-blowing actuator (1). Computations 

were performed at 0 0 / 225L U   
   

corresponding to the frequency parameter 
5

0 0 / Re 3.97 10F  
   . The pulse duration 

was 1 0/ 0.014t    . Such forcing has 

spectrum containing wide range of frequencies 
and wavenumbers, including plane high-
frequency components relevant to the second-
mode waves, as well as oblique low-frequency 
components associated with the first mode. 

3.2.1 Forcing near leading edge 
First we consider the case of forcing near the 
leading edge with actuator center point of 

0 0.044x  . 

Fig. 2 illustrates the downstream 
propagation of the wave packet over the 
compression corner, where the instantaneous 
contours of the wall-pressure disturbance are 
shown at several time instances. Hereafter, the 
disturbance fields are obtained by subtracting 
the basic flow field from the fields at different 
time instances. The vertical lines indicate 
locations of the separation line 0.857sepx  , the 

corner line 1x   and the reattachment line 
1.136attx  . 

Initially the disturbance wave fronts 
emanating from the forced area are elliptic. As 
the disturbance propagates in the region 
upstream of separation, a V-shaped tail is 
formed while the wave-packet core exhibits a 
staggered 3D pattern. The packet is dominated 
by the oblique waves of 100   relevant to the 
first mode instability. The second-mode plane 
waves with relatively small amplitude and short 
wavelength are noticeable in the rear central 
part of the wave packet. 

 

 

 

 

 
Fig. 2. Fields of corner wall-pressure disturbances at the 
time instants: t = 0.025; 0.25; 0.9; 1.1; 1.5. The forcing at 

x0 = 0.044. 

The wave packet crosses the separation 
line without noticeable changes of its structure. 
Further downstream, the wave packet quickly 
elongates in the streamwise direction. When its 
head reaches the reattachment point, the 
disturbance occupies more than one half of the 
separation region. As the wave-packet core 
propagates in the reattached boundary layer, the 
streamwise divergence is even stronger – the 
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fore part of disturbance moves faster than its 
rear part located in the separation region. 

Figure 3 shows 3D vortical structures 
visualized at the time instance 1.5t   using the 
Q-criterion. This pattern is typical for a wave 
packet containing oblique waves of the first-
mode instability. 

 
Fig. 3. Visualization of flow structures by isosurface of Q 
criterion at the time instance t = 1.5, Q = 100. Top view. 
The isosurface is colored using the u-velocity magnitude. 

The forcing at x0 = 0.044. 

3.2.2 Forcing far from leading edge 

 

 

 

 

 
Fig. 4. Fields of corner wall-pressure disturbances at the 

time instants: t = 0.1; 0.3; 0.5; 0.7; 0.9. The forcing at 
x0 = 0.6. 

Now we consider the wave packet induced by 
the actuator with the central point 0 0.6x  . In 

this case, the major portion of the first-mode 
instability region is not involved, and the packet 
should be dominated by the second-mode plane 
waves. 

Fig. 4 shows the disturbance at different 
time instants. The wave packet structures are 
qualitatively different from the previous case 
(Fig. 2). In the region upstream of the separation 
point, they resemble the second-mode 
dominated wave packet with plane waves in the 
core. As the wave packet propagates through the 
separation region, its 2D shape is preserved near 
the center line. When the wave packet leaves the 
separation bubble, its central part consists of 
plane waves associated with the second-mode 
instability of the reattached boundary layer. 

The vortical structures visualized at the 
time instance 0.8t   using the Q-criterion 
(Fig. 5) exhibit two-dimensional pattern typical 
for the second-mode instability. This is quite 
different from the previous case (Fig. 3). 

 
Fig. 5. Visualization of flow structures by isosurface of Q 
criterion at the time instance t = 0.8, Q = 5. Top view. The 

isosurface is coloured using the u-velocity magnitude. 
The forcing at x0 = 0.6. 

Thus, the wave-packet history strongly 
depends on where the initial disturbance is 
excited. At different streamwise locations of the 
actuator the wave packet can be first-mode or 
second-mode dominated that leads to qualitative 
changes of the disturbance history as well as its 
spectral content and spatial structure. 

3.2.3 Strong forcing 

Finally we consider stronger forcing at 210   

(10 time higher amplitude) and 0 0.044x  . 

