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Abstract  

The present paper describes a novel adaptive 

algorithm developed to cancel the elastic modes 

component in the feedback of the Flying Boom 

Control Laws maintaining unaltered the sensed 

rigid system dynamics. In contrast to other 

existing techniques, the Elastic Modes Adaptive 

Cancellation (EMAC) algorithm uses minimum 

information of the system and only requires two 

sensors to cancel all the elastic modes of the 

structure present in the feedback signals. The 

online modal identification technique 

implemented in the EMAC, adaptively 

reconfigure an internal signals fusion 

algorithm, providing an excellent elastic 

component suppression performance for elastic 

systems with fast time-varying geometries and 

exogenous boundary conditions with discrete 

changes. 

Robustness and performance analyses of the 

proposed algorithm have been carried out with 

simulation results from different test benches, 

including results from flight test campaigns with 

the A330 MRTT and the A310MRTT. 

The paper is structured so as to describe the 

entire design process of the algorithm, from the 

initial definition of the high level requirements 

to the final implementation and validation. 

1  Nomenclature and abbreviations 

𝑓  = Nonlinear system dynamics function 

𝑔  = System observation function 

𝑥  = State variables that describe the dynamic 

evolution of the rigid system 
𝜂 = Generalized elastic displacements 

𝑢 = Control inputs 

𝑤 = External disturbances 

𝑦 = Output measurement 

𝑟 = Rigid dynamics output measurement  

𝑣 = Measurement errors  

𝛽 = Virtual measured signal 

𝜀  = Estimation error 

𝑡 = Time 

Δ𝑡 = Sample time 

ℝ  = The set of real numbers 

ℕ+= The set of positive natural numbers 

𝑝  = Dimension of state variables vector 

𝑁  = Dimension of generalized elastic 

displacement vector 

𝑙  = Dimension of control inputs vector 

𝐿 = Telescopic beam length 

𝑃  = Dimension of external disturbances vector 

𝑄  = Dimension of measurement errors vector 

𝑆  = Number of sensors in a spatial array 

𝑚  = Dimension of measurement output 

𝑛  = Discrete-time sample index 

𝐹  = Flight Control Laws function 

Ϝ  = Measured nozzle forces 

𝐻  = Filter function 

𝑌  = Filtered measurement output 

𝐾  = Elastic mode shape cancelation parameter 

𝐸  = Error function 

𝜑  = Elastic mode shape 

𝜙  = Bandwidth power ratio 

𝜃  = Spatial filter parameter vector 

𝚵  = Elastic mode shape matrix 

𝚽  = Spatial filter matrix 

EMAC  = Elastic Modes Adaptive Cancellation 

ALAS = Automatic Loads Alleviation System 

MRTT = Multi Role Tanker Transport 
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2  Introduction 

Along the aerospace history, many are the 

incidents that have emphasized the important 

role that aeroservoelastic coupling plays in the 

stability of controlled vehicles [1, 2]. Instability 

and handling qualities degradation shall be 

avoided by supressing the structural elastic 

modes in the feedback paths of the Control 

Laws (CLAWS). In the particular case of 

controlled systems with a very flexible 

structure, notch filters are no longer a suitable 

filtering technique to remove the elastic modes 

from the feedback signals, and it is essential to 

use alternative methods that minimize the 

impact on the rigid dynamics component to 

achieve the required handling qualities level and 

stability margins. This is the case of the flying 

boom installed in the A330 MRTT, a flexible 

slender structure with highly non-linear 

aerodynamics and elastic characteristics that 

strongly vary with the flight condition, the 

operational phase and with the telescopic beam 

length. The first bending mode frequency of the 

flying boom in both free-air and coupled 

conditions (during refuelling operations) lie in 

the bandwidth of the rigid control frequencies. 

To suppress this mode without introducing 

unacceptable phase-loss and attenuation in the 

sensed rigid dynamics, Airbus Defence and 

Space developed and patented a spatial filter to 

mix the attitude and angular rate measured by 

two different sensors [3]. 

 

 
Figure 1: Refuelling operation with the flying 

boom system with an A330 MRTT (tanker) and 

an F-35A Joint Strike Fighter (receiver) 

 

 

This spatial filter can cancel the first bending 

structural mode in free air based on the 

knowledge of the mode shape as a function of 

the flight condition and the telescopic beam 

extension. This model based methodology 

requires an offline fine tuning based on data 

gathered during an extensive flight test 

campaign. Moreover, this method lacks of 

robustness against uncertainties in the modelled 

plant. To enhance the performance and 

robustness of the current spatial filter, and to 

reduce the development time and cost 

associated to the standard model based design, 

the Elastic Modes Adaptive Cancellation 

algorithm was developed. This innovative 

algorithm is an evolution of the original patent, 

and has been developed to cancel all existing 

elastic modes in the feedback path by means of 

a robust adaptive strategy. The EMAC 

algorithm identifies the elastic natural 

frequencies in real time and adaptively adjusts 

the frequency mixing matrix applied to the 

measured feedback signals to generate a filtered 

signal containing only the rigid dynamics of the 

flying boom, with zero phase-loss and 

attenuation. Furthermore, the EMAC algorithm 

could enable the control of the elastic dynamics 

of the flying boom using a dedicated control law 

in combination with the CLAWS for the rigid 

dynamics without impacting on the stability 

margins of the rigid motion. 

