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Abstract  

A novel method has been suggested to improve 

the computational efficiency of a multi-resolution 

analysis (MRA) for implicit temporal 

integrations. The fundamental idea behind MRA 

is that fluxes are computed only at the points 

where the gradients of the flow fields are salient, 

aiming at enhanced computational efficiency. 

However, the performance of the MRA has a 

limitation in implicit time integration because the 

efficiency improvement of the MRA method 

mostly arises from a reduction in the expensive 

flux evaluation for spatial discretization. This 

paper demonstrates that the efficiency of the 

MRA for implicit temporal integration can be 

improved by the construction of an additional 

dataset and a reduced implicit operator matrix. 

Reducing the implicit operation matrix to fit the 

size of the dataset decreases the elapsed time of 

the implicit temporal integration. To limit the 

numerical error of the implicit operation with the 

reduced matrix, an additional dataset is 

constructed by wavelet decomposition with the 

residuals and a modified thresholding criterion 

for implicit operation. The accuracy and 

efficiency of this modified MRA are verified 

through a complex flow problem of 2D airfoil-

vortex interaction. The results show that the 

computation of the modified MRA with LU-SGS 

is about 1.7 times faster than that of the original 

CFD solver, while maintaining the 

computational accuracy. 

1  Introduction  

ulti-resolution analysis (MRA) methods 

have attracted attention as an alternative 

numerical technique for improving 

computational efficiency. The main idea of MRA 

is that on a set of hierarchical grids, the 

smoothness of flow patterns is determined by the 

differences between the original values and the 

approximated values interpolated from the 

original values discretized on a coarser level grid. 

In most cases, the differences are sufficiently 

small in the smooth region. The region where the 

difference is larger than a certain threshold value 

can be understood as a region where the gradient 

of flow property is salient. On the basis of a 

smoothness evaluation, an adaptive dataset is 

constructed for the cells in the regions with high 

gradient of the flow property. High-cost 

computation such as flux evaluation is performed 

only in these important regions, and low-cost 

interpolation is applied in the other regions, 

resulting in enhanced overall computational 

efficiency. 

The MRA method has been applied to CFD 

for the enhancement of the calculation efficiency. 

Harten’s pioneering studies[1,2] presented a 

MRA method for computing discontinuous 

solutions of hyperbolic PDEs. Holmström[3] 

proposed an algorithm that used an interpolating 

wavelet transformation to organize an adaptive 

data set. Sjögreen[4] also used a MRA method 

based on an interpolating wavelet transformation 

to solve the compressible Euler equations. 

Chiavassa and Donat demonstrated the enhanced 

computational efficiency in using expensive 

schemes for shock capturing using a MRA[5,6]. 

Also, a MRA was applied to grid adaptive 

strategies of the Finite Volume Method (FVM) 

for conservation laws and the flow problems by 

Cohen et al.[7] and Muller and Stiriba[8]. These 

schemes, which have been called “fully adaptive 

multiresolution(MR, hereafter)” are cost-

efficient. Moreover, significant memory gains 

can be achieved through the full exploitation of 

the multilevel structure. Fully adaptive MR, 
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however, require special data structures in order 

to obtain the expected memory gains, and its 

incorporation into an existing code is not 

straightforward. The cost effective alternative 

idea proposed in this work, can be incorporated 

almost as an external routine, at each time step, 

and implements the easiest scheme to adapt to an 

existing code. 

These MRA concepts turned out to be 

highly efficient, but previous researchers have 

not offered reliable error control. To remove this 

critical weakness, Kang et al.[9, 10] suggested a 

modified MRA method with the criterion of 

thresholding. The modified threshold retained 

the robustness and the accuracy of the 

conventional solver(CS). Later, Kang et al.[11] 

extended the MRA method for 3rd order 

accuracy. 

 
Fig. 1 : Elapsed time comparison of each 

procedure on implicit temporal integration (LU-

SGS). 

