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Abstract  

This study aims to develop a Meshless (or 
Gridless) method which can accurately capture 
strong shock waves in hypersonic viscous flows. 
Least squares method was used for spatial 
discretization and AUSMPW+ scheme, a robust 
and accurate scheme developed to be used for 
Finite Volume Method(FVM) in hypersonic flows, 
was modified to be used for Meshless Method. 
The compressible Reynolds-averaged Navier-
Stokes equations with Menter’s two equation 
model are used to describe turbulent flows. 
Using the method developed in this study, 
numerical analyses for hypersonic viscous flows 
on a flat plate was carried out and the obtained 
results were compared with those obtained from 
Structured FVM. 

1  Introduction  

Generally, grid generation over complex 
geometry is known to be one of the primary 
difficulties in computational fluid dynamics. One 
method to solve this problem is Meshless method. 
Meshless method does not need rigid domain 
discretization which can usually be seen as grid 
form but only needs connectivity information of 
nodes. In this sense, the more difficult problems 
tackle, the more concerns of Meshless method 
arise. In particular, such analysis on hypersonic 
vehicles often involves multidimensional 
geometries with leading-edge bluntness and 
fuselage/wing combinations of arbitrary cross 
sections. 

Many former researchers have studied and 
developed a number of Meshless methods. For 
instance, there are Smooth Particle 
Hydrodynamics method (SPH) which is the first 
Meshless method, the Element Free Galerkin 
method, Hp-clouds method, the Reproducing 
Kernel Particle method, and so on [1]. In 
compressible fluid dynamics, Sridar [2] and Katz 
[3] developed Upwind Finite Difference Scheme 
and Moving Least Squares Method respectively. 
Also, Huh [4,5] developed Meshless method 
using AUSMPW+ scheme [6] for inviscid flow, 
especially for hypersonic flow. 

The calculation of aerodynamic forces and 
heating rates on hypersonic vehicles must take 
the turbulence into account. For calculation of 
practical problems on hypersonic fields, the 
range of flow-field for the Meshless method is 
improved from invisid flow to turbulent flow. 
The viscous dissipation term was discretized 

using least squares method. Menter’s k-ω SST 
turbulence model [7,8] is used to predict the 
turbulent flow. Results were shown compared 
with ones from finite volume method. 

2  Meshless Method  

2.1 Least Squares Method 

In the Meshless method, least squares method 
based on Taylor series expansions has been used 
to get unknown derivative terms of PDE 
represented on equation (1). 
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Ignoring high order terms, the Taylor 
expansion from the point cloud center ሺݔ଴,  ଴ሻ isݕ
shown as 

߮ሺݔ, ሻݕ ൌ ߮଴ ൅ ݔ∆
߲߮ሺݔ଴ሻ
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The least squares method with weighted 
function may be expressed as follow 
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For a 2-D case, values of the coefficients are 
calculated as follow 
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	 (5)
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A simple inverse distance weighting 
function [9] is used to improve accuracy. 
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	 (7)

2.2 Navier-Stokes Equations and AUSMPW+ 
for Meshless Method  

Consider the 2-D Navier-Stokes equations in 
strong conservation law form 
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where ߶௜ ൌ ݑݔ݅߬ ൅  ݒݕ݅߬
In Eq. (9), E means the total energy and H 

means the total enthalpy as follow. 
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Eq. (8) can be discretized as 
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where ܨ ൌ ݂ܽ ൅ ܾ݃ is a directed flux along the 
metric weight vector ሺa, bሻ. To improve accuracy 
and robustness, AUSMPW+ scheme [6] is 
applied to the convective term in the N-S 

equations, which use the midpoint flux at j ൅ ଵ

ଶ
 

instead of the flux at j as follow [3] 
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In Eq. (12), ܨ௜௝ାభ
మ
 may be calculated from 

AUSMPW+ scheme. 
 

 
Fig. 1. Illustration of mid-point value on the edge 

connecting nodes i and j 

 
The numerical flux of AUSMPW+ is given 

by 

ଵܨ
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ଶ
௅ߔ ൅ ഥିோܿଵܯ

ଶ
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ோሻߏି 	 (13)

Φ ൌ ሺߩ, ,ݑߩ ሻ்ܪߩ  and P ൌ ሺ0, ,݌ 0ሻ். The 
subscripts 1/2 and (L,R) stand for a quantity at a 
midpoint on the edge of Fig. 1 and the left and 
right states across the edge, respectively. The 
Mach number at midpoint is defined as 
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when ܯ௅
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The pressure-based weight function is 
simplified to 

௅݂,ோ ൌ ቀ
௉ಽ,ೃ
௉ೞ
െ 1ቁ , ௦ܲ ് 0			 (20)

where 
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The split Mach number is defined by 
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The Mach number of each side is 
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and the speed of sound(ܿଵ/ଶ) is  
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where 
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2.3 Minmod Limiter for Meshless Method 

To improve accuracy, TVD scheme is adopted to 
the Meshless method. In this study, minmod 
limiter [4] is used at AUSMPW+. The basic form 
of spatial interpolation is given by 

௅ߔ ൌ ௜ߔ ൅ 0.5 ∗ ߶௅ ∗ ൫ߔ௝ െ  ௜൯ߔ

ோߔ ൌ ௝ߔ ൅ 0.5 ∗ ߶ோ ∗ ൫ߔ௜ െ  ௝൯ߔ
(28)