3  Aeroservoelastic Coupling Suppression 

Aeroservolastic coupling suppression is a 

multidisciplinary technology dealing with the 

interaction of air vehicle non-stationary 

aerodynamic forces, the structure dynamics and 

the flight control system dynamics. Several 

studies have been conducted assessing strategies 

and methodologies in the design of active flight 

control algorithms to favourably modify the 

aeroelastic dynamics of the system, or to simply 

decouple the rigid and elastic measured 

dynamics to minimize the adverse effects on the 

stability margins and handling qualities. In this 

section we will address the decoupling problem 

and expose different solutions that have been 

evaluated during the development of the EMAC 

algorithm. 
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Without loss of generality, the aeroservoelastic 

dynamics of a time-varying system can be 

described as 

 [
𝒙̇
𝜼̇
] = 𝒇(𝒙, 𝜼, 𝒖,𝒘, 𝑡) (1) 

𝒚 = 𝒈(𝒙, 𝜼, 𝒖, 𝒗, 𝑡) (2) 

where 𝒙 ∈ ℝ𝑝  is a collection of state variables 

that describe the dynamic evolution of the rigid 

system,  𝜼 ∈ ℝ𝑁  is the vector of generalized 

elastic displacements,  𝒖 ∈ ℝ𝑙  is the control 

input, 𝒘 ∈ ℝ𝑃  contains the external 

disturbances,  𝒗 ∈ ℝ𝑄  is the vector of 

measurement errors,  𝒚 ∈ ℝ𝑚  is the output 

measurement and 𝑡  is the time, denoting that 

both the system nonlinear dynamics defined by 

𝒇:ℝ𝑝+𝑁+𝑙+𝑃+1 → ℝ𝑝+𝑁 and the system 

observation characteristics defined 

by  𝒈: ℝ𝑝+𝑁+𝑙+𝑄+1 → ℝ𝑚 , are time varying 

functions that depends on exogenous boundary 

conditions. Aeroservoelastic coupling 

phenomenon is originated when the CLAWS 

feedback contains not only the rigid state 

variables but also the generalized elastic 

displacements. 

𝒖 = 𝑭(𝒚, 𝑡) = 𝑭(𝒙, 𝜼, 𝒖(𝑡 − Δ𝑡), 𝒗, 𝑡) (3) 

In this case, if no filtering is applied to the 

feedback  𝒚 , depending on the flight controls 

characteristics and on the rigid system modes, 

the control inputs 𝒖  could amplify the elastic 

displacements leading to instability. The 

objective pursued with the filtering is to 

eliminate the dependency of the control inputs 

with the generalized elastic displacements in 

such a way the CLAWS in (3) could be 

expressed ideally as 

𝒀(𝒙, 𝒖, 𝒗, 𝑡) = 𝑯(𝒚(𝒙, 𝜼, 𝒖, 𝒗, 𝑡), 𝑡) (4) 

𝒖 = 𝑭(𝒀, 𝑡) (5) 

with 𝒀 ∈ ℝ𝑚  is the filtered output measurement 

and 𝑯 is the filter function. The selection of the 

filtering method will condition the closed loop 

system stability, so it is desirable to design this 

filter with a trade-off between the attenuation of 

the elastic modes component and the impact on 

the rigid state components in the feedback. One 

of the filtering methods that have been widely 

used in the aerospace industry to cancel the 

aeroservoelastic coupling is the use of cascades 

of notch filters [4]. This approach is suitable for 

systems with elastic modes frequencies that lie 

outside the control frequency bandwidth of the 

augmented system. In other cases, when the 

system has a very flexible structure, the delay 

and attenuation introduced by the notch filters in 

the low-frequency region of the system 

frequency response make the harmonization 

between robustness and handling qualities to be 

hardly achievable during the CLAWS design. 

Alternative solutions for very flexible systems 

have been developed to meet the design 

requirements. In [5] an extended Kalman filter 

is proposed to attenuate the feedback elastic 

component at the resonant frequencies using the 

theoretic model of the rigid system and in [6] a 

modal filter is used. In addition to these 

solutions, spatial filtering technique [7] has 

proved to be a very effective technology that 

uses a distributed sensors array to cancel the 

elastic modes components in the feedback 

signal, assuming the elastic modes shapes are 

known beforehand (model based). Nevertheless, 

the number of sensors used is in general greater 

than twice the number of elastic modes to be 

suppressed [7]. 

These alternative solutions, like all model 

based filtering methods, conventionally lack of 

robustness and adaptation capabilities against 

plant uncertainties, cannot cope with fast 

changes in the structure morphology, and their 

performance is very sensitive to variations in the 

exogenous boundary conditions. All these 

drawbacks have motivated the development of 

the EMAC algorithm so as to achieve a robust 

online cancellation of the elastic modes in the 

feedback using a non-model-based approach. 

4  Proposed Algorithm 

The Elastic Modes Adaptive Cancellation 

algorithm uses the output of two measurement 

sources to generate an extended multi-modal 

spatial filter. First, a collection of estimation 

kernels identifies the elastic modes 

characteristics. Outputs of these kernels are 

feedforwarded to an algebraic solver, where a 
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set of virtual signals which are linearly 

independent with respect to their elastic modes 

contents is generated. This solver is the 

responsible of handling the fusion of the virtual 

signals set to make the user-selected elastic 

modes unobservable, while maintaining 

unaltered the sensed rigid dynamics of the 

nonlinear time-varying system. In parallel, a 

special observer estimates the exogenous 

boundary condition acting on the system and 

accordingly configures the constraints 

applicable to the distributed constrained 

estimation kernels. This additional observer is 

intended to make the filtering robust against 

undetected exogenous boundary conditions 

transitions. 

