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Abstract  

A method for flight dynamic stability analysis of 
flexible aircraft has been presented in this paper, 
which considers the rigid-body degrees of 
freedom as well as the elastic degrees of 
freedom of aircraft. The equations of motions of 
a flexible aircraft have been derived by using 
the energy function and Hamilton theory. The 
unsteady aerodynamics in time domain is 
computed by doublet lattice method and 
rational function approximation. The linear 
state-space model of the aircraft is then 
established based on the small disturbance 
theory, then the stability characteristics is 
computed by eigenvalue analysis of the 
characteristic matrix. For instance, the 
longitudinal stability analysis of a flying wing 
with large-aspect-ratio wings has been carried 
out by both the classic rigid flight dynamics and 
the method promoted. Results obtained by these 
two methods are compared, which indicate that 
the structural vibration of the flexible aircraft 
will interact with rigid-body flight dynamics, 
and it will have a great influence on the flight 
stability of the flying wing. 

1  Introduction  

The next generation long-range high-altitude 
ISR UAV – known as SensorCraft[1,2] is the 
research focus of aeronautics in recent years. A 
flying wing design with high-aspect-ratio wings 
is also a proposal for the SensorCraft. In order 
to satisfy the requirement of long endurance, 
high-aspect-ratio wings with advanced 
composite materials are commonly used 
because of their high lift-drag ratio and low 
structural weight. Therefore, the structures of 

the flying wing always have noticeable 
structural flexibility, and the frequency of the 
elastic vibration mode is very low. Besides, the 
flying wing layout always has a low pitching 
inertia, which leads a high frequency of the 
short-period mode. The flexible structural 
vibration modes will interact with rigid-body 
flight dynamics, which will have a great 
influence on the flight stability of the flying 
wing. 

2  Theory  

2.1 Equations of motions of the flexible 
aircraft 

For a flexible aircraft, both the rigid body 
motion and the elastic deformation would be 
generated during flight. When establishing the 
equations of motion, the earth axes OXYZ is 
treated as the inertial reference frame. The 
origin O is an arbitrary point that fixed on the 
earth surface, and OZ directs vertically down. 
OXY is the local horizontal plane, OX points 
north, and OY points east. The mean axes 
system oxyz[3] is selected for the body reference 
frame. The origin of the mean axes system o 
coincides with the transient center of gravity of 
the aircraft, the x axis points from the nose to 
the tail along the fuselage axis, the y axis points 
to the right side perpendicular to the 
longitudinal symmetric plane of the aircraft, and 
the z axis is defined by the right-hand rule. The 
mean axes are body-fixed axes defined so that 
the relative linear and angular momenta due to 
elastic deformation are zero at every instant. 
Therefore, the inertial coupling between the 
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rigid body degrees of freedom and the elastic 
degrees of freedom could be eliminated. 

The location of the origin o in the earth 
axes is represented as R=[X  Y  Z]T, and the 
Euler angle between the mean axes and the 
earth axes is T[ ]  θ . The linear and 
angular velocity of the mean axes oxyz relative 
to the earth axes is represented by V and ω. 
Meanwhile, the flexible structure is described 
by the finite elements method, the deformation 
of all the element grids is represented by u. The 
kinetic energy and the potential energy can be 
written,  
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where, M is the total mass of the aircraft; I is the 
total inertia matrix of the aircraft, the effect of 
the structural deformation could be neglected if 
the elastic deformation is not large, and I could 
be treated as a constant matrix; m and k is the 
mass matrix and stiffness matrix of the finite 
element model. 

The Lagrange function of the flexible 
aircraft can be written, 
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Write the linear velocity as the components 
in mean axes, V=[U V W]T, and the angular 
velocity ω=[p q r]T, referred as quasi-
coordinates.  

According to the Hamilton Principle, the 
equations of motion of the flexible aircraft in 
the mean axes system can be represented as 
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where, Fm and Mm are the generalized forces 
relative to the translational and rotational rigid 
body degrees of freedom, which equal to the 
resultant forces and moments in the means axes; 
Qu is the generalized forces relative to the 
elastic deformation u, which equals to the loads 
act on the grids of the finite elements. The loads 
including the gravity load fG, the aerodynamic 
load fA, and the thrust load fT, etc. The gravity 
loads fG can be written,  
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where, I3 is the 3×3 identity matrix. All the 
generalized forces can be written, 
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where, gm is the acceleration vector of gravity in 
the mean axes, tΦ  and rΦ are the mode matrix 

of translational and rotational rigid body motion.  
The structural deformation u is assumed 

sufficiently small, so that it can be linearly 
superposed by several modes 

[ ] e
e c

c

 
  

 

q
u Φ Φ

q
                    (6) 

where, eΦ  is the normal elastic mode matrix of 

free vibration of the structure, cΦ is the control 

surface deflection mode matrix, qe and qc are the 
generalized coordinates, respectively. 

