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Abstract  
We propose a real-time keyframe-based direct 
(featureless) SLAM method utilizing a single 
depth image stream for small UAVs. The real-
time performance of tracking and mapping is 
guaranteed on an embedded computer that has 
less computational resource. The camera motion 
is estimated by the direct depth image alignment 
based on keyframes in contrast with previous 
point-cloud approaches. The tracking speed is 
greatly improved by the approach and the 
decrease in the number of pixels by reduction of 
the image resolution and the intensity gradient 
based pixel sampling method. A 3D consistent 
map is reconstructed through the pose-graph 
optimization. The proposed framework is 
implemented on an actual UAV platform with a 
small embedded computer, and is compared with 
the ground-truth data for validation. It is proven 
to be effective for UAVs that mainly move in 
longitudinal direction with rotation. 

1  Introduction  
The navigation system is crucial for unmanned 
aerial vehicle (UAV) operations because most 
decisions are made based on the UAV location. 
Simultaneous localization and mapping (SLAM) 
algorithms are being developed as a complement 
of GPS systems whose utility range is limited to 
outdoor missions only. SLAM algorithms can 
help UAVs to operate in GPS-disabled areas and 
obtain geographic information. It has been one of 
the most frequently researched topics during the 
last decade, but the high computational load of 
SLAM algorithms is being an obstacle to actual 
implementation. Therefore, we aim to develop a 
fast and appropriate SLAM algorithm for indoor 
UAV operations. 

The computational resource of small UAVs 
is strictly limited by payload and capacity of 
batteries. Recently, direct SLAM approaches 
have gained popularity since they use more 
information in an image compared to existing 
feature point approaches. Most state-of-art 
algorithms, however, cannot achieve their 
performance on a small embedded computer 
because their high computational complexity 
require a high performance CPU [8,13] or 
GPGPU acceleration [9,10,12]. It has been 
resolved by sending sensor data to a high 
performance ground station and receiving the 
navigation results [7]. These method is 
insufficient since the utility range is still limited 
by communication quality, and the quality is 
hardly stable when a UAV is in GPS-disabled 
areas. Therefore, an on-board real-time 
navigation system is positively necessary to be 
operated autonomously. 

In this paper, a direct SLAM algorithm 
utilizing a single depth image stream is proposed, 
and the real-time performance is guaranteed on a 
small embedded computer. The direct image 
alignment is used to estimate the camera motion. 
It requires usually less computational resource 
than point-cloud approaches, and besides, the 
reduction of image resolution and the intensity 
gradient based pixel sampling method decrease 
the number of pixels to be calculated. In addition, 
inherent depth information in images makes the 
depth map estimation unnecessary in contrast 
with other SLAM methods using RGB cameras. 

The system is appropriate for small UAVs. 
It is real-time guaranteed and costs less payload. 
It requires a single depth image sensor and a 
small embedded computer only. It is also 
effective for UAVs which mainly move in 
longitudinal direction with rotations, because the 
knowledge of depth information allows the 
system to be independent to the photo-consistent 
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assumption and the parallax. Monocular SLAM 
algorithms require the sensor to operate in 
continuous horizontal motions to obtain disparity 
in an image stream [2,4], and cause energy 
dissipation of the platform from the unnecessary 
movement. We integrate the sensor tracking 
system into LSD-SLAM framework [3] for the 
pose-graph optimization of a 3D consistent map. 
The framework is implemented on an actual 
UAV platform, and a real-world result for a 
trajectory which consists of forward and 
rotational motions is compared to the ground-
truth data to validate the system. 

The paper is organized as follows. Chapter 
2 gives an explanation of the overall algorithm. 
The reduction of image resolution for decrease in 
number of pixels and abatement of the edge 
ambiguity is introduced in section 2.1. Section 
2.2 explains the pixel sampling algorithm for 
speed up of error convergence and suitability to 
low depth feature environments. Section 2.3 
describes the camera tracking algorithm using 
the depth image alignment. The map 
reconstruction process is introduced in Section 
2.4. Chapter 3 presents experimental results 
under an actual flight condition. Lastly, 
achievements and future research directions are 
discussed in conclusion. 