4.1  Elastic Modes Estimation Kernels 

Each kernel is intended to provide an estimate 

of the elastic modes displacement, and an 

estimate of the 𝐾𝑛
𝑖  

parameters required to cancel 

a specific elastic mode given two scalar signals 

𝑦𝐴 and 𝑦𝐵, measured by sensor A and sensor B 

respectively. These discrete-time scalar signals 

can be expressed in terms of the sensed rigid 

and elastic system dynamics as 

𝑦𝑛
𝐴 = 𝑟𝑛 + ∑𝜑𝑛

𝑗(𝒍𝐴)𝜂𝑛
𝑗

𝑁

𝑗=1

+ 𝑣𝑛
𝐴 

(6) 

𝑦𝑛
𝐵 = 𝑟𝑛 + ∑𝜑𝑛

𝑗(𝒍𝐵)𝜂𝑛
𝑗

𝑁

𝑗=1

+ 𝑣𝑛
𝐵  (7) 

where 𝒍𝐴 ∈ ℝ3  and 𝒍𝐵 ∈ ℝ3  denote the spatial 

location of sensors 𝐴  and 𝐵  respectively. The 

perfect cancellation parameter for the 𝑖th elastic 

mode 𝐾𝑛
𝑖  can be computed imposing that the 

linear combination of the two measured signals 

results in the suppression of the 𝜑𝑛
𝑖 (𝒍𝐴)𝜂𝑛

𝑖  
term 

in (6), while maintaining unaltered the sensed 

rigid dynamics denoted by 𝑟𝑛  

𝐾𝑛
𝑖𝑦𝑛

𝐴 + (1 − 𝐾𝑛
𝑖)𝑦𝑛

𝐵

= 𝑟𝑛

+ ∑ [𝐾𝑛
𝑖𝜑𝑛

𝑗 (𝒍𝐴)𝜂𝑛
𝑗

𝑁

𝑗=1≠𝑖

+ (1 − 𝐾𝑛
𝑖 )𝜑𝑛

𝑗 (𝒍𝐵)𝜂𝑛
𝑗 ]

+ 𝐾𝑛
𝑖𝑣𝑛

𝐴 + (1 − 𝐾𝑛
𝑖 )𝑣𝑛

𝐵 

(8) 

Solving (8) for 𝐾𝑖(𝑛) yields  

𝐾𝑛
𝑖 =

𝜑𝑛
𝑖 (𝒍𝐵)

𝜑𝑛
𝑖 (𝒍𝐵) − 𝜑𝑛

𝑖 (𝒍𝐴)
 (9) 

In a model based approach, one could use 

the elastic model to compute the unitary 

displacements 𝜑𝑛
𝑖 (𝒍𝐴) and 𝜑𝑛

𝑖 (𝒍𝐵) to obtain the 

theoretic value of the perfect cancellation 

parameters. However, elastic model 

uncertainties generally are associated with a 

degradation of the elastic mode cancellation 

performance. To prevent this, an online 

estimator for the 𝐾𝑛
𝑖  parameter is used, under the 

assumption that for both measured signals 𝑦𝐴 

and 𝑦𝐵,  the system rigid dynamics power 

spectral density is negligible with respect the 

elastic dynamics power spectral density in a 

narrow frequency bandwidth Δω centred at the 

𝑖th elastic mode damped natural frequency 𝜔𝑖 . 

This is: 

𝜙𝐴 =
∫ ∑ 𝑟𝑛𝑒−𝑗𝜔𝑛∞

𝑛=−∞  𝑑𝜔
 𝜔𝑖+Δ𝜔/2

 𝜔𝑖−Δ𝜔/2

∫ ∑ 𝜑𝑛
𝑖 (𝒍𝐴)𝜂𝑛

𝑖 𝑒−𝑗𝜔𝑛∞
𝑛=−∞  𝑑𝜔

 𝜔𝑖+Δ𝜔/2

 𝜔𝑖−Δ𝜔/2

≪ 1
 

(10) 

𝜙𝐵 =
∫ ∑ 𝑟𝑛𝑒−𝑗𝜔𝑛∞

𝑛=−∞  𝑑𝜔
 𝜔𝑖+Δ𝜔/2

 𝜔𝑖−Δ𝜔/2

∫ ∑ 𝜑𝑛
𝑖 (𝒍𝐵)𝜂𝑛

𝑖 𝑒−𝑗𝜔𝑛∞
𝑛=−∞  𝑑𝜔

 𝜔𝑖+Δ𝜔/2

 𝜔𝑖−Δ𝜔/2

≪ 1 (11) 

Using (10) and (11), one can ensure that the 

solution of the following least mean square 

problem is a quasi-unbiased estimator of the 𝐾𝑛
𝑖  

parameter 

min
𝐾̂𝑛

𝑖
𝐸𝑛

𝑖 = min
𝐾̂𝑛

𝑖
∑(𝐾̂𝑛

𝑖
𝑌𝑗

𝐴 + (1 − 𝐾̂𝑛

𝑖
)𝑌𝑗

𝐵)
2

𝑁𝑖

𝑗=1

 (12) 

𝑌𝑛
𝐽 = 𝐻𝑐(𝑧; 𝜔𝑖, 𝜔𝑖−1, 𝜔𝑖+1)𝑦

𝐽(𝑧) 

𝐽 = 𝐴, 𝐵 (13) 
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𝑁𝑖 ∈ ℕ+  in (12) is selected to be an integer 

multiple of 2𝜋/𝜔𝑖Δ𝑡  to compute the cost 

function during at least one period of the 𝑖 th 

elastic mode. 𝑌𝑛
𝐴  is the output of a parametric 

digital filter 𝐻𝑐, with 𝑦𝐴 and 𝑦𝐵 as input signals. 

