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Abstract  

This paper considers a real-time inference 
method for the intent of aircraft. Using the 
observed trajectory, the proposed method solves 
an inverse optimal control problem based on 
Karush-Kuhn-Tucker optimality condition to 
obtain the weight of each term of the aircraft’s 
objective function corresponding to the priority 
of each flight-mode. These flight-modes include 
direct travel to a waypoint, circling around a 
waypoint, avoiding regions such as severe 
weather areas and special use airspace, and 
resolving conflicts with other aircraft. The 
reasonableness of the inference as well as the 
real-time applicability of the proposed method 
is demonstrated through numerical examples. 

1 Introduction  

1.1 Backgrounds and Purpose 

To enhance the safety and throughput of air 
traffic management, aircraft trajectory 
prediction plays an essential role [1]. In 
particular, to implement trajectory-based 
operations [2] in the future, the trajectory 
prediction is required to have a significant level 
of accuracy. However, the variation in aircraft’s 
intent is one of the sources of uncertainties for 
both airborne and ground-based trajectory 
predictions [3]. The variation in intent also 
poses a problem when aircraft are not controlled 
by the centralized air traffic control system. 
Typical examples of this situation include 
operations under visual flight rules for general 
aviation, autonomous operations by unmanned 
aerial systems (UAS), and disaster relief 
operations involving multiple types of aircraft. 
While the strategic and tactical intent of each 

aircraft in these operations is autonomously 
decided by a pilot or a remote operator, or even 
an onboard computer, there is no effective way 
to share it with neighboring aircraft. With these 
in mind, this paper considers an inference 
method of aircraft intent based on the observed 
trajectory. 

In every flight situation, an aircraft is 
controlled almost optimally in order to satisfy 
some tactical and/or strategic objective. Thus, 
we assume that the control input for an aircraft 
approximately minimizes a certain objective 
function and consider the inverse problem of 
optimal control, in other words, given a history 
of optimal control input during a finite period of 
time and a corresponding state trajectory, we 
estimate an unknown objective function 
minimized by these two factors (hereafter, 
‘trajectory’ stands for both of these two factors). 
By estimating the objective function, we can 
infer the priority of each flight-mode. These 
flight-modes include traveling directly to a 
waypoint, circling around a waypoint, avoiding 
regions such as severe weather areas and special 
use airspaces (SUAs), and resolving conflicts 
with neighbor aircraft. In this way, it is possible 
to extract the quantified priority of the flight-
modes at each sampling period. 

A number of studies have examined the 
inference of aircraft’s intent. In Ref. [4], 
artificial intelligence models of intent and a 
ranking-based algorithm for matching them was 
proposed. In Refs. [5-8], the residual-mean 
interacting multiple model (IMM) filter was 
used to estimate the intent and the state of an 
airliner. Maeder. [9] also used an IMM filter for 
the same purpose and predicted the future 
trajectory of a light aircraft based on the inferred 
intent. The IMM requires some difficult tuning 
operations, such as the tuning of the Markov 
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transition matrix. On the other hand, the method 
in the present study provides intuitively 
understandable inference (i.e., the priority of 
flight-modes at each sampling period) without 
the need for cumbersome tuning of parameters. 
Based on the inferred intent, it is possible to 
predict the future trajectory of the aircraft as 
well. Furthermore, by incorporating the inferred 
objective function of neighboring aircraft into 
the objective function of each aircraft, the 
proposed method also has a potential to improve 
the performance of the optimal control methods 
for conflict resolution such as the decentralized 
model predictive control (MPC) law [10].  

The idea of the inverse optimal control has 
its origin in the Kalman’s paper [11]. Since then, 
a number of studies have examined inverse 
optimal control, particularly as a promising 
approach for reinforcement learning, e.g., Refs. 
[12, 13].  On the other hand, to the best of the 
author’s knowledge, there are no studies 
applying the inverse optimal control to flight 
intent inference problems except for the 
preliminary work by the author [14, 15]. The 
method adopted in the present paper represents 
the objective function as a weighted sum of 
known functions and infers the weight 
coefficients [16]. Johnson et al. [17] also 
formulated this type of problem in a continuous-
time system and proposed a fast algorithm based 
on the linear-quadratic regulator. Nevertheless, 
its applications are limited to unconstrained 
smooth problems. Therefore, in order to 
accommodate a wide variety of conditions such 
as equality and inequality constraints and non-
smooth objective functions, we formulate the 
discrete-time optimal control problem and apply 
the inference scheme based on the associated 
Karush-Kuhn-Tucker (KKT) optimality 
condition [16]. The proposed method is a 
modified version of that given in the 
preliminary work by the author [14]. It is 
extended to support multiple waypoints and the 
flight-mode to avoid regions such as severe 
weather areas and SUAs. The method is well 
suited to real-time applications because it is 
reduced to solving a sparse quadratic program, 
which is efficiently solvable and has a guarantee 
of convergence. 

