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Abstract

This paper shows how low-cost, off-the-shelf
sensors can be used to reconstruct the position,
velocity, and attitude of an aircraft. An extended
Rauch-Tung-Striebel Smoother is used offline to
extract state information from recorded raw data
signals. Some of the inherently large errors of
low-cost sensors are determined by means of a
Maximum-Likelihood scheme.

The applicability of this approach is shown
using simulated as well as real data from a low
cost flying test-bed, equipped with sensors ob-
tained from the RC model market. In both cases,
results are very promising. The proposed algo-
rithm thus constitutes a possibility of obtaining
high accuracy estimates of the true state trajecto-
ries for analysis and modeling.

1 Introduction

Estimation of the exact position, velocity, and at-
titude of an aircraft is a task which is tradition-
ally performed within an integrated navigation
system in real-time [1]. This data can be used
for feedback control or visualization to the pilot.
Naturally, the obtained accuracy can be improved
significantly if high-quality sensors are used.

However, with the rise of the Unmanned
Aerial Vehicle (UAV) market, where usually only
small, low-cost, and low-accuracy sensors are
employed, new approaches have to be found.
These sensors commonly have comparatively
large random and bias errors. Nevertheless, inter-
esting results in the field of system identification

and control have been obtained [2, 3].
This paper illustrates a post-processing ap-

proach, which serves to obtain accurate estimates
of the true position, velocity, and attitude, solely
based on low-cost sensors. It combines the in-
formation of one complete flight together with
a kinematic model of the aircraft to reconstruct
the state at every sampled time instant. The ob-
tained data can then be used for system identi-
fication, dynamic analysis, or control algorithm
assessment.

In the context of system identification, this
step is commonly called Flight Path Reconstruc-
tion (FPR) [4].

2 Hardware Setup

The test vehicle is the institute’s low-cost fixed
wing testbed, which is based on a RC model of
the aerobatic aircraft Zivko Edge540 [3], with
1.21 meters span.

At the center of the onboard avionics is a
STM32F4 processor on a discovery board, which
features a 32-bit ARM Cortex-M4F core with in-
ternal floating point unit, running at 16 MHz.
Programming was completely done in ANSI-C,
with no operating system on the micro controller.

The set of external sensors consists of an In-
venSense MPU-6000EVB 6-DOF Inertial Mea-
surement Unit (IMU), a u-blox Neo-6M Global
Navigation Satellite System (GNSS) Receiver
and a Honeywell HMC5883L 3-axis magnetome-
ter, together with an EXP Tech analog differential
pressure sensor and pitot tube. The latter consti-
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Fig. 1 Current setup of the low-cost flying testbed with modifications compared to [3]

tute updates compared to the setup described in
[3]. Furthermore, the fail-safe capability of the
setup is provided by the Acroname RxMux 2:1 8
Channel servo multiplexer, which can be used to
bypass any automatic input generation in favor of
direct pilot control.

The data, which is available for FPR is thus

• inertial data: rotational rates and accelera-
tions at100Hz

• GNSS data:position and kinematic veloc-
ity at 5Hz

• magnetic data:local magnetic field vector
at75Hz

• air data: differential pressure at100Hz

All data is stored on a micro SD card for of-
fline analysis. The hardware setup and testbed
can be seen in figure 1, all electronics are pow-
ered via the central three cell lithium polymer
battery.

3 Methods

Here, the general train of thoughts regarding FPR
in [4] is followed with some modifications.

3.1 Extended Kalman Filter

For general, non-linear systems no globally valid
filtering framework is available, only approx-
imate solutions can be found. One of the
most commonly used algorithms is the Extended
Kalman Filter (EKF). It uses linearizations of the
system equations around the currently best state

estimate to be able to apply standard Kalman fil-
ter equations. A short summary of the algorithm
is presented here, details can be found in [5, 6].