This digital filter is composed by a narrow 

band-pass filter with bandwidth Δ𝜔𝐵𝑃 centred at 

𝜔𝑖, combined with two narrow stop-band filters 

with bandwidth Δ𝜔𝑆𝐵  centred at 𝜔𝑖−1 and 𝜔𝑖+1 

respectively. It is intended to isolate the 𝑖 th 

elastic mode and avoid possible estimation 

errors in 𝐾̂𝑛
𝑖  induced by inter-modal 

interferences. Once 𝑌𝑗
𝐴  and 𝑌𝑗

𝐵  have been 

calculated, the estimated cancellation parameter 

𝐾̂𝑛
𝑖  is computed like 

𝐾𝑛
𝑖  =

∑ 𝑌𝑗
𝐵2𝑁𝑖

𝑗=1 − ∑ 𝑌𝑗
𝐴𝑌𝑗

𝐵𝑁𝑖
𝑗=1

∑ 𝑌𝑗
𝐴2

+ ∑ 𝑌𝑗
𝐵2𝑁𝑖

𝑗=1
𝑁𝑖
𝑗=1 − 2∑ 𝑌𝑗

𝐴𝑌𝑗
𝐵𝑁𝑖

𝑗=1

 
(14) 

Expanding (14), one can demonstrate that 

the estimation bias in 𝐾̂𝑛
𝑖  

is a function of 𝜙𝐴, 𝜙𝐵 

and the measurements noise. 

 𝐾̂𝑛
𝑖  = 𝐾𝑛

𝑖 + 𝜀(𝜙𝐴, 𝜙𝐵 , 𝑣𝑛
𝐴, 𝑣𝑛

𝐵) (15) 

When (10) and (11) are satisfied, the 

estimation bias mainly depends on the 

measurement noise, and so, solution (14) is said 

to be a quasi-unbiased estimator. This can be 

achieved by selecting Δ𝜔𝐵𝑃 to be small.  If (10) 

and (11) are not satisfied due to the low 

excitation of the elastic modes, equation (14) for 

𝐾̂𝑛
𝑖  is no longer updated and the last value 

𝐾̂𝑛−1
𝑖 is used instead. It has to be noted that so 

far, all damped natural frequencies of the elastic 

modes 𝜔𝑖 have been assumed to be known. To 

complete the non-model based adaptive 

approach, it is mandatory to close the 

identification loop and make the estimation 

kernel independent and self-contained. With this 

aim, an adaptive frequency estimation module is 

used to feedback the 𝐾̂𝑛
𝑖  estimator defined in 

(14). Given a signal containing multiple elastic 

modes, there are several algorithms that permit 

to estimate the frequencies at which its power 

spectral density is maximized [8, 9]. In this 

case, a fast Fourier transformation has been 

used in order to estimate the undamped natural 

frequency of the 𝑖th elastic mode. 

The signal 𝛾𝑛
𝑖  to be analysed by the 

frequency tracking module represent an 

estimation of 𝑖 th elastic mode 𝜑̂𝑛
𝑖 (𝒍𝐴)𝜂̂𝑛

𝑖  

measured at 𝒍𝐴. It is computed by means of an 

auxiliary variable denoted by 𝑌𝑛
𝐼 

𝛾𝑛
𝑖 = 𝜑̂𝑛

𝑖 (𝒍𝐴)𝜂̂𝑛
𝑖 = 𝑦𝑛

𝐴 − 𝑌𝑛
𝐼 = 𝜑𝑛

𝑖 (𝒍𝐴)𝜂𝑛
𝑖 + 𝜀𝑛

𝑖  (16) 

𝑌𝑛
𝐼 = 𝐻1(𝑧; 𝜔̂𝑖, 𝜔̂𝑖−1, 𝜔̂𝑖+1)[𝐾̂𝑛

𝑖
𝑦𝑛

𝐴

+ (1 − 𝐾̂𝑛

𝑖
)𝑦𝑛

𝐵]

+ 𝐻2(𝑧; 𝜔̂𝑖, 𝜔̂𝑖−1, 𝜔̂𝑖+1)𝑦𝑛
𝐴 

(17) 

𝐻1(𝑧; 𝜔𝑖, 𝜔𝑖−1, 𝜔𝑖+1) 

+𝐻2(𝑧; 𝜔𝑖 , 𝜔𝑖−1, 𝜔𝑖+1) = 1 (18) 

𝑌𝑛
𝐼  is the output of a complementary filter 

bank defined by (18) which ensures the 

measured rigid dynamics of 𝑦𝑛
𝐴  to stays 

unaltered. This filter bank is composed by a 

band-pass filter 𝐻1 and a stop-band filter 𝐻2
 

centred at  𝜔̂𝑖 . To break the existing algebraic 

loops within the estimation kernel, all estimated 

LEAST MEAN SQUARE 
ERROR OPTIMIZATION 

∓  

𝐻2(𝑧) 