 

However, the existing MRA methods have 

a limitation when applied to implicit time 

integration methods due to the sparse distribution 

of the adaptive dataset. Conventionally, all 

residual values at neighboring cells must be 

known in advance at one cell for an implicit 

formulation in a structured grid system. In the 

adaptive dataset of the MRA, some neighboring 

cells may be excluded in the adaptive dataset of 

the MRA, making it difficult for adaptive 

wavelet implementation on an implicit temporal 

integration. As shown in Fig. 1, there is a 

significant reduction in the elapsed time for 

spatial discretization, but the overall computation 

remains unchanged due to the portion of the 

implicit temporal integration. Thus, there is a 

need to modify the existing MRA for the 

improvement of the calculation efficiency in 

implicit temporal integrations. 

This paper aims at improving the 

computational efficiency of the implicit temporal 

integration while maintain the accuracy of the 

conventional CFD solver. To this end, 

construction of an additional dataset and a 

reduced implicit operator matrix were 

implemented. The additional adaptive dataset 

was reconstructed through a wavelet 

decomposition with the residuals and a modified 

thresholding criterion for implicit operation. It 

renders the computational domain split into 

smooth regions and high gradient regions of the 

residuals. Then, the implicit operator matrix is 

reduced to the size of the additional dataset, 

which consists of the cells in regions of high 

gradient of the residual. Because the implicit 

temporal integration should be performed only at 

the included cells in the adaptive dataset, the 

reduced implicit operator matrix enhances the 

computation efficiency on the implicit temporal 

integration. The usability of the modified method 

is demonstrated through an aerodynamic analysis 

of the airfoil vortex interaction. Computational 

efficiency enhancement is evaluated and 

compared in a quantitative manner. 

2  Numerical Methods  

2.1 Baseline Multi-Resolution Analysis on a 

Euler Solver[11] 

In this paper, the two-dimensional Euler 

equations are used as the governing equations to 

cover practical transonic problems. The two-

dimensional Euler equations are written as Eq. 

(1). 
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To conduct the calculations with an 

arbitrary curvilinear grid system, these equations 

are transformed from the Cartesian coordinate 

system to the generalized coordinate with non-

dimensionalization, rewritten as Eq. (2). 
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In this research, the MRA method suggested 

by Kang et al.[11] was chosen as the baseline. 

The method is one of latest MRA methods and 

has advanced features, such as the definition of 

thresholding value according to the order of 

spatial accuracy and the convergence 

acceleration by the restriction. This method uses 

the interpolating wavelet transformation which 

includes decomposition and threshold to 

construct an adaptive dataset on the hierarchical 

dyadic grid sets, so as to reproduce the local 

features of the solution. Then, fluxes are 

calculated only at the points within the adaptive 

dataset, resulting in improved computational 

efficiency. The procedures of the CFD solver 

with the MRA method consist of four steps, as 

shown in Fig. 2. Step 1. Wavelet Decomposition, 

Step 2. Flux Evaluation, Step 3. Residual 

Interpolation, Step 4. Time Integration. A 

detailed description of each procedure is 

provided in the Appendix. 

 

 
Fig. 2 : Overall procedure of flow simulation 

with the MRA methods. 

2.2 Efficiency Improvement on Implicit 

Temporal Integration 

The simplest way to improve the 

computational efficiency is to conduct the 

implicit temporal integration only at cells in the 

adaptive dataset. If the size of implicit operator 

matrix is reduced to that of the adaptive dataset, 

the elapsed time for the implicit calculation will 

be reduced in the same manner. However, the 

implicit operation with a reduced matrix can 

induce numerical error due to the lack of 

information from neighboring points. To 

suppress the numerical errors caused by the 
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reduced matrix operation, an additional adaptive 

dataset is reconstructed and the new threshold 

criterion is suggested in the modified MRA 

(MMRA, hereafter). 

Figure 2 shows the flowchart of the MMRA 

for the efficient implicit temporal integration. 

The procedures of MMRA are conducted after 

the residual interpolation of BMRA. Prior to the 

temporal integration, the additional adaptive 

dataset is reconstructed. The wavelet 

decomposition is executed in the same way as the 

wavelet decomposition of BMRA, shown in Eq. 