In order to apply to Meshless method, it is 
necessary to modify minmod limiter as follows. 
In Meshless method, ߶ is given by 

߶ ൌ ,ሺ0,݉݅݊ሺ1ݔܽ݉ ௞ሻሻݎ ,	 (29)

where 	݇ ∈ ሼ݈݈ܽܿ݋	ݐ݊݅݋݌	݀ݑ݋݈ܿ	݂݋	݁݀݋݊	݅	&	ߠ௞௜௝	݅ݏ	ݔܽ݉ሽ, 
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	 (31)

Since there is no point on the opposite side 
of point j in the vicinity of point i in general point 
system, nearest point k to the opposite side is 
used to calculate r୩ as shown in Fig. 2. 
 
 

 
Fig. 2. Minmod limiter for Meshless method 

 

3  Application of the Meshless Method to the 
Reynolds-Averaged Navier-Stokes Equations 

For a turbulent flow, the Reynolds-averaged 

Navier-Stokes equations are used. Menter’s k-ω 
SST model [7,8] is written as follows 
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Production term is given by: 
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and the turbulent eddy viscosity is given by: 
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max	ሺܽଵ߱, Ωܨଶሻ
	 (37)

Each of the constants is a blend of an inner 
and outer constant. 
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where ߶ଵ  represents an inner constant and ߶ଵ 
represents an outer constant. Additional 
functions are defined by: 
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The constants are given by: 
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ଶߚ
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௞ଵߪ ൌ 0.85, ఠଵߪ ൌ 0.5, ଵߚ ൌ 0.075 

௞ଶߪ ൌ 1.0, ఠଶߪ ൌ 0.856, ଶߚ ൌ 0.0828 

β∗ ൌ 0.09, κ ൌ 0.41, ܽଵ ൌ 0.31 

(46)

Eq. (32) and (33) are also discretized like Eq. 
(11).  

4  LU-SGS for Meshless Method 

Referring to the works of Yoon [10] and Chen 
[11], LU-SGS is adopted to Meshless Method. 
By applying Eq. (11) and (12), the governing 
equation (8) and can be rewritten in a semi-
discrete form as follows 
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The flux function, ܨ௜௝௡ାଵ may be linearized by 
setting 

௜௝ܨ
௡ାଵሺ߱௜, ௝߱ሻ ൎ ௜௝ܨ
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where ݊  is the time level and matrices ܣ௜௝
േ  are 

constructed as follow 

௜௝ܣ
േ ൌ

1
2
ሺܣ௜௝ േ ሻ (49)ܫ௜௝ߣ

where 

௜௝ߣ ൒ max	ሺ|ߣ஺|ሻ (50)

Here, ߣ஺ represents eigenvalues of Jacobian 
matrix. 

5  Numerical Result 

In order to verify the Meshless method, flow over 
a flat plate has been chosen as a hypersonic test 
case to illustrate the behavior of the 
laminar/turbulent flow results obtained using 
both Meshless method and finite volume method 
(FVM) with structured grid system. The 
numerical schemes and flow conditions used are 
tabulated as Table 1. The free stream conditions 
are at altitude 15km and the schematic of flow 
geometry is shown in Fig.3. [12] 

 

 
Fig. 3. Schematic of the flat plate 
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Table 1. Schemes and flow conditions 

Computational 
method 

Meshless, structured FVM 

Spatial discretization AUSMPW+ 
Limiter Minmod 
Time integration LU-SGS 
Freestream Flow 
Conditions 

ஶ݌ ൌ 1.21114 ൈ 10ସܰ/݉ଶ,  
ஶܶ ൌ  ܭ	216.65
ஶܯ ൌ 8 
ஶߤ ൌ 1.4216 ൈ 10ିହܰ ∙ ଶ݉/ݏ

Number of Points 13,041 
 

 
The Meshless method and FVM both used 

AUSMPW+. The point system for validation is 
shown in Fig. 3 and the same point distribution 
was applied to the both method. Fig. 4 shows the 
skin friction coefficients along Rex obtained by 
the developed method and FVM and its results 
are compared to the accurate laminar and 
turbulent results obtained for this case by Van 
Driest[13,14]. The transition location was 
specified at ܴ݁௫ ൌ 3.88 ൈ 10଺ሺ	ݔ ൌ 0	.1196	݉ሻ. 
It has been observed that the result of the 
Meshless method predict skin friction in both 
laminar and turbulent region in agreement with 
the theory. 

Convergence history of Meshless method 
and FVM, which is L2 norms of the residuals for 
density, is presented in Fig. 5. The figure shows 
the both method has good convergence 
characteristics. 

 

 
Fig. 4. Computational domain (13,041 points) 

 
 

 
Fig. 5. Skin friction coefficients comparison 

 
 

 
Fig. 6. Comparisons of convergence histories 

6  Conclusion 

The purpose of this study is to develop Meshless 
method for hypersonic viscous flows. A least 
squares method was used for spatial 
discretization and AUSMPW+ scheme and LU-
SGS was modified to be used for Meshless 

Method. Menter’s k-ω SST model is chosen as 
turbulence model. According to the comparison 
of analyses of the numerical results, Meshless 
method was confirmed to have similar accuracy 
and convergence as structured finite volume 
method. 
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