 ∑ 

𝐻1(𝑧) 𝐾̂𝑛
𝑖𝑦𝑛

𝐴 + (1 − 𝐾̂𝑛
𝑖)𝑦𝑛

𝐵 𝐻𝑐 

CONDITIONING 
FILTER 

∑ 𝑌𝑗
𝐵2𝑁𝑖

𝑗=1 − ∑ 𝑌𝑗
𝐴𝑌𝑗

𝐵𝑁𝑖
𝑗=1

∑ 𝑌𝑗
𝐴2

+ ∑ 𝑌𝑗
𝐵2𝑁𝑖

𝑗=1
𝑁𝑖

𝑗=1
− 2∑ 𝑌𝑗

𝐴𝑌𝑗
𝐵𝑁𝑖

𝑗=1

 

𝑌𝑛
𝐵 

𝑌𝑛
𝐴 

𝜔̂𝑖 

𝜔̂𝑖−1;  𝜔̂𝑖+1 

𝐾̂𝑛
𝑖  

𝑌𝑛
𝐼

 𝛾𝑛
𝑖

 FREQUENCY 
TRACKING MODULE 

COMPLEMENTARY 
FILTER BANK 

𝑦𝑛
𝐴 𝑦𝑛

𝐵 

Figure 2: Block diagram of an elastic mode estimation kernel 

𝑧−1 
𝑧−1 
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frequencies are delayed one step time. In order 

to increase the robustness of the estimation 

kernel, parameters 𝐾̂𝑛
𝑖  and the estimated elastic 

modes undamped frequencies 𝜔̂𝑖  are forced to 

be bounded by extreme values obtained from 

the most critical tolerance combination of the 

elastic models of the system. This is 𝐾̂𝑛
𝑖 ∈

[𝐾𝑚𝑖𝑛
𝑖 , 𝐾𝑚𝑎𝑥

𝑖 ]  and 𝜔̂𝑖 ∈ [𝜔𝑚𝑖𝑛
𝑖 , 𝜔 𝑚𝑎𝑥

𝑖 ] . These 

extreme values depend also on the exogenous 

boundary conditions.  With the described 

structure (depicted in Figure 2), the estimation 

kernels are able to compute a quasi-unbiased 

approximation 𝐾̂𝑛
𝑖  

of the perfect cancellation 

parameters 𝐾𝑛
𝑖  

for each elastic mode, and an 

estimate of the mode displacements 𝛾𝑛
𝑖  at sensor 

location 𝒍𝐴. 

 4.2  Extended Spatial Filter Algebraic Solver 

Spatial filters use the information of a sensor 

array to generate an output signal in which some 

or all elastic modes have been suppressed. 

Displacements measured by a sensor 𝑠  of a 

spatial sensor array composed by 𝑆 sensors can 

be expressed as 

𝑦𝑛
𝑠 = 𝑟𝑛 + ∑𝜑𝑛

𝑗(𝑙𝑠)𝜂𝑛
𝑗

𝑁

𝑗=1

+ 𝑣𝑛
𝑠  

(19) 

And in a more compact form we obtain  

𝒚𝑛 = 𝑟𝑛𝟏 + 𝚵𝜼𝑛 + 𝒗𝑛
 (20) 

where now 𝒚𝑛, 𝒗𝑛 ∈ ℝ𝑆 , 𝟏 ∈ ℝ𝑆  is a column 

vector of ones, and 𝚵 ∈ ℝ𝑆 × ℝ𝑁  is a
 
matrix 

containing all elastic modes unitary 

displacement at sensors locations. 

𝚵𝑆×𝑁 = [
𝜑𝑛

1(𝑙1) … 𝜑𝑛
𝑁(𝑙1)

⋮ ⋱ ⋮
𝜑𝑛

1(𝑙𝑆) … 𝜑𝑛
𝑁(𝑙𝑆)

] (21) 

In the standard spatial filtering algorithm, 

given 𝚵, the 𝑁 elastic modes component can be 

suppressed in the filter output 𝑌𝑛
𝑆𝑃  imposing 

once again that the linear combination of the 𝑦𝑛
𝑗
 

signals result in the total cancellation of all 

existing elastic modes while keeping the 

measured rigid dynamics unaltered. This can be 

achieved only if 𝑆 ≥ 𝑁 + 1. 

𝑌𝑛
𝑆𝑃 = ∑ 𝜃𝑛

𝑗
𝑦𝑛

𝑗

𝑁+1

𝑗=1

= 𝑟𝑛 + ∑ 𝜃𝑛
𝑗
𝑣𝑛

𝑗

𝑁+1

𝑗=1

 (22) 

In (22), 𝜽𝑛 ∈ ℝ𝑁+1 is a time varying 

coefficient vector to be determined. This 

equation can be expressed in compact form 

using (20) and (21) 

𝚽𝜽𝑛 = [

0
⋮
0
1

] (23) 

𝚽 = [
𝚵(1:𝑁 + 1,1:𝑁)𝐓

𝟏𝑻
]  = 

= [

𝜑𝑛
1(𝑙1) … 𝜑𝑛

1(𝑙𝑁+1)
⋮ ⋱ ⋮

𝜑𝑛
𝑁(𝑙1) … 𝜑𝑛

𝑁(𝑙𝑁+1)
1 … 1

] 

(24) 

Finally, solving (23) for 𝜃𝑛
 
yields 

 

𝜽𝑛  = 𝚽−1 [

0
⋮
0
1

] (25) 

 

As it can be observed in (25), the standard 

spatial filtering method requires the matrix 𝚽 
to 

be nonsingular in order to cancel the 𝑁 elastic 

modes. This matrix depends on the sensor 

locations, which in the most general case cannot 

be modified, and on the elastic modes of the 

system. Then, the feasibility and flexibility of 

the standard spatial filtering method is reduced 

in comparison with other adaptive techniques. 