A mixed continuous-discrete formulation
was chosen, with non-linear system dynamics of
the form

ẋ = f (x,u,w, θ) (1)

y = g (x,u, v, θ) (2)

This formulation allows for non-linear inclusion
of noise effects, as well as covering the influence
of parametersθ ∈ R

nθ , which were tuned us-
ing a Maximum Likelihood (ML) like approach
in order to improve the output fit, see section 3.6.
The discrete system matrices were obtain using
the partial derivatives

Ak =
∂f
(

x̂k|k,uk, 0, θ
)

∂x
(3)

F k =
∂f
(

x̂k|k,uk, 0, θ
)

∂w
(4)

Ck =
∂g
(

x̂k+1|k,uk, 0, θ
)

∂x
(5)

Gk =
∂g
(

x̂k+1|k,uk, 0, θ
)

∂v
(6)

in order to compute the transition matrices

Φk = exp (Ak ·∆t) =

∞
∑

i=0

(Ak ·∆t)
i

i!

Γk =

∫ ∆t

0

exp (Akτ) dτ · F k

=

(

∞
∑

i=1

Ai−1

k ·∆ti

i!

)

· F k
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Two noise sources are considered: measure-
ment noisevk ∈ R

nv and process noise
wk ∈ R

nw , with the following characteristics

E [wk] = 0 E
[

wkw
⊺

j

]

= δkjQk

E [vk] = 0 E
[

vkv
⊺

j

]

= δkjRk

E
[

wkv
⊺

j

]

= 0

3.1.1 Propagation

Propagation of the a priori state estimates
x̂k−1|k−1 was done non-linearly using a 4th order
Runge-Kutta Scheme to solve

x̂k|k−1 = x̂k−1|k−1+
∫ tk+1

tk

f
(

x̂k−1|k−1, ũ (τ) , 0, θ
)

dτ
(7)

ũ (τ) =
tk+1 − τ

tk+1 − tk
uk +

τ − tk
tk+1 − tk

uk+1

State covariance estimates were propagated using
the linearized system dynamics

P xx
k|k−1 = Φk−1P

xx
k−1|k−1Φ

⊺

k−1

+ Γk−1Qk−1Γ
⊺

k−1

(8)

Due to the relative simplicity of the model in sec-
tion 3.5 a symbolic math engine was used to com-
pute analytic derivatives for equations (3) - (6).

3.2 Correction

State and covariance correction were done lin-
early, while using the full non-linear output equa-
tion (2)

Kk = P xx
k|k−1C

⊺

k

·
(

CkP
xx
k|k−1C

⊺

k +GkRkG
⊺

k

)−1 (9)

x̂k|k = x̂k|k−1

+Kk

(

zk − g
(

x̂k|k−1,uk, 0, θ
)) (10)

P xx
k|k−1 = (I −KkCk)P

xx
k|k−1 (I −KkCk)

+KkGkRkG
⊺

kK
⊺

k (11)

Since magnetometer, GNSS and differential pres-
sure measurements have different sample rates,
not all elements ofzk are valid at all sampling in-
stantsk. Thus, at every instanttk only the rows of
zk, g, Ck, andGk, which actually contain valid
measurements, are considered in equations (9) -
(11).

3.3 Rauch Tung Striebel Smoother

To extract maximum information from the stored
flight data, not only past but also future samples
are used to estimate the current state. This is ac-
complished by optimally combining the results of
a forward EKF pass, with a backwards EKF pass.
One very efficient way to do this, is the Rauch-
Tung-Striebel (RTS) smoother. Details can be
found in [5, 7].

During the forward pass the following quanti-
ties have to be stored:̂xk|k, x̂k+1|k, P

xx
k|k, P

xx
k+1|k,

andΦk, which are recursively combined to ob-
tain the smoothed estimatessP

xx
k andsx̂k

sP
xx
N = P xx

N |N k = N − 1 . . . 0

sx̂N = x̂N |N

M k = P xx
k|k ·Φ

⊺

k ·
(

P xx
k+1|k

)−1

sP
xx
k = P xx

k|k +M k

(

sP
xx
k+1 − P xx

k+1|k

)

M
⊺

k

sx̂k = x̂k|k +M k

(

sx̂k+1 − x̂k+1|k

)

By Incorporating the information of the complete
timeseries, smoother estimates and lower state
covariances can be accomplished compared to a
pure forward pass.

Originally the RTS was developed for the lin-
ear Kalman filter case, however it can directly
be applied to the EKF resulting in the Extended
Rauch-Tung-Striebel (ERTS) smoother.

