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Abstract  

An identification technique is used to construct 
reduced-order models (ROMs) for the 
incompressible flow past a circular cylinder at 
low Reynolds numbers. The proposed method is 
capable of constructing simple models for both 
the stable and unstable flows at the vicinity of 
critical Reynolds number. Linear ROMs are 
then validated in the time domain by comparing 
their harmonic forcing responses to that of full 
system in direct numerical simulations. Finally, 
the validity of linear ROMs is most clearly 
shown by using them for stability analysis of an 
elastically-mounted cylinder. The instability 
boundaries predicted by the linear dynamics 
model compare reasonably well to that of direct 
CFD/CSD simulations, while the computational 
cost can be reduced by nearly 2 orders of 
magnitude. Moreover, this kind of linear ROMs 
can also be utilized to feedback controller 
design and active flow control in further 
research. 

1  Introduction 

Fluid flow past a stationary circular cylinder 
becomes unstable beyond ~ 47Re [1]: For a 
subcritical control parameter 47Re , the flow is 
steady and symmetrical; while for supercritical 
conditions 47Re , vortex begins to shed 
periodically at the cylinder wake, and causes the 
cylinder to experience unsteady aerodynamic 
forces. An elastically-suspended cylinder may 
undergo vortex-induced vibrations as a result of 
this unsteadiness. Under certain conditions, 
vortex shedding frequency may be synchronized 
with the vibration frequency, which is referred 
to as lock-in or synchronization. For a 
comprehensive review of the research on 

various aspects of vortex induced vibration one 
can refer to Sarpkaya [2], Williamson & 
Govardhan [3], and Bearman [4]. 
       Almost all the investigations of VIV in the 
past have been conducted for crRe Re , where 

crRe is the critical Reynolds number for a 

stationary cylinder. However, recent studies by 
Cossu & Morino[5] and Mittal &Singh[6] indicate 
that vortex shedding and self-excited vibrations 
of the cylinder are possible for crRe Re .Cossu 

& Morino conducted a global stability analysis 
of the aeroelastic system and found that crRe for 

a cylinder with fluid-to-solid density ratio larger 
than 1/70 is less than half that of the stationary 
structure case. Mittal & Singh investigated 
vortex shedding of an elastically mounted 
cylinder at subcritical Re by using direct 
numerical simulation method. They found that 
self-excited oscillations, accompanied by vortex 
shedding, are possible at Re as low as 20. 
However, direct numerical simulation of vortex 
induced vibrations is often insufficient in itself 
to address complex physics and is far too 
computationally expensive to be used in various 
multi-disciplinary settings, including control 
model synthesis, multi-variable optimization, 
and stability prediction (Lucia et al. [7]). 
      In the present work, we focus on 
constructing simple, linear aerodynamic models 
for the cylinder wake flow, which are useful for 
aeroelastic stability analysis of VIV at low 
Reynolds numbers, and which can also be 
utilized for feedback controller design in future 
research. Based on such linear models, 
computational cost of aerodynamic loads can be 
reduced significantly and linear control theory 
can be used to design robust controllers, which 
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can give rise to improved closed-loop 
performance.      
    The two most used Reduced-Order methods 
are: The proper orthogonal decomposition (POD) 
and system identification method. POD 
provides a tool to construct a model based on an 
optimal basis required to represent a dynamical 
system. It has been successfully applied to many 
engineering and scientific problems[8-13]. For 
system identification method, both the integral 
model, such as the Volterra series, and the 
difference model, such as the autoregressive 
with exogenous input (ARX) model can be used. 
The fist-order Volterra series model and ARX 
model are linear models in which the 
aerodynamic load is proportional to the 
structural motion with the assumption of small-
amplitude vibrations. In our research group, 
ROMs based on ARX have been applied to 
aerodynamics modelling, aeroelastic stability 
analysis and controller design [14]. Once the 
model is identified, it is used in place of the 
CFD solver in the coupled aeroelastic system to 
predict the structural response.       
     However, the reduced-order method 
mentioned above are mostly applicable to stable 
flows. For unstable flows, Illingworth [15] have 
pointed out that this is challenging for two 
reasons: First, the impulse response of an 
unstable system is unbounded, meaning that 
some standard techniques (such as balanced 
truncation) cannot be used; second, the growing 
amplitudes of the unstable modes will 
ultimately give rise to nonlinear, limit-cycling 
state, which is certainly not linear. 
      In this paper, we proposed a reduced-order 
modeling technique for the unstable flow past a 
circular cylinder. The idea is to perform data 
training on the steady-state base flow in the 
linear regime. then the ROMs are validated in 
the time domain by comparing their predicted 
time responses with that of direct numerical 
simulations. At last, the ROMs are utilized for 
stability analysis of an elastically-suspended 
cylinder. 
 