Downstream the reattachment point a very 
young turbulent sport is formed that is 
illustrated by the visualization of flow structures 
using an isosurface of Q criterion (Fig. 6). 
Small-scale hairpin vortices fill up the central 
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portion of the wave packet surrounded by 
oblique waves, while the disturbance tail 
consists of longitudinal structures elongated 
downstream.  

 
 

Fig. 6. Visualization of flow structures by isosurface of Q 
criterion at the time instance t = 1.5, Q = 100. The 

isosurface is colored using the u-velocity magnitude. The 
forcing at ε = 10 2, and x0 = 0.044. 

More details on this numerical study can be 
found in [16]. 

3.2 Simulation of wave trains 

The wave trains are generated by the suction-
blowing actuator (1) working permanently with 

1t   . Computations are performed at low 

frequency 125   associated with the first-
mode instability, high frequency 450   
associated with the second-mode instability and 
mid frequency 225  . After transient process 
a three-dimensional wave train sets in the near-
wall flow. In the linear stage, the wave train is 
harmonic with its frequency being equal to the 
forcing frequency at any fixed point in space. In 
the nonlinear breakdown stage, the disturbance 
evolves to a stationary stochastic state with its 
mean characteristics being constant versus time. 

3.2.1 Wave trains of high frequency 
First we consider wave trains generated at 
relatively high frequency 450   typical for 
the second-mode instability. Figure 7 shows 
instantaneous contours of the wall-pressure 
disturbance at 2t  . 

 

 
Fig. 7. Fields of the wall-pressure disturbance at t = 2 and 

450  . Flat plate (upper) and compression corner 
(lower). 

In the region upstream of the separation 
point, the wave trains are almost identical and 
exhibit a 2D pattern typical for the second-mode 
instability. As the wave trains propagate further 
downstream, their behavior becomes different. 
In the flat plate case, the disturbance amplitude 
reaches its maximum at 1x   and then decays. 
In the compression corner case, the wave train 
amplitude is modulated versus x  in the 
separation region while its average level 
remains approximately constant; i.e., the 
separation bubble produces a stabilization effect 
on the second mode. This behavior agrees with 
the earlier results of 2D numerical simulations 
[13, 14]. 

Note that there is no appreciable spanwise 
diversion of the wave train in the separation 
region. Downstream from the reattachment 
point, the disturbance grows rapidly preserving 
its 2D structure. 

Overall, these numerical simulations agree 
with the earlier stability and numerical studies 
[13-15] focused on the second-mode instability. 

3.2.2 Wave trains of low frequency 
Now we consider the wave trains generated at 
relatively low frequency 125   typical for the 
first-mode instability. Figure 8 shows 
instantaneous contours of the wall-pressure 
disturbance at a time instant 1.7t  . In the 
region upstream of the separation point, the 
wave train patterns are close to each other. Just 
behind the actuator they attain a V-shape typical 
for the first-mode dominated disturbance. As 
contrasted to the high-frequency case, their 
amplitude grows monotonically starting from 
the point 0.075x  . Near the central line, 

0z  , the wave trains exhibit a staggered 
pattern which is surrounded by oblique waves 
from both sides. 
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Fig. 8. Fields of the wall-pressure disturbance at t = 1.7 

and 125  . Flat plate (upper) and compression corner 
(lower). 

As the wave train propagates further 
downstream on the flat plate, its amplitude 
continues to grow and, ultimately, the nonlinear 
breakdown is observed behind the station 

1.2x  . In the compression-corner case the 
wave train quickly grows in the separation 
region. Its original structure starts to be 
distorted by nonlinear effects ahead of the 
reattachment point, and the disturbance 
becomes turbulent in the reattached boundary 
layer. 

The separation leads to significant 
destabilization of the first-mode-dominated 
wave train. 

3.2.3. Wave trains of mid frequency 
Finally, we consider the wave train of mid 

frequency 225  . Figure 9 shows 
instantaneous contours of the wall-pressure 
disturbance at a time instant 2t  . The growth 

is weaker than in the low-frequency case. The 
mid-frequency wave train evolves linearly 
throughout the computational domain. 

In the fore part of separation bubble 
( 1sepx x  ), the disturbance pattern spreads 

out and transforms into Y-shape. However, in 
the rear part (1 attx x  ) the pattern returns to 

its typical V-shape. 

 

 
Fig. 9. Fields of the wall-pressure disturbance at t = 2.0 

and 225  . 