3.4 Sensor Errors

When working with low-cost components, it is
paramount to explicitly consider sensor errors.
Random errors are treated as zero-mean, white,
Gaussian noise processes and taken care of by the
EKF. In contrast to that, bias and scale factors are
modeled as deterministic errors.

Inertial measurements are considered to be
distorted by constant bias∆a and∆ω and mea-
surement noisewacc, wrot andwrotacc

(

aR
K

)II

B,meas
=
(

aR
K

)II

B
+∆a +wacc (12)

(

ωIB
K

)

B,meas
=
(

ωIB
K

)

B
+∆ω +wrot (13)

(

ω̇IB
K

)B

B,meas
=
(

ω̇IB
K

)B

B
+wrotacc (14)

Since rotational accelerations could not be mea-
sured directly, finite difference approximation

3



C. GÖTTLICHER, F. HOLZAPFEL

was used to obtain their value. Due to this bad
approximation, the process noise covariance as-
sociated with them was assumed to be quite large.

GNSS position and velocity errors are are as-
sumed to be purely random

(

rR
)

WGS,meas
=
(

rR
)

WGS
+ vpos (15)

(

vG
K

)E

O,meas
=
(

vG
K

)E

O
+ vvel (16)

Bias∆b, a three component scale factorKb,
and random errorsvmag are considered for the
magnetometer

(b)B,meas = (I3 + diag (Kb)) · (b)B

+∆b + vmag

(17)

The differential pressure errors are modeled
as bias∆q̄, scale factorKq̄, and measurement
noisevq̄

q̄meas = (1 +Kq̄) q̄ +∆q̄ + vq̄ (18)

The 2-norm of the attitude quaternions is in-
troduced as additional pseudo measurement with
value 1 in order to ensure proper quaternion scal-
ing [8]

||qOB||meas = ||qOB||+ vq (19)

3.5 Kinematic Equations

The 6 degree of freedom kinematic model is
assembled from position, velocity and attitude
propagation equations at the reference pointR as
illustrated in e.g. [1]. The system states are

x =
[

(

rR
)⊺

WGS

(

vR
K

)E,⊺

B
q
⊺

BO

(

uRW
)E

O

(

vRW
)E

O

]

⊺

with position
(

rR
)

WGS
in World Geodetic Sys-

tem 1984 (WGS84) coordinates, kinematic ve-
locity (vR

K)
E
B in body fixed coordinates, an atti-

tude representationqBO using unit-quaternions
and horizontal wind components

(

uRW
)E

O
and

(

vRW
)E

O
in the North-East-Down (NED) frame.

The inputs are

u =
[

(

aR
K

)II,⊺

B,meas

(

ωIB
K

)⊺

B,meas

(

ω̇IB
K

)B,⊺

B,meas

]

⊺

with the measured accelerations, rotational rates
and finite difference approximations for rota-
tional accelerations in body fixed coordinates.

Finally, the outputs are

y =
[

(

rR
)⊺

WGS,meas

(

vR
K

)E,⊺

O,meas

(b)⊺B,meas q̄meas ||qOB||meas

]

⊺

with the position vector in WGS84 coordi-
nates

(

rR
)

WGS,meas
, velocity in the NED frame

(

vR
K

)E,⊺

O,meas
, the measured magnetic field in the

body fixed frame(b)B,meas, measured dynamic
pressurēqmeas and the 2-norm of the current atti-
tude quaternion||qOB||meas, as proposed in [8].

One part of the parameter vector for ML esti-
mation comprises of the sensor errors

θerr =
[

∆a⊺ ∆ω⊺ ∆b⊺ K
⊺

b ∆q̄ Kq̄

]

⊺

(20)

3.5.1 State Equations

The non-linear state space model consists of
kinematic relationships only, i.e. apart from sen-
sor installation locations, no aircraft specific in-
formation is needed [9, 10].