2  Depth Image based Direct SLAM 
This Chapter introduces key concepts of the 
proposed algorithm. Figure 1 depicts the overall 
pipeline. The image stream contains depth 
information as pixel intensity. The first image is 
selected as a keyframe, and following images are 
used to estimate the sensor movement by the 
image alignment with the keyframe. When the 
latest image has much portion that do not overlap 
with the existing keyframe or the camera moves 
far from the previous keyframe location, the 
image is selected as a new keyframe for the 
following estimation process. The system keeps 
the history of keyframes and each element 
contains a depth map and positional relationship 
with the previous ones which are used for the 
pose-graph optimization to build a 3D map. 
 
 

2.1 Reduction of the Image Resolution 
The sensor gives an image stream with VGA 
resolution. This huge number of pixels is 
excessive to estimate a camera movement and 
slows down the convergence speed [11]. The 
resolution is reduced to a sixteenth of an image, 
i.e. 160×120 resolution with 19,200 pixels. The 
representative value is found by averaging values 
of the pixels which are larger than five. The part 
of the compressed image is selected by the pixel 
sampling method and used to estimate the sensor 
movement. 

Some negative features of the depth image 
stream such as the unmeasured (black) area and 
jagged object boundaries are caused by optical 
characteristics of the measurement method. The 
reduction not only improves the real-time 
performance but inhibits effects of these 
characteristics. As depicted in Figure 2, the black 
area is shrunk and the edges of objects become 
smooth during the process. Smaller resolutions 
should be avoided because the excessively 
blurred boundary causes the geometrical 
distortion of the environment. 

 
Fig. 2. (a) Original resolution, (b) Downsized image 

 
Fig. 1. Overall pipeline of the SLAM algorithm 
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2.2 Pixel Sampling Method based on 
Intensity Gradients 
The overabundant pixels squander the 
computational resource of the platform, and 
some of them are not much useful to the image 
alignment process, e.g. pixels with zero gradients.  

Because of the textureless characteristic of 
a depth image, a zero photometric error does not 
mean the correct alignment unlike in texture-rich 
images. As shown in Figure 3, when the sensor is 
facing the z axis, translation along z axis and the 
rotations about x and y axes change the depth 
value, but the value is not changed by the rotation 
about z axis and the translation along x and y axes 
[6]. If there is no gradient between adjacent 
pixels, the error will be still zero after planar 
motions of the sensor. The pixels with zero 
gradients exert a constraint on movements of 
only 3 DOF of the sensor. 

Thus the pixels with non-zero gradients 
should be preferentially selected to estimate all 6 
DOF movements of the sensor. The pixels with 
zero gradients and nonzero errors are uniformly 
sampled to keep the total number of pixels at 
least three thousand [5]. Inappropriate pixels are 
excluded for the further optimization process. 

2.3 Image Alignment on SE(3) 
The latest image frame  is aligned with the 
current keyframe  to estimate camera 
movements. The alignment is done by 
minimization of the photometric error. The error 
of each sampled pixel is defined along the 
projective matching scheme (see Fig.4) and is 
given as: 
 = , − , ,  (1) 
 

Where the  is each pixel coordinate on the 
keyframe image,  or ,  mean the pixel 
value at coordinate  on the image  warped by 
the estimated camera movement ∈ 3 , and ,  projects a coordinate  from the 
reference image into the current image with . 

The error is iteratively minimized by the 
weighted Levenberg-Marquardt method in a left 
compositional formulation [1]. 

 = − +  (2)= ∘  (3) 

 

The increment of the kth iteration  is 
computed by the equation (2) using the kth error 
residual  and the Jacobian matrix. The 
damping factor  and the weight  are given 
for each iteration. The operator ∘ is defined as: 

 ∘ ≔ log exp ⋅ exp  [1]  (4) 
 

The target error function is defined as a 
weighted sum of the photometric errors. 