The remainder of the present paper is 
organized as follows. In Section 2, we introduce 
a dynamic model of an aircraft and then 
formulate the optimal control problem and its 
inverse, i.e., the aircraft intent inference 
problem. In Section 3, we show numerical 
examples to demonstrate the effectiveness of the 
proposed method. In Section 4, we summarize 
the findings of the present study and discuss 
future research. 

1.2 Notation 

Given n-dimensional arbitrary vectors 

1[ ]T
nx xx    and 1[ ]T

ny yy  , x y  
stands for i ix y  , {1, , }i n   . Given an 
arbitrary squared matrix X , X 0  means X  is 
positive definite.  

2 Inference Method 

2.1 Dynamic Model 

For simplicity, we assume that the motion of the 
target aircraft (i.e., the aircraft whose intent is to 
be inferred) is constrained on the horizontal 
plane and the effect of the wind is neglected. 
The state equations of the aircraft as well as the 
enforced constraints are written as follows:  
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where ( , )x y  is the position of the aircraft in the 
horizontal coordinate system,  u  and v  are the 
velocities in the x  and y   directions, 
respectively,   is the turn rate, i.e., the time-
derivative of the heading angle 1tan ( / )v u ,   is 
the acceleration in the heading direction divided 
by the velocity, minV  and maxV  are the minimum 
and maximum velocities, respectively, max  is 
the maximum allowable bank angle, maxa  is the 
maximum allowable acceleration, and g  is the 
gravitational acceleration.  
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2.2 Optimal Control Problem 

2.2.1 Discretization of Time Axis  
Let us discretize the time axis with time step 
length t , and let the variables with subscript k  
be those at each sample time t k t  . The state 
and control in this discrete-time system are 
defined as : [ ]T

k k k k kx y u vx and 
: [ ]T

kk k u  , respectively. The time domain 
here is defined as [ , ]M t N t  , where the 
terminal time N t  corresponds to the current 
time, and N M  is a positive constant.  

2.2.2 Flight-Mode Associated with Waypoint  
Let ( ) ( )[ ]n n T

r rx y ( 1, , )wn N   be the position of 
the reference waypoints (RWPs), which are 
assumed to be available via data link. In 
addition, let us define ,n kθ , ,n k

μ , and ,n k
μ  as 

follows: 
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The flight-mode of direct travel to the n-th RWP 
can be then be formulated as the minimization 
of , ,

T
n k n kk θ θ , because it becomes zero iff the 

aircraft directs its course toward the n-th RWP 
during the concerned period. In the same 
manner, the flight-mode of circling around the 
n-th RWP can be formulated as the 
minimization of , ,( )T

k n k n k
  μ μ  (clockwise) or  

, ,( )T
k n k n k

  μ μ  (counterclockwise).  

2.2.3 Flight-Mode of Conflict Resolution 
Let L  be the number of neighboring aircraft and 

minr  be the minimum separation enforced by the 
flight regulation. In order to account for the 
flight-mode of conflict resolution with 
neighboring aircraft, we assume that the 
pilot/operator/autopilot tries to proactively make 
the closest distance between the own aircraft 
and its i-th ( 1, , )i L   neighbor aircraft larger 
than minr .  