A transformation matrixMBO from local
NED to body-fixed coordinates is assembled
from the attitude quaternionqOB, see [1].MBO

is then used to transform
(

vR
K

)E

B
from body fixed

to NED coordinates
(

vR
K

)E

O
= M

⊺

BO ·
(

vR
K

)E

B
(21)

(

vR
K

)E

O
is used for WGS84 position propagation

(

ṙR
)

WGS
=













(uR
K)

E

O

Mφ+hR
WGS

(vRK)
E

O

Nφ+hR
WGS

cos(φR
WGS)

−
(

wR
K

)E

O













+wpos

(22)

with WGS84 altitudehRWGS, latitudeφR
WGS, and

radii of curvatureMφ andNφ. Even though the
position propagation is a purely kinematic rela-
tionship, it was found that introducing a process
noise termwpos with small covariance improved
filter results.
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To obtain the velocity propagation equation,
measured accelerations have to be corrected for
Coriolis, rotational acceleration, centripetal and
gravitational influences

(

v̇R
K

)EB

B
=
(

aR
K

)II

B
−
(

ωIB
K

)

B
×
(

vR
K

)E

B

−
(

ω̇IB
K

)B

B
×
(

rR,IMU
)

B
(23)

−
(

ωIB
K

)

B
×
[(

ωIB
K

)

B
×
(

rR,IMU
)

B

]

+MBOgO

Inertial data is computed from measurements
with the help of equations (12) - (14), which in-
troduces process noise terms.

(

rR,IMU
)

B
repre-

sents the installation location of the IMU with re-
spect to the considered reference pointR.

Attitude propagation is done using the quater-
nion propagation equation

q̇OB =
1

2









−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0









(

ωIB
K

)

B
(24)

where equation (13) is used to obtain
(

ωIB
K

)

B

from measurements.
A rough estimate of horizontal wind can be

obtained by comparing kinematic velocities with
measured differential pressure readings. To do
so, horizontal wind components are modeled as
random walk with

[

(

u̇RW
)EO

O
(

v̇RW
)EO

O

]

= wwind (25)

Equations (22) - (25) are then assembled to ob-
tain a system of the form (1).

3.5.2 Output Equations

For output estimates of measured position and
velocity, equations (15), (16) and (21) can be
used directly.

Magnetometer readings in body-fixed coordi-
nates are modeled as a constant magnetic field
vector(b)O computed from the World Magnetic
Model 2015 (WMM2015), and translated to body
fixed coordinates

(b)B = MBO (b)O (26)

Together with equation (17) output estimates can
be obtained.

Dynamic pressure readings are computed as
indicated airspeed from the velocity state, to-
gether with the horizontal wind estimates

(

vR
A

)E

B
=
(

vR
K

)E

B
−MBO







(

uRW
)E

O
(

vRW
)E

O

0







q̄ =
ρ0
2
||
(

vR
A

)E

B
||2 (27)

with International Standard Atmosphere (ISA)
air density at sea level of1.225 kg

m3 . Differing den-
sity is lumped together with scale factor errors
in Kq̄. Output estimates can be assembled using
equation (18).

Output estimates for the quaternion norm can
directly be obtained from equation (19).

3.6 Parameter Estimation

With the test-setup at hand, flight duration is usu-
ally limited to about 6 minutes. During this time
span, sensor errors are assumed to be constant
and estimated offline using a ML like approach.

Classic ML methods can be rephrased as op-
timization problems that minimize the following
cost-function [11, 4]

min
θ,B

J

J (θ,B) =
1

2

N
∑

k=0

r
⊺

kB
−1rk +

N + 1

2
ln |B|

rk = zk − yk (θ)

Due to the strong interconnection of the un-
known parameter vectorθ and the unknown
residual covariance matrixB a common ap-
proach is to separate the optimization in two
steps. First, the maximum likelihood estimate of
B is computed according to

B =
1

N + 1

N
∑

k=0

rkr
⊺

k (28)

which is then considered fixed during the com-
putation of an update forθ. Those two steps are
iterated until convergence [4].
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Here, the problem arises, that not at every
sampling instant valid measurements of all out-
puts are available which prohibits the computa-
tion of B according to (28). A possible remedy
is to assume zero residuals for invalid measure-
ments

(r̃i)k =

{

(yi)k (θ)− (zi)k if (zi)k is valid

0 otherwise

(29)

i = 1 . . . ny; k = 0 . . . N

An estimate of the residual covariance matrix can
then be computed according to

B̃ =
1

N + 1

N
∑

k=0

r̃kr̃
⊺

k (30)

The residual covariances are now under-
estimated, since less thanN + 1 valid samples
are involved in their computation. Thus,̃B is
scaled before entering the cost function. The
diagonal scaling matrixW is computed from the
number of valid samples per outputMi

W = diag

(

√

N

M1

. . .