Substitute the results of equation (5) and (6) 
into equation (3), yields  
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where, T
ee e eM Φ mΦ , T

ee e eB Φ bΦ  and 
T

ee e eK Φ kΦ  are the elastic generalized mass, 

damping and stiffness matrix, respectively; 
T

ec e cM Φ mΦ  is the coupling mass matrix 

between the control and the structural modes. 
Combined with the kinematics equations of 

rigid degrees of freedom, the equations of 
motion of flexible aircraft can be written,  
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where, L and D are the coefficient matrixes. 
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The small-disturbance theory[4] from 
conventional flight dynamics is still used to 
derive the linear equations of motion of the 
flexible aircraft. The reference steady state is 
taken to be symmetric rectilinear flight. The 
steady-state values are denoted by subscript 0 
(for equilibrium) and changes from them by the 
prefix ∆. Thus for example 
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For the symmetric rectilinear flight 
situation with the true airspeed V∞, there are 
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0 0 0  V ω θ 0  , substitute the results into 

equation (8) yields 
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where, L0, D0 and T are the coefficient matrixes. 

2.2 Unsteady aerodynamics  

The unsteady aerodynamics of the flexible 
aircraft in frequency domain is computed by the 
doublet lattice method, and then it is 
transformed into Laplace domain by 
aerodynamics rational function approximation 
approach[5,6]. The generalized aerodynamics in 
Laplace domain can be written  

   A Ds q sF Q q                (11) 

where, / 2s sc V  is the nondimensional 

Laplace variable; s is the Laplace variable; c is 
the reference chord; q is generalized coordinates; 

 sQ  is the generalized aerodynamic influence 

coefficient matrix, and it could be attained by 
minimum-state approximation formula as 
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where, A0, A1, A2, D, E are the approximation 
coefficients matrix; R is the aerodynamic root 
matrix, and the matrix order equals to the 

number of aerodynamic roots nr; Ir is the nr×nr 
identity matrix. For the flexible aircraft, those 
matrixes can be written   
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where, the different subscript t, r, e, c means the 
translational and rotational modes of rigid body 
motion, the elastic mode, and the control mode, 
respectively. Use subscript s instead of subscript 
t, r, e (all the structural mode), there is  
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In this formulation, A0, A1, A2 are the 
coefficient matrixes represent the quasi-steady 
aerodynamic forces. The remnant terms are used 
to model the flow unsteadiness, whose effects 
can be modeled as a state-space realization,  
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Written in time domain, there is  
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Substituted equation (12), (14) and (15) 
into equation (11), yields 
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2.3 Stability analysis of flexible aircraft 

Considering the linear equation, and write 
in matrix format,  
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where, 
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where, 
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Combining equation (16) and (19), write in 
state-space form as  
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As noted in Lyapunov stability theory, the 
linear system that defined in equation (20) is 
stable if all the real parts of the eigenvalues of 
characteristic matrix A are negative.  

3  Numerical Example  

3.1 Model 

The longitudinal flight stability of a flexible 
flying wing has been analysis. The flying wing 
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consists of the central blended wing body, large-
aspect-ratio wings and the vertical tails locates 
at the wing tip, as shown in Fig. 1. The wing 
span of the flying wing is 4.800m, and the gross 
weight is 20kg. The static stability margin of the 
rigid aircraft is 16%. 

According to the symmetric flight 
condition, the natural vibration characteristics of 
the flying wing structure have been analyzed. 
The result of structural dynamic characteristics 
is shown in Table 1. 
 

X
Y

Z

 
Fig. 1. Aerodynamic Layout of the Flying Wing 

 
Table 1. The structural dynamic characteristics of the 

flying wing with symmetric boundary condition 
 f / Hz Mode 

mode 1 0.0 Rigid body fore-aft motion 
mode 2 0.0 Rigid body plunge 
mode 3 0.0 Rigid body pitch 
mode 4 3.67 Wing 1st bending  
mode 5 20.32 Wing 2nd bending 
mode 6 31.31 Wing 1st bending in plane with 