As shown in Fig. 1, the closest distance 
predicted at time t k t   is calculated by the 

extrapolation of the relative position and 
velocity, where , , , , ,ˆ ˆ ˆ ˆ ˆ: [ ]T

i k i k i k i k i kx y u vx  is 
the state of the i-th neighbor aircraft at time 
t k t   and it is assumed as available. Let ,i k  
and ,i kr  be the time remaining to and the 
distance of the closest approach, respectively. 
They can readily be calculated as follows:  

 
, ,

,

, ,

max ,
T

i k i k
i k T

i k i k

 
 

   
 

z w

w w
 (3) 

 1/2
, ,, , ,[ ( )]T

i k i ki k i k i kr  z z w  (4) 

where   is a small positive constant, and  

 , , ,ˆ ˆ: [ ]T
i k i k i kk kx x y y  z   

 , , ,ˆ ˆ: [ ]T
i k i k i kk ku u v v  w  

As stated above, it is assumed that the conflict 
resolution with the i-th neighbor results from the 
intent to maintain  

 
min ,

,,
,

max(0, )
( , ) :

i k
i ki k

i k

r r
g r 




  (5) 

be zero as far as possible for , ,k M N  . 
Since ,,( , )i ki kg r   is the maximum size of the 
conflict relative to the time remaining to resolve 
it, it represents the degree of conflict severity.  
 

 
 

Fig. 1.  Prediction of the Closest Approach 
 

2.2.4 Flight-Mode of Avoiding Regions 
In the present study, regions to be avoided such 
as severe weather areas and SUAs are 
represented by a set of rN  ellipsoids. A j-th 
( 1, , rj N  ) ellipsoid is characterized by the 
center position ( , )j jx y , the rotation angle j , 
and the couple of semi-major and semi-minor 
axes ( , )j ja b , i.e., the j-th ellipsoid is 
represented by 

 , ,
T

j jj k j k a bs s   

where  
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For notational simplicity, the shape and location 
of ellipsoids are assumed as time-invariant, 
although they can readily be modified as  
functions of the time step k . 

Let us consider a normalized space in 
which each ellipsoid is transformed to a circle 
with a radius of 1/2( )j ja b . Then, let ,j k  and ,j kr  
be the remaining time until the closest approach 
to the center of the circle in the normalized 
space occurs and the distance of the closest 
approach in the normalized space, respectively. 
They can be calculated as follows:  

 
, ,

,

, ,

max ,
T

j k j k
j k T

j k j k

 
 

   
 

v s

s s
  

 1/2
, ,, , ,[ ( )]T

j k j kj k j k j kr  s s v   

where    

 ,

cos sin1
:

sin cos
j jj j k

j k
j jj j kj j

b b u
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 
 
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v   

In the same manner as the conflict 
resolution, the intent to proactively avoid each 
region is also modelled as an effort to maintain 

 
,

,,
,

max(0, )
( , ) :

j j i k

i ki k
i k

a b r
g r 




  

be zero as far as possible. ,,( , )i ki kg r   can be 
thought of as the degree of intrusion severity. 

2.2.5 Formulation of the Problem  
By using the variables and functions defined 
above, the discrete-time optimal control 
problem defined in the time domain 
[ , ]M t N t   is formulated as follows: 

, , , ,

minimize
M M N Nx u x u

 

, , , ,3 2| 3 1|
1 1

, ,3 | 1| 2|
1 1

2 2
, ,,,| |

1 1 1
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  (6) 

subject to 
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
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 ( , ) , , ,k kh k M N x u 0   (9) 

where 1| 3 |, ,
wN N Nq q , 1| |, ,N L Np p , and   

1| |, ,
rN N Np p  are nonnegative weights, 1|N  and 

2|N  are positive weights, Mx  is the actual state 
of the aircraft at time t M t  , and 
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The quadratic term in ku  in Eq. (6) represents 
the cost of the control inputs. IT should be noted 
that Eq. (8) is derived by applying the modified 
Euler method to Eq. (1), and Eq. (9) is a 
discrete-time approximation of Eq. (2).  

2.3 Inverse Optimal Control Problem 

2.3.1 KKT Optimality Condition 
Let the Lagrange multipliers for Eqs. (7)-(9) be 
as follows:  
 

4
|M N η   corresponds to Eq. (7). 

 
4

1| |, ,M N N N η η   correspond to Eq. (8). 
 

4
| |, ,M N N N λ λ   correspond to Eq. (9). 