(A1) in the Appendix, except for the substitution 

of residuals (R) for conservative variables (Q). 

Then, thresholding is executed with the modified 

value for the implicit temporal integration. Next, 

the implicit operator matrix is reduced to fit the 

size of the additional adaptive dataset to improve 

the calculation speed of the implicit temporal 

integration.  

To help understanding of the reduced matrix 

technique, the core idea of the method is best 

illustrated using an example as in Fig. 3. It is 

assumed that there are 10 points of 1D structured 

grid, and six grid points (0, 1, 3, 6, 8, 9) remain 

in the adaptive dataset after wavelet 

decomposition and thresholding. In the adaptive 

dataset, the residual information of excluded 

cells(2, 4, 5, 7) does not exist; columns of 

excluded cells are removed and matrix operator 

is reconstructed as shown in Fig.3 (b) and (c). 

The reduced size of the implicit matrix shortens 

the elapsed time for calculating the iterative 

inversion matrix, which saves significant 

computational resources. 

 

 
Fig. 3 : Implicit operator matrix for 1-D 

structured grid. 

 

These modifications of MRA in order to 

reduce only the size of the matrix, the MMRA 

can be applied to other types of implicit temporal 

integration methods. In this paper, temporal 

integration was conducted with LU-SGS, which 

is efficient and robust versus alternative direction 

methods. 

3 Results and Discusion 

The accuracy and efficiency of the MMRA 

method are demonstrated on a practical flow 

problem of a 2-D airfoil vortex interaction. The 

2-D transonic airfoil-vortex interaction problem 

is chosen, because the underlying flow physics 

are similar to that found in the blade vortex 

interaction of the helicopter rotor. The 

capabilities of MMRA are validated under this 

complex unsteady flow situation, which includes 

shocks, a moving vortex, and the interactions 

between the shocks and the vortex. The 

freestream Mach number is 0.8(Fig. 4). The 

vortex has a core radius of 0.05c and a 

nondimensional strength of -0.2. The airfoil has 

an NACA0012 section. The computation domain 

is as shown in Fig. 4. (I×J = 336×601 : 217 on the 

airfoil surface) To preserve the vortex strength, 

the fine grid region is located in front of the 

airfoil (gray colored region in Fig. 4). 

 

 

Fig. 4 : Grid system and calculation conditions. 

 

For third-order spatial accuracy, Roe’s FDS 

with Koren’s limiter is used and LU-SGS with 

third-order Euler BDF is used for temporal 
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integration as in the previous case. Time 

accuracy is obtained by the reduction of 3 orders 

of nonlinear residuals by Newton subiteration 

strategy at each physical time step. The highest 

level of multi-resolution is level 3 in both MRAs. 

Initially, a steady-state solution is obtained 

for the airfoil-alone configuration, and then the 

free vortex is released at three chord lengths 

upstream from the airfoil leading-edge and 0.26 

chord lengths below the chord line. Calculations 

are performed by a marching solution in time 

with a nondimensional time step size of 0.0005. 

The released vortex is modeled according to 

Scully[12]. The clockwise vortex is defined as 

negative as shown in Fig. 4. The initial pressure 

and density fields can be established by the radial 

momentum equation in conjunction with the 

energy equation for constant enthalpy flows.[13] 

Figure 5 shows the variation of lift as a 

function of the instantaneous streamwise position 

of the vortex. The lift reaches negative maximum 

when the vortex travels near the leading-edge and 

then rapidly increases thereafter. An abrupt 

change of the moment from positive to negative 

values is also predicted in Fig 6, as the vortex 

passes below the airfoil. The variations of lift and 

moment of CS, BMRA and MMRA method are 

in reasonably good agreements with those of 

other Euler and Navier-Stokes 

investigations[12][14-16]. 

 

   
(a)  Lift variations in overall region  

 
(b) Lift variations at A 

Fig. 5 : Comparison of lift variations with the 

instantaneous vortex position for 0.8M

 , 

0.05cr c , 0.2    and 0.26vy   . 