1st torsion  
mode 7 34.37 Wing 1st torsion  
mode 8 39.61 Wing 3rd bending 
mode 9 62.94 Outer wing 3rd bending  

mode 10 86.13 Wing 4th bending 
mode 11 101.71 Wing 2nd torsion 

3.2 Longitudinal stability characteristics of 
rigid flying wing 

The longitudinal aerodynamic derivatives of the 
rigid flying wing are listed in Table 2, and the 
longitudinal mode characteristics are calculated 
and illustrated in Fig. 2 and Fig. 3, including the 
root locus of phugoid mode and short-period 
mode. The result shows that the damping and 
frequency of the phugoid mode decreases with 
the increase of the velocity. However, the 
damping and frequency of the short-period keep 
increasing with the increase of the velocity. 
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Fig. 2 Root locus of phugoid mode of the rigid flying 

wing (V=15m/s~50m/s) 

-11 -10 -9 -8 -7 -6 -5 -4 -3
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Fig. 3 Root locus of short-period mode of the rigid flying 

wing (V=15m/s~50m/s) 

3.3 Longitudinal stability characteristics of 
elastic flying wing 

The longitudinal stability characteristics of the 
elastic flying wing are analyzed by using the 
method proposed in this paper. Three rigid body 
degrees of freedom, eight elastic degrees of 
freedom that mentioned above and one 
aerodynamic root are all considered when 
establishing the state-space model of the elastic 
flying wing. The root locus relative to the 
velocity is shown in Fig. 4. The result indicates 
that, with the increase of velocity, the root locus 
of the short-period mode cross the imaginary 
axis at a velocity of 26.1m/s (more detail of the 
short-period root locus is shown in Fig. 5). 
Which means the system is unstable when 
V>26.1m/s. 

By Comparing the root locus of phugoid 
and short-period mode of rigid and elastic flying 
wings, the result shows that the characteristics 
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of short-period mode are influenced by the 
coupling effects of the rigid body degrees of 
motion and the elastic degrees of motion. 
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Figure 4 Root locus of the flexible flying wing 

(V=15m/s~50m/s)  
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Figure 5 Details of the short-period mode and phugoid 
root locus of the flexible flying wing (V=15m/s~50m/s) 

3.4  Time domain response analysis 

As both of the state-space models of the rigid 
and elastic flying wing have been developed in 
the former sections, let the initial disturbance of 
the angle of attack is 1.0 degree, the time 
domain response of the flying wing has been 
analyzed with different velocities. Table 3 
shows the response of trajectory, angle of attack 
∆α, forward velocity ∆u, pitch rate ∆q and pitch 
angle ∆θ, when the system is stable (V∞=20m/s), 
critical stable (V∞=26.1) and unstable 
(V∞=30m/s). 

4  Conclusion 

A method for flight dynamic stability analysis 
of flexible aircraft has been presented in this 
paper, which considers the rigid-body degrees 
of freedom as well as the elastic degrees of 
freedom of aircraft. 

From the numerical example, the 
longitudinal stability analysis of a flying wing 
with large-aspect-ratio wings has been carried 
out by both the rigid flight dynamics and the 
method presented. Results obtained by these 
two methods are compared, which indicate that 
the structural vibration of the flexible aircraft 
will interact with rigid-body flight dynamics, 
and it will have a great influence on the flight 
stability of the flying wing. 
 

 
 

Table 2. The longitudinal aerodynamic derivatives of the rigid flying wing 
V∞ 15m/s 20m/s 25m/s 30m/s 35m/s 40m/s 45m/s 50m/s 
α/deg 12.90 7.25 4.64 3.22 2.36 1.80 1.42 1.15 
δe/deg -15.51 -8.72 -5.58 -3.87 -2.84 -2.17 -1.72 -1.39 

CL0 1.0314 0.5903 0.3796 0.2641 0.1942 0.1487 0.1175 0.0952 
CD0 0.3461 0.0851 0.0408 0.0248 0.0180 0.0147 0.0129 0.0119 
CDα 0.2136 0.1223 0.0787 0.0548 0.0404 0.0309 0.0245 0.0199 
CLα 5.2947 5.2981 5.3024 5.3076 5.3139 5.3211 5.3294 5.3387 
Cmα -0.8033 -0.8039 -0.8046 -0.8055 -0.8066 -0.8078 -0.8093 -0.8109 
CLq 7.7595 7.7641 7.7700 7.7772 7.7858 7.7957 7.8071 7.8197 
Cmq -6.0396 -6.0430 -6.0473 -6.0526 -6.0589 -6.0662 -6.0746 -6.0839 
CDδe 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
CLδe 0.4926 0.4930 0.4932 0.4936 0.4942 0.4946 0.4954 0.4960 
Cmδe -0.6680 -0.6684 -0.6684 -0.6694 -0.6700 -0.6727 -0.6716 -0.6726 

mC   -0.6040 -0.6043 -0.6047 -0.6053 -0.6059 -0.6066 -0.6075 -0.6084 
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Table 2. Time domain response of the flying wing with different velocities 
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