To explore these new features we consider 
three-dimensional eddies snapshot (Fig. 10). 
The disturbance field splits into several layers: 
1) In the near-wall layer there are oblique waves 
propagating away from the central line at a 
relatively large angle. Their footprint on the 
wall gives the Y-shape pattern in the mid part of 
separation bubble. 2) In the mid (mixing) layer, 
the vortical structures are typical for the first-
mode dominated wave train. 3) In the outer 
layer (above the separation bubble) there are 
pressure waves radiated from a near-wall region 
located between the separation and corner 
points. 

 
Fig. 10. Vortical structures in the separation bubble at 

t = 2 and 225  . The structures are visualized using 
the isosurface of Q=5 coloured by the u-velocity 

magnitude. Grey semi-transparent slices show x-stations 
of separation, corner and reattachment. Black and white 
pattern shows the pressure disturbance footprint on the 

wall. 

More details on this wave trains simulation 
can be found in [19]. 

4 Conclusions 

Three-dimensional wave packets and trains 
propagating over a 5.5 degree compression 
corner and a flat plate at the freestream Mach 
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number M∞ = 5.373 were investigated using 
direct numerical simulations. Unsteady three-
dimensional compressible Navier–Stokes 
equations were integrated using an implicit 
finite-volume shock-capturing method with the 
second-order approximation in space and time. 
The problem was solved in two steps. First, a 
steady laminar flow field (basic flow) was 
computed using a time-dependent method. 
Then, the unsteady disturbances are imposed 
onto the steady solution using small suction-
blowing actuator modelled by the local in space 
forcing of the vertical mass-flow on the wall. 
The forcing was applied whether for short time 
or permanently. 

 
The short time working actuator generate a 

broad spectrum of waves including the first-
mode and second-mode instabilities. The 
suction-blowing pulse develops into a three-
dimensional wave packet propagating 
downstream. 

In the case with the actuator located near 
the leading edge, the wave packet is dominated 
by oblique waves of relatively low frequency 
which are relevant to the first mode. 

If the actuator is located far downstream of 
the leading edge so that the major portion of the 
first-mode instability region is not involved, the 
wave packet is dominated by the second mode. 
The disturbance remains neutral in the fore part 
of separation region 1sepx x  . Further 

downstream the wave packet grows with 
appreciable rate.  

Thus, the wave-packet history strongly 
depends on how and where the initial 
disturbance is excited, i.e., the role of 
receptivity is crucial. At different streamwise 
locations of the actuator, the wave packet can be 
first-mode or second-mode dominated that leads 
to qualitative changes of the spectral content 
and spatial shape of the disturbance.  

 
The permanently working actuator 

generate a wave train of fixed frequency. The 
separation bubble produces a stabilization effect 
on the high-frequency wave train related to the 
second mode. The wave-train amplitude is 
modulated in the streamwise direction while its 

average level remains approximately constant in 
the separation region. Downstream from the 
reattachment point, the disturbance grows 
rapidly preserving its 2D structure. 

In the low-frequency case, separation leads 
to significant destabilization of the wave train 
dominated by the first-mode instability. The 
disturbance quickly grows in the separation 
region, exhibits nonlinear behavior ahead of the 
reattachment point, and becomes turbulent in 
the reattached boundary layer. 

In the mid-frequency case, where 2D and 
3D waves are equally important, the wave train 
behavior is abnormal within the separation 
bubble. The disturbance field splits into several 
layers: 1) In the near-wall layer there are 
oblique waves propagating away from the 
central line at a relatively large angle. Their 
footprint on the wall gives the Y-shape pattern 
in the mid part of separation bubble. 2) In the 
mid (mixing) layer, the vortical and pressure-
disturbance structures are typical for the first-
mode dominated wave train. 3) In the outer 
layer (above the separation bubble) there are 
pressure waves radiated from a near-wall region 
located between the separation and corner 
points.  

In the mid-frequency case, the separation 
bubble supports not just one mode but, 
presumably, several modes of different nature. 
The interference between plane (2D) and 
oblique (3D) wave-components of these modes 
leads to intricate spatial structures which are not 
observed in the low frequency and high-
frequency cases. 

These numerical examples demonstrate 
that supersonic separation strongly affects 
boundary-layer instabilities in different ways 
depending on the frequency content of unstable 
disturbances. 

 
This and similar numerical simulations will 

help to setup and perform controlled 
experiments in quiet hypersonic wind tunnels as 
well as develop holistic models of transitional 
boundary layer at hypersonic speeds. 
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