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Abstract  

To enhance the ability of AHMS, a research on 

aircraft rotating machinery fault diagnosis and 

health assessment techniques is conduct, and an 

approach combining manifold learning and 

dynamic time warping (DTW) is present in this 

paper. First, the original nonlinear and 

nonstationary vibration signals are processed 

by wavelet packet decomposition, and the 

wavelet energies are extracted to act as fault 

features, which are high-dimensional. Then, 

manifold learning method is employed for 

dimensionality reduction to find the intrinsic 

fault features. Finally, based on the accurate 

fault features, DTW is introduced to determine 

the fault state and assess the heath degree. The 

results of fault diagnosis and health assessment 

for a self-priming centrifugal pump in the 

aircraft fuel injection system demonstrate the 

effectiveness of the proposed approach. 

1  Introduction 

Aircraft health management system (AHMS), 

which can detect and diagnose faults, assess and 

predict health degradation trends, is important to 

assure the security of aircrafts and help make 

proper maintenance decisions so as to reduce 

the operation and maintenance costs [1-3]. As 

an important part of aircrafts, rotating 

machinery is a vital object in AHMS. An 

unexpected failure of rotating machinery may 

cause a sudden breakdown of AHMS, leading to 

enormous financial losses or even personnel 

casualties [4-6]. As for rotating machinery, the 

monitorable signals are mostly the nonlinear 

and nonstationary vibration signals [7, 8], from 

which the effective fault features are difficult to 

be extracted, thus making the results of fault 

diagnosis and health assessment unsatisfactory. 

Hence, high-dimensional features from multi 

scales are usually extracted in case missing any 

useful fault information [9-11]. Wavelet packet 

transform (WPT), with the ability of arbitrary 

time–frequency resolution, provides an effective 

way to process nonlinear and nonstationary 

vibration signals [5, 12, 13], and the wavelet 

energies of the decomposed components 

contains multi-scale fault information [14]. 

Thereout, WPT is employed to decompose the 

original vibration signals and the wavelet 

energies are calculated as the fault features in 

this paper. 

The high-dimensional fault features help to 

contain abundant fault information, but 

conversely, they are apt to cause information 

redundancy and bring more burdens for 

algorithms of diagnosis and assessment [10, 11]. 

To solve this dilemma, methods for nonlinear 

dimensionality reduction are needed. Manifold 

learning, famous for nonlinear dimensionality 

reduction, is proven to be effective in face 

recognition[15], hyperspectral image processing 

[16], and text document classification/search 

[17, 18]. Thus, in this paper, manifold learning 

methods are applied for obtaining low-

dimensional and differentiable fault features. 

For fault/health states determination, the 

key is to measure the matching or deviation 
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degree between the samples under test with the 

template samples. Dynamic time warping 

(DTW), first proposed for speech recognition 

[19], is a popular pattern match technique and 

has been applied in many fields, such as 

fingerprint verification [20], human motion 

recognition [21], and online signature 

verification [22]. Thus, DTW is introduced for 

fault diagnosis and health assessment in this 

paper. 

The outline of this paper is as follows. 

Section 2 introduces the methods of WPT with 

wavelet energy, manifold learning, and DTW. 

Then in Section 3, a fault diagnosis and health 

assessment framework is built and 

experimentally validated using vibration signals 

from a self-priming centrifugal pump in the 

aircraft fuel injection system. Finally, 

conclusions are drawn in Section 4. 

2  Methodology 

2.1 Wavelet packet transform and wavelet 

energy 

WPT, an expansion of the wavelet transform, 

has a better frequency resolution for the 

decomposed signal, which makes WPT popular 

in signal processing [14]. With the use of WPT, 

the original signal can be decomposed 

repeatedly into successive low and high 

frequency components, depending on a 

recursive filter-decimation operation [12, 13].  