√

N

Mny

)

(31)

The final cost function to be optimized is

J̃
(

θ, B̃
)

=
1

2

N
∑

k=0

r̃
⊺

k

(

W B̃W ⊺

)−1

r̃k

+
N + 1

2
ln
∣

∣

∣
W B̃W ⊺

∣

∣

∣

(32)

which is minimized using the two-step procedure
illustrated above.

Initial values for parameter estimates are
computed in two steps. In a first step, while the
aircraft is at rest, averaged accelerations are com-
pared to their nominal value. The difference is at-
tributed equally to all three bias elements in∆a.
Similarly, averaged rotational rates are compared
to their nominal value of0 to obtain an initial
guess for∆ω.

In a second step, using the initial guesses for
∆a and∆ω, the EKF is applied with only GNSS
measurements for correction. Magnetometer and

airspeed readings are computed afterwards from
the estimated state trajectory to obtain estimates
of (b)B,k and q̄k. Now, using measurements
(b)B,meas,k and q̄meas,k, equations (17) and (18)
can be reformulated as ordinary least squares
problems fork = 0 . . .N in the sensor error pa-
rameters∆b andKb, respectively∆q̄, andKq̄.
The solution is used as initial guess for the ML
like estimation algorithm.

Most initial valuesx0 for the ERTSsmoother
can be computed directly from the measure-
ments, only initial values for attitude and wind
states are included in the parameter vectorθ and
thus estimated along with the sensor errors.

4 Results

Two different scenarios are investigated

• simulated data, for which true parameter,
state and output values are known

• real data, which was gathered using the
testbed described in section 2

4.1 Reconstruction Result

4.1.1 Simulated Data

The reference simulation data was generated by
using the estimation result from the real data case
as reference trajectory for a simulation model of
a small scale, aerobatic aircraft. Simple cascaded
PI-controllers were used to eventually obtain a
trajectory, having roughly the same rate and at-
titude time histories as the measured data.

For most outputs, the same sensor error mod-
els as in 3.4 were used to create artificial mea-
surements. Only the GNSS readings were not
augmented with white, but filtered white noise,
which results in a more realistic GNSS error.
Since the simulation model operates in different
speed regimes, measurement noise for the air-
speed sensor was increased to result in a com-
parable signal to noise ratio.

One crucial point in Kalman Filtering is the
choice of process and measurement noise covari-
ance matrices. In this simulated example, tuning
those matrices was achieved on the basis of the
true covariance matrices of the sensor models.
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Fig. 2 Simulated (blue) and reconstructed attitude (red) represented as euler angles

The algorithms capability to reconstruct un-
measured states is illustrated in figure 2, where
almost perfect attitude estimates are compared to
the true time histories obtained during the simu-
lation.

4.1.2 Real Data

Results from real measurement data can be seen
in figure 5. Sensor covariances were tuned man-
ually, based on some basic laboratory calibration.
The output fit is somewhat worse compared to
the simulation case, however the algorithm is still
able to reconstruct a kinematically consistent tra-
jectory, which fits the measurements well.

At t = 172s there appears an error in the
GNSS solution, as can be seen from the jump in
position (φ)WGS84, (λ)WGS84, and (h)WGS84 in
figure 5. However, the algorithm is able to recon-
struct a smooth trajectory without jumps.

Due to the choice of covariance matrices,
comparatively large discrepancies between mea-
sured and reconstructed values are tolerated in al-
titude(h)WGS84 and vertical velocity

(

wR
K

)E

O
.

After correction of bias and scale factor er-
rors, the magnetometer readings are very well re-
constructed.