Then the KKT optimality condition on the 
discrete-time optimal control problem given by 
Eqs. (6)-(9) is composed of Eqs. (7)-(9) and  

 N δ 0  (10) 

 N ε 0  (11) 

 | 0, , ,k N k M N λ   (12) 

 NH 0  (13) 

where 6( 1) 6( 1)N M N M
N

    H   is the Hessian of 
the Lagrangian of the original optimal control 
problem. In addition, 6( 1)N M

N
 δ   and 
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4( 1)N M
N

 ε   denote the residuals of the 
stationarity condition (i.e., dual feasibility) and 
the complementary slackness, respectively, i.e.,   
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where ( )
|
i

k N  and ( , )i k kh x u denote the i-th entries 
of |k Nλ  and ( , )i k kh x u , respectively. Moreover, 
the first and second derivatives are taken with 
respect to the concatenated vector of the 
variables in the original optimal control problem, 
i.e., 6( 1)[ ]T T T T N M

M M N N
 x u x u  . 

2.3.2 Formulation of the Inverse Problem 
Let us assume that the observed trajectory of the 
target aircraft in the time domain [ , ]M t N t    
(i.e., [ ]T T T T

M M N Nx u x u ) is given at each 
time t N t  . Moreover, similarly to the 
method in Ref. [16], let us further assume that 
the observed trajectory is nearly-optimal to the 
optimal control problem given by Eqs. (6)-(9) 
and satisfies the above-stated KKT optimality 
condition in the least-squares sense. The inverse 
optimal control problem defined in the time 
domain [ , ]M t N t   can then be stated as 
follows: 

minimize 

 T T
N N N Nδ δ ε ε  (14) 

subject to  

 | 0, , ,k N k M N λ   (15) 

 | 0, 1, ,3 wn Nq n N    (16) 

 | 0, 1, ,i Np i L    (17) 

 | 0, 1, , rj Np j N    (18) 

 1| 2|,N N      (19) 

 NH 0  (20) 

where the decision variables are the Lagrange 
multipliers (i.e., | |, ,M N N Nλ λ , | 1|, ,M N N Nη η , 
and |N Nη ) and the weight coefficients (i.e.,

1| 3 |, ,
wN N Nq q , 1| |, ,N L Np p , 1| |, ,

rN N Np p , 1|N , 
and 2|N ). It should be noted that the residuals 
of the constraints of Eqs. (7)-(9) (i.e., the 
residuals of the primal feasibility of the KKT 
condition) are not functions of these variables, 
and hence they are independent of the inverse 
problem.  

The above problem is a convex 
programming problem, because Eq. (14) is a 
convex quadratic form, Eqs. (15)-(19) are linear 
inequality, and Eq. (20) is a linear matrix 
inequality (LMI). However, due to the 
homogeneity of Eqs. (14) and (20) with respect 
to the decision variables, the optimal solution to 
the above problem is unbounded. Therefore, the 
following dehomogenization condition is 
additionally enforced:  

 
3

|1
1wN

n Nn
q


  (21) 

Moreover, in order to assure the well-posedness, 
the objective function is augmented with 
memory terms in the following way:  

 
3 2
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

 
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 
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 
    

 
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 
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 

δ δ ε ε

(22) 

where   is a positive constant. In view of the 
time profiles of inferred weights, the 
augmentation of the memory terms also has an 
effect of smoothing. Furthermore, in the current 
version of the method, Eq. (20) is eliminated. 
This is because Eq. (20) is a large-sized LMI 
which deteriorates the computational speed, 
although the optimization incorporating Eq. (20) 
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guarantees the local optimality of the observed 
trajectory under the calculated weights and 
Lagrange multipliers.  

In summary, the inverse problem is to 
minimize the objective function given by Eq. 
(22) under the constraints of Eqs. (15)-(19) and 
(21). This problem is a convex quadratic 
program which has sparse patterns in the 
resulting matrices. Thus, it is possible to execute 
fast computation by off-the-shelf solvers. The 
weights calculated by solving this problem 
represent the quantified intent of the target 
aircraft. 

3 Numerical Examples  

To confirm the effectiveness of the proposed 
method, the numerical simulation results of 
three cases are shown in this section.  

In each case, we firstly performed the 
flight simulation(s) based on the kinematic 
motion of aircraft. In the simulation(s), the 
heading vector command was given to reflect a 
certain intent, and the control inputs (i.e.,   and 
 ) were calculated so as to follow the command 
as the first-order lag system with a time constant 
of 5.0[s]. The parameters commonly used in 
these simulations are shown in Table 1. 