Additionally, in this case, only 𝑦𝑛
𝐴  and 𝑦𝑛

𝐵 

signals are available, so only one elastic mode 

could be cancelled [3] using (25). To solve this, 

an extended spatial filtering method has been 

implemented in the EMAC algorithm. This 

method uses the estimates 𝐾̂𝑛
𝑖  

and 𝛾𝑛
𝑖  that have 

been computed by the 𝑁  interconnected 

estimation kernels to generate a set of 𝑁 − 1 

parametric virtual signals 𝛽̂𝑛
𝑠  that complements 

𝑦𝑛
𝐴  and 𝑦𝑛

𝐵 . These signals are generated as 

follows: 

𝛽̂𝑛
𝑠  = 𝑦𝑛

𝐴 − ∑𝜆𝑛
𝑖,𝑠𝛾𝑛

𝑖

𝑁

𝑖=1

 (26) 
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where 𝜆𝑛
𝑖,𝑠

 are parameters that can be modified 

within the algebraic solver. Using (26), equation 

(22) can be reformulated 

𝑌𝑛
𝐸𝑀𝐴𝐶 = 𝜃𝑛

1𝑦𝑛
𝐴 + 𝜃𝑛

2𝑦𝑛
𝐵 + ∑ 𝜃𝑛

𝑗
𝛽̂𝑛

𝑗−2

𝑁+1

𝑗=3

= 𝑟𝑛  (27) 

The new system of equations to be solved 

now depends on 𝜆𝑛
𝑖,𝑠

 parameters so the algebraic 

solver can modify the new matrix 𝚽̂  as 

required, granting that it is nonsingular. This 

matrix is an approximation of the spatial filter 

matrix 𝚽 defined as: 

 
𝚽̂ =

[
 
 
 
 
 𝜑̂

𝑛

1(𝒍𝐴) … 𝜑̂
𝑛

𝑁(𝒍𝐴) 1

𝜑̂
𝑛

1(𝒍𝐵) … 𝜑̂
𝑛

𝑁(𝒍𝐵) 1

(1 − 𝜆𝑛
1,1)𝜑̂

𝑛

1(𝒍𝐴) … (1 − 𝜆𝑛
𝑁,1)𝜑̂

𝑛

𝑁(𝒍𝐴) 1
⋮ ⋱ ⋮ ⋮

(1 − 𝜆𝑛
1,𝑁−1)𝜑̂

𝑛

1(𝒍𝐴) … (1 − 𝜆𝑛
𝑁,𝑁−1)𝜑̂

𝑛

𝑁(𝒍𝐴) 1]
 
 
 
 
 
𝑇

  
(28) 

 

Using equation (9) and (28), one can 

express 𝚽̂  
as a function of 𝜆𝑛

𝑖,𝑠  
and 𝐾̂𝑛

𝑖  dividing 

each row by the estimated elastic mode shape at 

location 𝑙𝐴 denoted by 𝜑̂𝑛
𝑖 (𝒍𝐴) 

(if 𝜑̂𝑛
𝑖 (𝒍𝐴) 

is close 

to zero, affected rows are divided by 𝜑̂𝑛
𝑖 (𝒍𝐵)). 

 

𝚽̂0 =

[
 
 
 
 
 

1 … 1 1
1

𝐾̂𝑛
𝑖 −1

…
1

𝐾̂𝑛
𝑁−1

1

(1 − 𝜆𝑛
1,1) … (1 − 𝜆𝑛

𝑁,1) 1

⋮ ⋱ ⋮ ⋮
(1 − 𝜆𝑛

1,𝑁−1) … (1 − 𝜆𝑛
𝑁,𝑁−1) 1]

 
 
 
 
 
𝑇

  
(29) 

 

Reformulating equation (25) with (29), the 

EMAC algorithm output 𝑌𝑛
𝐸𝑀𝐴𝐶  finally can be 

expressed as a function of 𝜆𝑛
𝑖,𝑠  

and the signals 

calculated in the elastic modes observation 

kernels. 

 

𝜽𝑛  = 𝚽̂0
−1(𝜆𝑛

𝑖,𝑠, 𝐾̂𝑛
𝑖 ) [

0
⋮
0
1

] (30) 

  

 

 

𝑌𝑛
𝐸𝑀𝐴𝐶 = 𝜃𝑛

1𝑦𝑛
𝐴 + 𝜃𝑛

2𝑦𝑛
𝐵 + 

 

+ ∑ 𝜃𝑛
𝑗
(𝑦𝑛

𝐴 − ∑𝜆𝑛
𝑖,𝑠−2𝛾𝑛

𝑖

𝑁

𝑖=1

)

𝑁+1

𝑗=3

 

(31) 

 

A schematic block diagram has been 

depicted in Figure 3 to show the 

interconnections between the estimation kernels 

defined in chapter 4.1 and the extended spatial 

filter algebraic solver. 