The resulting wind estimate can be seen in
figure 3. Wind velocity in the range between4m

s

and8m
s

seems high. However, it was not a per-
fectly calm day, so the algorithm does not nec-
essarily overestimate the true speed. Wind di-
rection varies between 60 and 80 degrees, which
seems reasonable, too.

4.2 Parameter Estimation Results

For the simulated data, a bar plot of the rela-

tive deviation
∣

∣

∣

(

θ̂i − θi

)

/θi

∣

∣

∣
between estimated

θ̂i and true parameter valuesθi can be seen in fig-
ure 4. Most parameter estimates lie very close to
the respective true values. The relative deviation
for sensor errors on the input side of the system is
significantly larger than on the output side of the
system. Especially accelerometer biases are not
well captured, while magnetometer and differen-
tial pressure errors are estimated very well.

5 Discussion

5.1 Reconstruction

The algorithm performs very well in a simulation
environment, as can be seen in figure 2 and 4.
Thus, the presented approach of estimating con-
stant sensor errors within an ERTS in order to re-
construct the true trajectory is, in principle, valid.

However, practical relevance of such an al-
gorithm is only given if its applicability to real
life data can be shown. Despite the low quality
of the sensors, installed on the institute’s testbed,
good results were obtained as can be seen in the
output fit in figure 5. Although the solution re-
lies heavily on GNSS position and velocity, ob-
vious errors like jumps can be overcome insofar
as a smooth, kinematically consistent trajectory
is reconstructed. Though the true flightpath is not
known in this case, the reconstructed one seems
realistic.

Due to the geometry of any GNSS solution,
altitude is captured inherently worse compared to
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Fig. 3 Wind estimates for real data
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Fig. 4 Realtive parameter deviation

lateral and longitudinal position estimates. This
is why larger errors in altitude(h)WGS84 and

vertical velocity
(

wR
K

)E

O
are tolerated, compared

to horizontal position and velocities. This er-
ror threshold is commonly set by the analyst via
the corresponding covariances. A closer inves-
tigation of the relation between raw altitude and
vertical speed measurements indicated that a low
pass filter for

(

wR
K

)E

O
seems to be implemented

in the GNSS receiver. Thus, high frequency os-
cillations in

(

wR
K

)E

O
are not captured very well,

but can be reconstructed using the proposed al-
gorithm. Since the true trajectory is unknown, no
definite statement is possible, however the recon-
structed output is at least consistent with inertial
and magnetometer measurements.

In order to obtain a precise estimate of the
aircraft’s attitude, magnetometer readings turned
out to be very useful. In contrast to IMU data,
which is influenced by the trajectory’s dynam-
ics, the magnetometer offers a constant reference
vector. Thus, after compensation for bias and
scale factor, magnetometer data plays an impor-
tant role in the reconstruction of the aircraft’s at-
titude.

Due to the small scale and low speeds of the

aircraft in use, already slight variations in aero-
dynamic velocity can have a significant influence
on the trajectory, which is why an estimate of the
wind conditions is very useful for further analy-
sis. However, the wind estimate in figure 3 has
to be treated with care. As no flow angle sensors
where used, wind speed can only be estimated
in the current body x-direction, which limits the
overall accuracy. Furthermore, un-modeled ef-
fects like flow angle dependent errors of the pitot
tube or lever arm effects due to its installation
location will be lumped into the wind estimate.
Nevertheless, the result can at least be used as a
rough estimate for real conditions.

5.2 Parameter Estimation

Even though not all error parameters of the model
can be estimated perfectly, as can be seen in fig-
ure 4, the overall performance of the algorithm is
satisfactory. Especially because the main focus
does not lie on the precise determination of sen-
sor errors but on the reconstruction of true states
and outputs.

In the case of real measurement data, several
sensor errors remain un-modeled. However, the
good output fit indicates that the class of mod-
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els represented by the equations proposed here
is versatile enough to cover the most important
influencing factors, which eventually leads to a
good output fit.

6 Conclusions

An approach to reconstruct estimates of the true
state and output trajectory of an aircraft based on
low-cost sensors has been illustrated. It is based
on an ERTS smoother and ML like parameter es-
timation.