For simplicity, trajectories were assumed 
to be available with neither delay nor error. In 
addition, as mentioned above, the information 
on each RWP was assumed to be transmitted via 
data link, while the objective type (i.e., whether 
for direct travel or for circling) was unknown. 
The inference of the objective weights and the 
Lagrange multipliers for each aircraft was 
performed under the above assumptions and the 
following conditions: 0.1[s]t  , 50N M  , 

| 1| | 11 0M j N Mi Nn N Mq p p        , | 1Mn N   , 
1210  , and 410  . The sampling period of 

inference was specified as 1.0 [s]. 
 

Table 1. Commonly Used Parameters 

Parameter Value Parameter Value 

maxV  0.27[km/s] minr  9.26 [km] 

minV  0.23[km/s] maxa  20.1 [km/ s ]g

max  / 9 [rad]    

3.1 Case 1: Multiple Waypoints 

In this case, the trajectory of a single aircraft 
was simulated considering the following RWPs: 

 (1) (1)[ ] [20.0[km] 0.0[km]]T T
r rx y   

 (2) (2)[ ] [40.0[km] 5.0[km]]T T
r rx y   

 (3) (3)[ ] [60.0[km] 25.0[km]]T T
r rx y   

 (4) (4)[ ] [75.4[km] 16.6[km]]T T
r rx y   

The simulated trajectory is shown in Fig. 2. 
Starting from [ ] [0.0[km] 0.0[km]]T Tx y  , the 
aircraft firstly directed its course toward 

(1) (1)[ ]T
r rx y . However, it changed the course by 

skipping (1) (1)[ ]T
r rx y  and go directly to 

(2) (2)[ ]T
r rx y  at after 30.0[s]t  . After passing 

through (2) (2)[ ]T
r rx y  and  (3) (3)[ ]T

r rx y ,  the 
aircraft circled around (4) (4)[ ]T

r rx y .  
Figure 3 shows the inferred weights on 

RWP terms which were dominant during at least 
a certain period. Due to Eqs. (16) and (21),  for 

1, , 4n   , 3 2| 1n Nq    implies the inferred 
objective function takes the minimum when the 
aircraft goes directly to ( ) ( )[ ]n n T

r rx y . In addition, 
11| 1Nq   implies the inferred objective function 

takes the minimum when the aircraft circles 
around (4) (4)[ ]T

r rx y  counterclockwise. Thus, by 
comparing Fig. 2 and Fig. 3, we can confirm 
that each flight-mode represented by each 
dominant weight was consistent with the 
trajectory. 
 

 
Fig. 2. Trajectory of Case 1 
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Fig. 3. Weights on RWP Terms (Case 1) 

3.2 Case 2:  Conflict Resolution 

In this case, we simulated conflict resolution of 
two aircraft (referred to as aircraft A and B). 
Their trajectories were obtained as in Fig. 4. 
While the initial courses of the two aircraft were 
in conflict, both aircraft maneuvered rightward 
to resolve it. After that, they headed to 
individual RWPs ( [60.0[km] 0.0[km]]T for air- 
craft A and [0.0[km] 1.0[km]]T  for aircraft B). 
The velocity vector command for resolving the 
conflict was calculated by the algorithm 
reported in Ref. [18]. In order to consider the 
variation in the guidance policies, the starting 
time of the maneuver by aircraft A and B were 
specified as, respectively, 90.0[s] and 70.0[s] 
earlier than the predicted time of the closest 
point of approach (CPA). Thus, aircraft A and B 
started maneuver at 29.7[s]t   and 47.0[s]t  , 
respectively.  

Figures 5 and 6 show the inferred weights 
on RWP terms. As can be seen in these figures, 

1|Nq  (this corresponds to direct travel to the 
RWP) was dominant in each aircraft except for 
the period of large maneuver in aircraft A just 
after the time of CPA.  

The weight on the conflict resolution term 
in the objective function, i.e., 1|Np , for each 
aircraft is shown in Fig. 7. As can be seen, the 
weight suddenly increased when each aircraft 
started maneuver to resolve the conflict. In this 
case, relatively large value of 1|Np , say,  
approximately larger than 2 310 10   , seemed 
to correspond to the flight-mode of the conflict 
resolution. 