 

 

 

4.3 Exogenous Boundary Conditions 

Estimator 

Exogenous boundary conditions acting on the 

system limit the displacements of the structure, 

and impose certain restrictions in the degrees of 

freedom of the system that modify its 

aeroservoelastic properties. Fast discrete 

changes in the boundary conditions need to be 

identified in order to reconfigure the filters 

parameters. To accomplish this, a dedicated 

observer has been implemented in the EMAC 

algorithm based on the estimation kernels 

structure. The basic idea is to monitor the elastic 

energy in a frequency bandwidth associated to a 

specific elastic mode, which is characteristic of 

Figure 3: Block diagram showing the 

estimation kernels interconnections with the 

extended spatial filter algebraic solver 
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2 
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𝑁 
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Figure 5: EMAC algorithm for the A330 MRTT 

flying boom CLAWS 

a certain boundary condition, and determine 

whether or not this boundary condition is 

actually acting on the system. A set of possible 

boundary conditions is analysed offline and the 

extreme values 𝐾𝑚𝑖𝑛
𝑖 , 𝐾𝑚𝑎𝑥

𝑖 , 𝜔𝑚𝑖𝑛
𝑖  and 𝜔 𝑚𝑎𝑥

𝑖  

are computed using the elastic model of the 

system. Then, these values are saved in lookup 

tables within the EMAC algorithm to be used as 

extreme bounds in each estimation kernel 

depending on the results of the online 

estimations of the boundary condition acting on 

the system. 

5  The EMAC Algorithms Applied to the 

A330 MRTT Flying Boom Control Laws 

The flying boom CLAWS of the A330 MRTT is 

a complex system composed by cascades of 

multi-loop controllers with multiple feedback 

signals. CLAWS attitude control signals are the 

boom pitch angle 𝛿  and boom roll angle  𝜑 , 

which have been depicted in Figure 4. In the 

current flying boom CLAWS version, algorithm 

[3] is applied to suppress the first longitudinal 

and lateral bending modes when the CLAWS 

are in CL2 state, which denotes the flying boom 

is in free-air condition. The higher frequency 

elastic modes are attenuated in the feedback 

paths using a cascade of notch filters. 

In CL3 state, which denotes the flying boom is 

in coupled condition, CLAWS implements the 

Automatic Loads Alleviation System (ALAS) to 

minimize the loads measured by sensors located 

in the nozzle of the telescopic beam. In this 

coupled operational phase (CL3), a traditional 

cascade of notch filters is used to attenuate the 

elastic modes component in the CLAWS 

feedback signals. It has to be noted that elastic 

modes shapes 𝜑𝑛
𝑖  and undamped frequencies 

𝜔𝑖 of the flying boom suffer great variations 

during transitions from free air to coupled 

condition and vice versa due to the discrete 

changes in the exogenous boundary conditions 

acting on the structure. 

To test the elastic modes suppression 

performance, the EMAC algorithm has been 

implemented in an experimental flying boom 

CLAWS version. For this particular case, an 

additional conditioning subsystem has been 

added to the algorithm to generate a suitable 

signal 𝑦𝑛
0 to adaptively suppress the 1

st
 and 2

nd
 

elastic modes in free-air, and the 1
st
 elastic 

mode in coupled condition, with independency 

of the CLAWS internal state (CL2/CL3). This 

additional conditioning subsystem fuses the 

attitude and rate information measured by 

sensor 𝐴 and 𝐵 with the loads Ϝ𝑛  measured by 

FLYING BOOM 
SYMMETRY PLANE 

AIRCAFT 
SYMMETRY 
PLANE 

𝑦𝑛
𝐵  

𝑦𝑛
𝐴 

𝐿 

NOZZLE LOADS 
SENSOR  

𝑥𝐴𝑉 

𝑦𝐴𝑉  

𝑧𝐴𝑉  

𝑧𝑅𝑂  

𝑦𝑅𝑂 = 𝑦𝐵𝑂 

𝑥𝐵𝑂 

𝑥𝑅𝑂  𝜑 ROLL 
ANGLE 

 𝜏 ROLL AXIS 
INCLINATION 

 𝛿 PITCH ANGLE 

𝐴 

𝐵 

Figure 4: Flying boom reference axis and 

geometry. Approximated locations of sensors 𝐴  

and 𝐵, and the nozzle loads sensor are marked 

with an inverted triangle 
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0 
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extensometers located at the boom nozzle. A 

block diagram is depicted in Figure 5 

illustrating the configuration of the EMAC 

algorithm adapted for the flying boom CLAWS 

feedback signals. 

6  Validation Results 

With the aim to measure the efficiency and 

robustness of the EMAC algorithm, an offline 

test bench has been built. This test bench can be 

fed with flight test data to obtain the filtered 

feedback signals with the EMAC algorithm. In a 

later step, these signals can be compared with 

the ones generated during the flight test using 

[3] so as to gauge the efficiency improvement or 

deterioration achieved using the EMAC 

algorithm. A total set of 152 flights have been 

analysed in the test bench, within which buffet 

exploration tests and hard contact occurrences 

have been included. Flight test has been 

carefully selected to cover all possible boom 

operational conditions and also to cover all 

possible variations in the elastic properties of 

the flying boom structure (different telescopic 

beam length, etc). Recorded data includes flight 

tests performed with the A330 MRTT and the 

A310 MRTT. 