Several aspects show the validity and practi-
cal applicability of this approach. In a simula-
tion environment, the algorithm is able to almost
perfectly reconstruct true state trajectories and
yields good parameter estimates. Furthermore,
even with low-cost sensor data, the reconstructed
outputs show good consistency compared to the
measured quantities and a kinematically consis-
tent trajectory can be reconstructed.

In the future, the incorporation of sensors for
pressure altitude and static temperature could fur-
ther improve the results. Also, more elaborate
sensor error models can be implemented to e.g.
cover lever arm effects of the Pitot system.

References

[1] Wendel J.Integrierte Navigationssysteme: Sen-
sordatenfusion, GPS und Inertiale Navigation.
Oldenbourg, R, München, 2., überarbeitete au-
flage edition, 2010.

[2] Dorobantu A, Johnson W, Lie F. A, Taylor B,
Murch A, Yew Chai Paw , Gebre-Egziabher D,
and Balas G. An airborne experimental test plat-
form: From theory to flight. In2013 Ameri-
can Control Conference (ACC), pages 659–673,
2013.

[3] Krause C, Göttlicher C, and Holzapfel F. De-
signing a low cost fixed wing flying testbed.
In Aerospace Electronics and Remote Sens-
ing Technology (ICARES), 2014 IEEE Interna-
tional. IEEE, 2015.

[4] Jategaonkar R. V.Flight vehicle system iden-
tification: A time domain methodology, volume
v. 216 ofProgress in astronautics and aeronau-
tics. American Institute of Aeronautics and As-
tronautics, Reston, Va., 2006.

[5] Simon D. Optimal state estimation: Kalman,
H [infinity] and nonlinear approaches. Wiley-
Interscience, Hoboken, N.J., 2006.

[6] Einicke G. A. Smoothing, filtering and predic-
tion: Estimating the past, present and future. In-
Tech, Rijeka, 2012.

[7] Crassidis J. L and Junkins J. L.Optimal estima-
tion of dynamic systems, volume 24 ofChapman
& Hall/CRC applied mathematics & nonlinear
science. CRC Press, Boca Raton, FL, 2nd ed.
edition, 2012.

[8] Bar Itzhack I, Deutschmann J, and Markley
F. Quaternion normalization in additive ekf for
spacecraft attitude determination. InNavigation
and Control Conference, 12 August 1991 - 14
August 1991.

[9] Stevens B. L and Lewis F. L.Aircraft control
and simulation. J. Wiley, Hoboken, N.J., 2nd ed
edition, 2003.

[10] Brockhaus R, Alles W, and Luckner R.Flu-
gregelung. Springer Berlin, Berlin, 3., neu bear-
beitete aufl. edition, 2010.

[11] Klein V and Morelli E. A. Aircraft system iden-
tification: Theory and practice. AIAA educa-
tion series. American Institute of Aeronautics
and Astronautics, Reston, VA, 2006.

Contact Author Email Address

The corresponding author’s email address is
christoph.goettlicher@tum.de

Copyright Statement

The authors confirm that they, and/or their company or or-

ganization, hold copyright on all of the original material

included in this paper. The authors also confirm that they

have obtained permission, from the copyright holder of any

third party material included in this paper, to publish it as

part of their paper. The authors confirm that they give per-

mission, or have obtained permission from the copyright

holder of this paper, for the publication and distribution of

this paper as part of the ICAS proceedings or as individual

off-prints from the proceedings.

9

mailto:christoph.goettlicher@tum.de


C. GÖTTLICHER, F. HOLZAPFEL

(φ)WGS84 [deg]

48.22

48.221

48.222

(λ)WGS84 [deg]

11.694

11.696

11.698

(h)WGS84 [m]

600

700

800

(uRK)
E
O [m/s]

−20

0

20

(vRK)
E
O [m/s]

−10
0
10
20

(wR
K)

E
O [m/s]

−10

0

10

(bx)B [µT]

−0.02
0

0.02
0.04
0.06

(by)B [µT]

−0.02
0

0.02
0.04
0.06

(bz)B [µT]

0

0.02

0.04

q̄meas [Pa]

−10

0

10

20

t [s]

Fig. 5 Measured (cyan) and reconstructed (red) outputs for the real data case
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