 

 
Fig. 4. Trajectories of Case 2 

 

 
Fig. 5. Weights on RWP Terms (Case 2, Aircraft A) 

 

 
Fig. 6. Weights on RWP Terms (Case 2, Aircraft B) 
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Fig. 7. Weights on Conflict Resolution Term (Case 2) 

3.3 Case 3: Region Avoidance and Conflict 
Resolution 

The region avoidance as well as the conflict 
resolution was simulated in this case. The 
trajectories of two aircraft were obtained as in 
Fig. 8. Similarly to the previous case, the initial 
courses of the two aircraft were in conflict. In 
addition, a region which could not be intruded 
was set on the initial course of aircraft A. As 
can be seen in Fig. 8, both aircraft maneuvered 
rightward to resolve the conflict, and 
subsequently the region was avoided by aircraft 
A. After that, they headed to individual RWPs 
( [80.0[km] 0.0[km]]T for aircraft A and 
[42.0[km] 40.0[km]]T  for aircraft B). The 
guidance policies of the conflict resolution were 
the same as the previous case. Aircraft A and B 
started maneuver at 73.0[s]t   and 86.0[s]t  , 
respectively. To avoid the region, on the other 
hand, a virtual waypoint was added in the 
vicinity of the region’s boundary. Aircraft A 
passed through this virtual waypoint at 

232.0[s]t  . 
Figures 9 and 10 show the inferred weights 

on RWP terms. As can be seen, 1|Nq  was 
dominant in each aircraft except for some 
periods of large maneuver.  

The weights on the conflict resolution term 
and the region avoidance term in the objective 
function, i.e., 1|Np  and 1|Np , for each aircraft are 
shown in Fig. 11 and 12. The sudden increase of 
the weight well corresponded to the change of 
the flight-mode in this case too. In addition, 
similarly to the previous case, if 1|Np  or 1|Np  

 

 
Fig. 8. Trajectories of Case 3 

 

 
Fig. 9. Weights on RWP Terms (Case 3, Aircraft A) 

 

 
Fig. 10. Weights on RWP Terms (Case 3, Aircraft B) 
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Fig. 11. Weights on Terms of Conflict Resolution and 

Region Avoidance (Case 3, Aircraft A) 
 

 
Fig. 12. Weights on Terms of Conflict Resolution and 

Region Avoidance (Case 3, Aircraft B) 

 
was approximately larger than 2 310 10  , it 
seemed to represent the flight-mode of the 
conflict resolution or the region avoidance. 

3.4 Real-Time Applicability 

For the computation in these examples, we used 
a laptop computer equipped with Intel® Core™ 
i5-3317U 1.70GHz CPU, 4.0GB RAM, and 
Windows 8.1 64bit OS. As the solver for the 
optimization problems, we employed an IBM® 
ILOG® CPLEX® 12.5. Table 2 summarizes the 
computational time per sampling period of the 
proposed method. Even in the worst case, the 
computational time was much less than the 
specified sampling period. This result indicates 
the real-time applicability of the proposed 
method.  

Table 2. Computational Time per Sampling Period [ms] 

Case 1 2 3 
Aircraft - A B A B 

Max. 297 203 187 220 235 
Avg. 177 133 125 111 109 

4 Conclusions 

In this paper, we proposed an aircraft intent 
inference method based on the inverse optimal 
control. The proposed method infers the weights 
of each term of the objective function, which 
corresponds to the flight-mode, as well as the 
Lagrange multipliers by solving a sparse 
quadratic program at each sampling period. The 
inferred flight-modes include traveling directly 
to a waypoint, circling a waypoint, avoiding 
regions, and resolving conflicts with 
neighboring aircraft.  

Through the numerical simulations, it was 
confirmed that the aircraft intent was 
appropriately quantified by the magnitude of the 
inferred weight of the objective function. In 
addition, the real-time applicability of the 
proposed method was also confirmed.  

Directions for future work include, but are 
not limited to, the extension of the method to 
the three-dimensional space, the accommo-
dation of wind effects, and the real-time 
implementation of the positive semidefiniteness 
condition of the Hessian to guarantee the 
theoretical optimality. 
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