 

 
(a)  Moment variations in overall region 

 
(b) Moment variations at A 

Fig. 6 : Comparison of moment variations with 

the instantaneous vortex position for 0.8M

 , 

0.05cr c , 0.2     and 0.26vy  
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|                Pressure contours                |  Adaptive dataset  |  Pressure contours |  Adaptive dataset   | 

Xv = -1.5c 

 
Xv = -1.0c 

 
Xv = -0.5c 

 
Xv = 0.0c 

 
Xv = 0.5c 

 
Xv = 1.0c 

 
(a) Conventional                           (b) BMRA                                             (c) MMRA 

Fig. 7 : Comparison of pressure distributions and adaptive datasets with the instantaneous vortex position 

for 0.8M

 , 0.05cr c , 0.2     and 0.26vy   . 
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More details of the analysis of the prediction 

accuracy follow through comparisons of the 

pressure distributions. Figure 7 shows the 

corresponding pressure contours of CS, BMRA 

and MMRA at six time levels as the vortex passes 

by the airfoil. Pressure contours clearly illustrate 

the physical phenomena of the vortex interaction. 

All test solvers of CS, BMRA and MMRA 

predict the physical characteristics of the airfoil 

vortex interaction accurately. Finding 

differences in the pressure distribution among 

these solvers is indiscernible to the human eye, 

because residuals of each cell are decreased 

below O(10-3) to get temporal accuracy. 

The distributions of the adaptive dataset are 

illustrated in Fig. 7. Comparison between the 

datasets of BMRA and MMRA indicates that the 

dataset of MMRA has higher adaptivity than that 

of BMRA for unsteady simulation. In the dataset 

of BMRA, the dense grid region around the 

vortex (in the circle in Fig. 7) cannot be 

distinguished after Xv = 0c. However, the dataset 

of MMRA at each time step shows the dense grid 

region around the vortex (in the circle in Fig. 7). 

Because the additional dataset of MMRA 

includes the cells, which have the rapid change 

of the residuals, i.e. time derivatives, the dataset 

distribution of MMRA can be more adapted to 

the instantaneous flow properties in contrast to 

that of BMRA. 

 

Solver CPU 

time 

(sec.) 

Speed-up 

Ratio 

Compression 

Ratio 

CS 5376 1 1 

BMRA 4823 1.11 2.05 

MMRA 3061 1.76 4.67 

Table 1: Results of efficiency improvements in 

the airfoil-vortex interaction problem. 

 

The calculation efficiency of MMRA is 

compared with that of BMRA in Table 1. 

Computation speed of MMRA increased 1.76 

times of CS, and 1.59 times of BMRA. The 

dataset of MMRA is 2.28 times more compressed 

than that of BMRA. Consequently, it is shown 

that MMRA improved the computational 

efficiency and the adaptivity of dataset on the 2-

D airfoil vortex interaction problem, while 

retaining the accuracy of CS. This validation 

demonstrates that the efficiency enhancement of 

MMRA is prominent in unsteady simulations in 

comparison with BMRA. 

 

4 Conclusions 

This paper presents MMRA for improved 

efficiency in the implicit temporal integration. To 

reduce the elapsed time in the implicit temporal 

integration, an additional dataset is reconstructed 

first and the implicit operator matrix is cut down 

to the size of the additional dataset. In the 

reduced matrix, diagonal elements of the implicit 

matrix consist of the cells included in the 

adaptive dataset and off-diagonal elements are 

filled with the nearest points to the diagonal cell 

along the generalized coordinate axis. From the 

verification and validation of MMRA, the 

following conclusions are reached: 

1) The elapsed time of the implicit temporal 

integration substantially decreases due to the 

reduced implicit operator matrix of MMRA. In 

the airfoil vortex interaction problem, MMRA 

yielded results 1.6 times faster than CS, while 

BMRA improved the efficiency only 1.03 times. 

2) The dataset of MMRA has the improved 

adaptivity as proved in the cases of the airfoil 

vortex interaction. It is because the dataset of 

MMRA is reconstructed by the wavelet 

decomposition with the residuals which include 

the time derivative terms on the unsteady cases. 