 =  (5)

 
Fig. 3. (a)-(b) Transformations constrained by depth value, (c) Unconstrained transformations 

 
Table 1. Definition of the pixel sampling method 

 

Condition Action 

The pixel is in unmeasured area Excluded

Both of error and gradient values are zero Excluded

The gradient value is zero Uniformly 
sampled 

Elsewhere (nonzero gradient) Included 
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A Jacobian matrix is the rate of change of 
each error metric with respect to the infinitesimal 
sensor movement .   

= ∘  (6)  

 

The Jacobian matrix is found by addition of 
two matrices. One is the matrix from an image 
transformation in relation to the camera 
movement, and the other is from a direct change 
of the pixel value, i.e. objects become dark when 
the sensor get closer. The former is expressed 
with the gradient between adjacent pixels and has 
constraints for all 6 DOF. The direct change 
constrains only three types of movements as 
shown in Figure 3. 

 =  +   (7) 

2.4 3D Map Reconstruction 
The certain frames among an image stream are 
selected as keyframes and are used to reconstruct 
a 3D consistent map using their own depth maps 
and camera-to-world models. There are 
alignment errors between each keyframe because 
of the incompleteness of the tracking system. 
Thus, the pose-graph optimization is employed to 
readjust each depth map and remove the drift. 

In contrast to monocular SLAM algorithm 
using a color image stream, a depth map of a 

depth image frame is directly obtained from the 
image when the keyframe is created. It is 
immediately used for the optimization process 
and abates drift accumulation, then the 
commotional position readjustment is 
diminished during the process. 

3  Experimental Results  
The flight experiment using an actual UAV 
platform is conducted to verify the proposed 
SLAM algorithm. The UAV moves along the 
predefined rectangular trajectory and conducts 
hover flight. The system is verified by a 
trajectory comparison between the real-time 
estimated path, the optimized trajectory, and the 
ground-truth data from the motion capture 
system. The final position of readjusted 
keyframes constitutes the optimized trajectory. 

3.1 Experimental Setup 
The constructed platform shown in Figure 5 has 
a width and length of 60 cm, a height of 25 cm, 
and a weight of 2 kg. It includes a LiPO battery 
with a weight of 455 g. Occipital Structure sensor 
equipped in a forward facing position is used as 
a depth sensor. It gives a depth image stream with 
VGA resolution (640 × 480) at 30 Hz and has a 
58° horizontal FoV, a 45° vertical FoV, and a 
weight of 99 g. It can be lighter when the built-in 
battery is removed. It is calibrated with a simple 
pinhole camera model, and it is assumed that 
there is negligible distortion. The system is 
executed on a Samsung Exynos 5422 on 
ODROID-XU4 with ROS environment. The 
estimation result is transmitted to the flight 
control computer and the ground control 
computer via UDP communication. The ROS 
package of the LSD-SLAM framework [3] is 
used for map visualization. The ground-truth 
trajectory is measured by a motion capture 
system called Eagle Digital Real-time System 
which covers an area of 5 × 5 × 3 m. The platform 
moves along a rectangular path and operates only 
pitch and yaw motions to mimic common UAV 
movements which are mainly composed by 
longitudinal movements with rotations. Some 
objects are placed in the space to generate 
sufficient depth features in the field of view.    

 

Fig. 4. Definition of error using the projective matching.
The blue parts show overlapped portion between the 

latest frame and the keyframe. 
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3.2 Results 
In order to be used as a navigation system of a 
UAV, the translational root mean square error 
(RMSE) of the real-time position estimation and 
the calculation rate should be observed. The 
calculation time is obtained by averaging the 
time taken for two hundred images during the 
tracking and the mapping. The optimized 
trajectory and the map are not the essential 
information for a UAV but worth as a flight log 
and a geographical modeling of the nearby 
environment. 

The characteristics of the platform causes 
difficulties in tracking depth images. The 
platform vibrates and fluctuates in all directions 
during the flight, and the fast movement 
increases the inaccuracy of the tracking 
performance. Especially, the measurement noise 
of the sensor is about 4 cm under a usual situation, 
i.e. the objects are 3 – 4 m far from the sensor. It 
makes small objects undetectable and decreases 
the accuracy of the tracking and the optimization 
process by the distortion of objects. The effects 
from these issues should be considered 
cautiously. 