As in different health states, the vibration 

intensity in the same frequency band is different, 

thus the wavelet energy of each component can 

be calculated to act as the fault feature. Set 

three-level WPT as an example, the eight 

wavelet-band energy values are calculated as 

followed: 
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where, jkx ( j=0,1,…,7, k=1,2,…,n) denotes the 

amplitude of reconstructed signal 3 jS . Then, for 

each health state, the fault feature vector can be 

formed by the eight wavelet energy values. 

More details about WPT and wavelet energy 

can be found in Ref.[23]. 

2.2 Manifold learning 

In 2000, Seung and Lee published their research 

report named “The manifold ways of 

perception” in Science [24], which opens the 

floodgates to the research of manifold learning 

methods. The main application of manifold 

learning is dimensionality reduction, and many 

methods has been proposed, including linear 

and nonlinear methods, such as kernel principal 

component analysis (KPCA), Laplacian 

Eigenmaps (LE), local linear embedding (LLE), 

Hessian LLE (HLLE),local tangent space 

alignment (LTSA), and linear local tangent 

space alignment (LLTSA). The essence of these 

methods is to find low-dimensional manifold 

structure in the high-dimensional data space, 

while guaranteeing the error between low-

dimensional data and high-dimensional data 

minimal. In this paper, the above six methods 

are all used for fault feature dimensionality 

reduction so as to make a comparison and find 

the best one. The detailed descriptions of most 

manifold learning methods can be found in 

Ref.[25].  

2.3 Dynamic time warping 

The algorithm principle of DTW can be 

described as follows. For two sequences C=c1,…, 

ci,…, cm and Q=q1,…,qj,…, qn, distances between 

corresponding elements can be calculated as 

( , )i jd C Q  by a Euclidean distance, thus forming 

a n m  distance matrix. Then, the warping path 

U = (u1,…,uk,…, uL) through the matrix can be 

determined by forcing the cumulative distance 

minimal, where max( , ) 1m n L m n    . The 

path should satisfy some local constraints as 

described in Ref.[19].Finally, the DTW distance 

is defined as [26, 27]: 
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2.4 Approach for fault diagnosis and health 

assessment 
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The approach proposed in this paper is shown in 

Fig. 1 and described as follows. 

(1) Each signal is decomposed by three-

level WPT, thus obtaining eight sub-

components. 

(2) The wavelet energy of each sub-

component is calculated to form the 

high-dimensional fault feature vector. 

(3) Six manifold learning methods are used 

to reduce feature dimensionality and 

obtain more differentiable and stable 

fault features. 

(4) Based on the compact fault features, 

DTW is introduced to diagnose the fault 

state and assess the health degree. 
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Fig. 1. Flow Chart of the Proposed Approach. 

3  Case study 

3.1 Experiment data source 

The vibration signals from a self-priming 

centrifugal pump in the aircraft fuel injection 

system are used as the experimental raw data to 

demonstrate the effectiveness of the proposed 

approach. The test rig is built as shown in Fig.2, 

in which an acceleration sensor installed right 

above on the motor shell. The collected signals 

belong to seven health states, namely normal, 

bearing faults of inner, outer, rolling element, 

mixed faults of bearing inner and impeller, 

bearing outer and impeller. And the data of each 

health state contains 20 groups, the acquisition 

time of each group lasts 2 s, and the sampling 

interval is 5s with a sampling frequency of 

10.24 kHz. For example, the original vibration 

signal of normal state is shown in Fig.3. 
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Fig. 2. The Test Rig of Data Acquisition. 
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Fig. 3. Vibration Signal of Normal State. 

3.2 Feature extraction by WPD and manifold 

learning 

3.2.1 Signal decomposition based on WPT 

To acquire the fault features, three-level WPT is 

firstly applied to decompose signals into eight 

sub-components, as shown in Fig.4, so as to 

reveal fault information in multi-scales. Each 

group of signal contains 5000 points. 
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Fig. 4. Signal Decomposition Result by WPT. 