The suggested strategy can be applied to 

other types of implicit temporal integration 

methods because the main idea behind MMRA 

lies in the reconstruction of the additional dataset 

and the reduction of the implicit operator matrix. 

In the final manuscript, numerical robustness and 

limitations of the suggested method will be 

demonstrated through the error analysis. Also, 

the cost reduction by MMRA on aerodynamics 

analysis of 3-D transonic wing will be presented. 

Appendix. Baseline Multi-Resolution 

Analysis[11] 

The wavelet transformation of this method 

extends the interpolating subdivision scheme 

presented by Donoho[17]. It is easy to implement 

with the existing CFD code. The flowchart in Fig. 
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2 shows the overall implementation of BMRA in 

the conventional solver. This implementation 

consists of the following steps. 

Step 1. Wavelet Decomposition: To 

construct the adaptive dataset, decomposition is 

conducted by interpolating a wavelet 

transformation. Kang et al. [11] described the 

decomposition using 6th-order interpolating 

polynomials for two-dimensional applications. 

Assume an initial two-dimensional dyadic 

grid set in level 1 of the multi-resolution (Fig. A1 

(a)). In this figure ◯ cells must be included in 

the adaptive dataset cells, and are basis points for 

interpolation. The 6th-order interpolating 

polynomial evaluates values at other cells, as 

shown in Eq. (A1). This interpolation is extended 

at higher levels of the multi-resolution, as shown 

in Fig. A1 (b). 

 

 
(a) Level k-1 

 
(b) Level k 

Fig. A1 : Example of a dyadic grid set on each 

level[11] 
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(A1) 

 

Then the difference between interpolation 

value and original value can be derived as Eq. 

(A2). 

 

: 1, 1, 1,

n n n

i j i j i j  
 d Q Q

 

: , 1 , 1 , 1

n n n
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n n n

i j i j i j     
 d Q Q

                      (A2) 

 

If the difference is larger than a thresholding 

value   , the point is included in the adaptive 

dataset as given in Eq. (A3). 

 

 min ,max ,
l m m

x CFL x     
                     (A3) 

 
  is interpolation error, l means the order of 

spatial accuracy, m means the order of temporal 

accuracy. In this study,  is set to and 

third order MUSCL and BDF are used, thus the 

criterion is applied as Eq. (A4). 

 

 5 3 3 3
min 10 ,max ,x CFL x     

                  (A4) 

 

Step 2. Flux Evaluation: After constructing 

the adaptive dataset, the cells included in the 

dataset have 1 as the flag value, while the other 

cells have 0. The flag value of the data set 

determines whether the flux values are to be 

evaluated or not. If the flag value is 1, the flux 

value is calculated by Roe’s flux-difference 

splitting method. Then, MUSCL with a third-

order Koren’s limiter is applied to evaluate the 

flux.  

Step 3. Residual Interpolation: On the cells 

in the adaptive dataset, the residual is calculated 

using the existing CFD code. Residuals on the 

excluded cells are interpolated in the same way 

e 1´10-5
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as that of the interpolating wavelet method, as in 

Eq. (A5). 
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(A5) 

 

Step 4. Time Integration: For organizing the 

residual distribution in the whole computational 

domain, a time integration is performed. Then, 

the values at the excluded points from an 

adaptive dataset, i.e. where the flag values are 

zero, can be neglected if the variations of flow 

variables, ,i jdQ
 are smaller than the order of the 

threshold value. This is because the order of 

variation is within the order of the newly 

generated errors due to adoption of the adaptive 

wavelet method. Thus, it is reasonable that we 

restrict these errors by multiplying an 

appropriately small value as shown in Eq. (A6). 

 

 , , . .i j i jd d W F Q Q
                   (A6) 

at the exclude points from an adaptive 

dataset, where                                                                                               

,
. min ,1

0.1
min ,1

i j
d

W F

t
x

 

 
 
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  

     

Q

. 

 

The range of   is about 2 5   and 2   

in this research. 
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