3.2.1 Loop-closure Test 
The loop-closure must be detected to enable the 
global localization in a given environment. This 
experiment is conducted to check whether the 
system detects the loop-closure when the sensor 

finished a cycle. The reconstructed 3D map and 
resulting trajectories are depicted in Figure 6, 7. 
The loop-closure was detected at 10.04 m, and 
the estimation error is noticeably decreased after 
the detection. The resulting parameters are listed 
in Table 2. The position of the sensor is stably 
estimated, but the error is diverges gradually in z 
direction. The major cause is that the system 
hardly estimates the exact rotation angle when 
the sensor conducts fast ninety degree rotations 
which are challenging for the system. The RMSE 
of the optimized trajectory is dropped by half in 
contrast to the real-time estimation. 

Fig. 7. Resulting trajectories 

Fig. 8. Real-time estimation error due to path length 

 

Fig. 5. Experimental setup. Objects for depth features, the 
motion capture system, and a UAV platform. 

 

Fig. 6. Reconstructed 3D map for the loop-closure test 
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3.2.2 Flight Test 
Both of the state estimation and the map 
reconstruction are fairly performed under the 
actual flight condition, but the estimation of the 
horizontal motion along the x axis is relatively 
insensitive. It might be caused by the local 
minima issue. The planar movements tend to be 
misconceived as rotation because relatively small 
rotation angle covers the change of view. It 
causes the spherical distortion of space. The high 

sensitivity of the heading angle estimation is 
caused by the same reason. The RMSE of the 
real-time trajectory estimation is 0.14 m. The roll 
and pitch attitudes are estimated with an RMSE 
of 0.7 °, and the heading angle is estimated with 
an RMSE of 1.6 °. Other resulting parameters are 
listed in Table 2. 

 

Fig. 9. Some objects are placed for depth features 

 

Fig. 10. Reconstructed 3D map for the flight test 

 

Fig. 11. Resulting trajectories 

  
 

Fig. 12. Comparison of the trajectories about each axis

 

Fig. 13. Real-time estimation error due to path length 
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The system is fairly robust to forward and 
rotational motions, i.e. there is no tracking 
instability during the motions. An image frame 
can be calculated with a rate of 40 Hz. It is much 
faster than other featureless SLAM methods, e.g. 
LSD-SLAM has a rate of 8 – 10 Hz on the 
embedded computer. The optimized trajectory 
from the system is closer to the ground-truth, and 
the 3D map describes the geometrical 
environment of the space. 
 

4  Conclusion 
We proposed a keyframe-based featureless light-
weight SLAM utilizing a single depth image 
stream. It is appropriate to small UAVs because 
the depth sensor is light enough and the 
computational load of the proposed algorithm is 
reasonable for the limited computational 
resource of the onboard computer that can be 
equipped on typical small UAVs. The real-time 
performance is achieved by immediate 
acquisition of depth maps, the direct image 
alignment, and the decrease of pixels. The 
commotional adjustment of the position 
estimation are abated by immediate map 
optimization of keyframes. The system 
reconstructs a 3D consistent map and enables the 
global localization by detecting the loop closure. 
The performance has been evaluated under the 
actual flight condition with the UAV platform. It 
can be useful for UAVs which of the 
computational resource is highly limited or for 
certain situations such as textureless and dark 
environments. 

There are many directions for the future 
research. First, the overall performance can be 
improved by solving the local minima issue. A 
sensor with a broader FoV can abate the spherical 
distortion of space because the geometric 
relationship between objects become clear if the 
objects are observed in one image. Second, the 
precise calibration of the depth sensor can help 
the system estimate the location more accurately. 
The camera model is currently based on the 
simple pinhole camera model and assumed that 
there is negligible distortion in an image. Finally, 
the update rate is excessively fast compared to 
the rate of 30 Hz of the sensor. The system can 
be improved with additional algorithms to 
supplement the sensor tracking or the depth map 
refinement process. 
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