6.1  Test Bench Results: Buffet Exploration 

Flight Testing 

In this section, offline results obtained using 

buffet exploration flight testing data are 

presented. In particular, a flight segment where 

a severe buffeting phenomenon can be observed 

has been selected to illustrate the EMAC 

algorithm performances compared to that of [3]. 

Data analysed includes a gentle manoeuvre in 

free-air condition (CL2) at very high speed. 

During this manoeuvre, the flying boom 

performs a gradual extension of the telescopic 

beam up to its maximum value (critical for 

buffet). 

Results depicted in Figure 6 prove that the 

EMAC algorithm is capable of perfectly 

cancelling the 1
st
 and 2

nd
 elastic modes in the 

roll feedback signal as intended. Results for 𝐾̂𝑛
1 

parameter indicate that for these particular 

conditions, sensor 𝐴 is located in a node of the 

1
st
 lateral elastic mode as the 𝐾̂𝑛

1 value is very 

small. 

 

 

Figure 6: EMAC test bench results using buffet 

exploration flight testing data. Measured and 

filtered roll attitude 𝜑 generated by the current 

boom CLAWS filtering method SF in blue, and 

by the EMAC algorithm in red (top). EMAC 

estimated 𝛾𝑛
1  and 𝛾𝑛

2  elastic mode amplitudes 

(middle). EMAC estimated perfect cancellation 

parameters 𝐾̂𝑛
1 and 𝐾̂𝑛

2 (bottom). 
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6.2  Test Bench Results: Hard Contacts 

Occurrences During Flight Testing  

EMAC algorithm performances in the presence 

of fast varying exogenous boundary conditions 

and undetected operational phase transitions 

will be illustrated by feeding the test bench with 

flight test data recorded during a hard contact 

occurrence. In this manoeuvre, the boom 

operator performs a tracking of the receiver 

aircraft to finally make the contact in the 

refuelling receptacle (UARRSI). In this 

particular test, instants before the transition to 

coupled condition, the boom nozzle leans on the 

receiver receptacle slipway, being the flying 

boom CLAWS still in CL2 mode (free-air 

mode) before the contact was made. 

Consequently, there is an undetected boundary 

condition change during a limited period of time 

before the system automatically identify the 

phase transition by means of the receptacle 

laches pulse when contact is achieved. 

 

Figure 7: EMAC test bench results using hard 

contact flight testing data. Measured and filtered 

roll attitude generated by the current boom 

CLAWS filtering method SF in blue, and by the 

EMAC algorithm in red (top). Measured nozzle 

loads during the test (middle). Flying boom 

CLAWS internal state values. CL2 denotes free-

air phase and CL3 denotes coupled phase 

(bottom). 

Results obtained with the EMAC test bench 

have been depicted in Figures 7 - 8. As it can be 

observed, the EMAC algorithm is capable of 

recognizing the boundary conditions transition 

maintaining an adequate elastic mode 

cancellation performance due to the exogenous 

boundary conditions estimator, even when the 

flying boom CLAWS internal state is still 

indicating a free-air condition (CL2). During the 

instants where an undetected operational phase 

transition occurs (from 𝑡=𝐶𝑜𝑛𝑡 to 𝑡=𝑡23) results 

obtained with [3] show a slight degradation of 

the simple spatial filter performance. 

 

 

Figure 8: EMAC test bench results using hard 

contact flight testing data. EMAC estimated 

elastic mode amplitudes for free-air identified 

boundary condition 𝛾𝑛
1 and 𝛾𝑛

2, and 𝛾𝑛
0 denoting 

the estimated elastic mode amplitude for 

identified coupled boundary condition (top). 

EMAC estimated perfect cancellation 

parameters 𝐾̂𝑛
1, 𝐾̂𝑛

2 (estimated free-air condition) 

and 𝐾̂𝑛
0 (estimated coupled condition) (bottom). 
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7  Conclusions 

The Elastic Modes Adaptive Cancellation 

algorithm has been developed to overcome the 

limitations of existing filtering algorithms to 

isolate the rigid dynamic with zero phase loss 

and attenuation in a feedback signal of a 

controlled system. With the use of a very 

limited number of sensors (only two are 

necessary), and with a limited previous 

knowledge of the elastic characteristics of the 

system (only frequency and elastic mode shape 

bounds are required), this algorithm has proved 

to be capable of cancelling all existing elastic 

modes. Algorithm adaptation is achieved 

through a set of estimation kernels that 

identifies in real the elastic modes 

characteristics of the controlled system. A 

special observer which estimates the boundary 

conditions acting on the system reconfigures the 

bounds applicable to the estimation kernels to 

make the filtering robust against undetected 

exogenous boundary conditions transitions. 

The EMAC algorithm has been validated 

offline using recorded data from different flight 

test campaigns with the A330 MRTT and the 

A310 MRTT. This algorithm is expected to be 

implemented in an experimental release of the 

flying boom flight CLAWS to validate its 

efficiency and to measure the magnitude of the 

positive impact on the handling qualities during 

the refuelling operations. 

Although EMAC algorithm has been 

developed specifically for the A330 MRTT 

boom control laws, it can be implemented as 

part of the CLAWS of any flexible system with 

more than one sensor located along the 

structure. In addition, EMAC could be used not 

only to filter the elastic component in the 

feedback signals, but also to control the elastic 

dynamics by using a parallel CLAWS with a 

feedback composed by the elastic modes 

displacements identifies by the estimation 

kernels. 
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