3.2.2 Calculate the wavelet energy features 

Then, the wavelet energy value of each sub-

component is calculated to form the eight-

dimensional feature vector. To show the 

separability among features under different 

states, a line chart contains seven-state features 

is drawn in Fig.5, and each state represent by 

20-group features. From this chart, we can see 

that, as the features are high-dimensional, the 

separability between different states is difficult 

to judge, and the complex feature vectors are 

detrimental for the subsequent fault diagnosis 

and health assessment methods. 
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Fig. 5. Line Chart of Different Health State Features. 

3.2.3 Features dimensionality reduction by 

manifold learning 

As analyzed above, the high-dimensional 

features not only contains useful fault 

information, they also contains some redundant 

information, which burdens the subsequent 

algorithms. Thus, manifold learning methods 

are employed to reduce the feature 

dimensionality, so as to obtain more stable and 

differentiable low-dimensional features. In order 

to find a better method from the many manifold 

learning methods, six typical methods, KPAC, 

LE, LLE, HLLE, LTSA, LLTSA, are compared 

together. The dimensionality reduction results 

are shown in Fig.6, from which we can see that, 

LLTSA is the better one among the six methods 

while others exist promiscuous features, and the 

three-dimensional features of different health 

states obtained by LLTSA are obviously 

differentiable, which lays a good foundation of 

the subsequent analysis. 
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Fig. 6. The Dimensionality Reduction Results by KPCA, LE, LLE, HLLE, LTSA, LLTSA. 

3.3 Fault diagnosis and health assessment 

based on DTW 

Based on the stable, differentiable low-

dimensional features obtained by WPT and 

LLTSA, DTW is introduced to diagnose the 

fault state and to assess the health degree. 

3.3.1 Fault diagnosis based on DTW 

In fault diagnosis, DTW is used to measure the 

distance between the testing samples with the 

training sample set. As mentioned above, the 

whole signals are from seven health states, thus, 

the training sample set contains data of seven 

labels. Each sample of testing or training 

contains 5-groups feature vectors. For each test 

sample, distance values to the seven training 

sample are calculated so as to find the most 

similar one, then the label of the test sample is 

the same with the label of the most similar 

training sample. Thereout, the state of test 

sample can be determined. As shown in Fig.7, 

the test sample is close to the training sample of 

the same label, and away from the different 

labels.  
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Fig. 7. The results of fault diagnosis by DTW. 
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3.3.2 Health assessment based on DTW 

In health assessment, DTW is applied to 

measure the distance between the testing 

samples with the template sample of normal 

state. The larger distance means the higher 

health degradation degree, which can precisely 

assess the current health degree.  

Let the calculated distance as id , we define 

the health degree as 1/ ( 1)iR d  , and set the 

health degree of normal state as one. Thereout, 

the health degree of any state can be calculated. 

To demonstrate the effectiveness of the 

method, a template sample set containing 

features of seven health state is built, and each 

sample contains 5-groups feature vectors. Then, 

for testing sample from one of the seven states, 

health degree is calculated, as shown in Fig.8, 

from which we can see that, for normal features, 

the calculated health degree is one, while for 

faulty features, the calculated health degree is 

between one and zero. With using DTW, the 

health degree of different state samples is shown 

distinctly. 
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Fig. 8. The results of health assessment by DTW. 

4  Conclusions and future works 

Aiming at enhancing the ability of AHMS, an 

approach combining WPT, manifold learning 

and DTW is proposed for fault diagnosis and 

health assessment of rotating machinery.  

In this paper, with using WPT and wavelet 

energy, multi-scale features are extracted and 

abundant fault information are revealed. Then, 

with the help of manifold learning, more stable 

and differentiable low-dimensional fault 

features are obtained. Finally, based on the 

effective feature vectors, DTW is successfully 

applied for fault diagnosis and health 

assessment, making the process more distinct 

and easier to operate.  

The experimental results indicate that the 

proposed approach is suitable and efficient for 

fault diagnosis and health assessment of the 

centrifugal pump, and shows great promise for 

applications in other aircraft rotating machinery. 

Future experiments should be done on other 

aircraft rotating machinery to demonstrate the 

expandability of the proposed approach. 
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