2  Numerical method  

2.1 Navier-stokes equations  

The full compressible Navier–Stokes equations 
are utilized to simulate the essentially two-
dimensional incompressible laminar flow past a 
circular cylinder at low Reynolds numbers. The 
Mach number is very small, and is taken to be 
Ma=0.1.The integral conservation governing 
equations are given as follows: 

 ( , ) ( )griddV dS dS
t   


 

   Q F Q V n G Q n
       (1) 

     The popular cell-centered finite volume 
method is used in our numerical simulations. 
The spatial discretization is performed on a 
standard collocated grid using Ausm+-up 
scheme. Dual-time stepping method is chosen 
for time integration. A no-slip wall boundary 
condition  is applied to the cylinder surface. The 
far field boundary is assigned a non-reflective 
boundary condition to ensure that the 
disturbance generated by the object is not 
returned within the flow field. Fig.1 depicts the 
domain discretization with a close up view of 
the hybrid grid used in this study near the inner 
boundary. Note in particular a fine mesh closer 
to no-slip boundaries encompassing the circular 
cylinder. 
 

 
(a) 

  
(b) 

Fig.1. (a) Hybrid grid used in this paper, (b) close-up 
view of the hybrid grid 
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2.2 Cylinder motion equation 

The rigid cylinder is free to vibrate in the 
transverse direction and the governing equation 
of cylinder motion is:  

        2 2
4 (2 ) L

n n

C
h F h F h

M
  


               (2) 

Here， is the structural damping coefficient, 
which is set to zero in this study. The non-
dimensional natural frequency and non-
dimensional mass of the cylinder are defined 
as D/n nF f U and 24 / ( )M m D where nf is 

the natural frequency, m is the actual mass of 
the oscillator per unit length and  is the density 

of the fluid. h , h and h denote the normalized 
acceleration, velocity and displacement of the 
cylinder in cross-flow direction. The plunging 
displacement and velocity of circular cylinder 
are normalized by D and U . 1/ nU F  is 

defined as the reduced velocity. A loosely 
coupled solution algorithm based on CFD 
simulation in the time-domain is employed to 
solve the nonlinear FSI problems[16]. This 
algorithm only needs to solve the aerodynamic 
loads once at each physical time step . 

3 Unsteady aerodynamics modeling for FSI 

We are interested in finding linear models for 
the cylinder wake flow directly from simulation 
data. For subcritical Re, the flow is stable, linear 
models can be identified directly. However, it is 
difficult to find a linear model for the unstable 
flow at supercritical conditions crRe Re .In this 

paper, we proposed a method for constructing 
reduced-order models for unstable flows by 
performing data training on the steady-state 
base flow. we believe that the flow lies in linear 
dynamics in the initial develop stage from base 
flow to finally nonlinear limit-cycle state.  

3.1 Reduced-order modeling method 

Signal design is the key element in dynamics 
modelling. The frequency coverage of the 
training signal should include the frequencies of 
the modes that need to be excited. The training 
amplitude should not be too large, otherwise, 
the aerodynamic responses would become 

nonlinear. In this paper, a chirp signal with a 
broad band non-dimensional frequency regime 
[0.04,0.20] is used for data training , as shown 
in fig.2. 

t

h/

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-0.02

-0.01

0

 
Fig.2. Training signal 

       The flow is perturbed by this prescribed 
plunge or rotational motion of the cylinder and 
the aerodynamic responses can then be 

computed by the CFD solver proposed in §2. 
The discrete-time-difference-equation is used to 
find a linear map between the input and output 
of the system, shown as follow: 

      
-1

1 1

( ) ( ) ( )
na nb

a a
i i

k k i k i
 

    i iy A y B u        (3) 

Where y is the output vector of the system, u is 

the input vector of the system. iA and iB are the 

constant coefficients to be estimated, na and 
nb are the delay orders determined by the user. 
For the current one-input-one-output model, 

[ ]hu or [ ]u , and [ ]LCy .  

We define a state vector ( )kax as follow:  

           
T

( ) [ ( 1), ( ),

( 1), , ( 1)]

a a ak y k y k na

u k u k nb

  

  

x 


           (4) 

Then the state–space form for the discrete–time 
aerodynamic model can be described as:     

            
( 1) ( ) ( )

( ) ( ) ( )

a a a

a a a

k x k k

k k k

   


 

x A B u

y C x D u

 
               (5)  

To couple with the structural equations, the 
discrete-time state-space equation is then 
converted into the continue-time state-space 
form, as shown in Eq. (6): 

              
( ) ( ) ( )

( ) ( ) ( )
a a a a

a a a

t t t

t t t

 
  

x A x B u

y C x D u


 (6)
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             (a) Re = 45                                                     (b) Re = 60 

                                      Fig.3. Identified results under the plunge training motion of circular cylinder 
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           (a)Re=45                                                           (b) Re=60   

        Fig.4. Identified results under the rotational training motion of circular cylinder 
 

3.2 Identified results 

Using the prepared input-output data from direct 
numerical simulations, linear ROMs are then 
constructed using the system identification 

method proposed in § 3.1. As an example, 
Identified results of 45Re  and 60Re  are 
shown in figs. 3 and 4. The delay orders are set 
to be na=nb=100 for high numerical accuracy. 
      It can be seen that the results predicted by 
ROMs agree well with those computed by the 
CFD solver at each Reynolds number, which 
shows that ROMs captured the dominant  
dynamics of both the stable and unstable flows 
past the cylinder at low Reynolds numbers. 

3.3 Validation of the ROMs  

     In this section, the ROMs are validated in the 
time domain by comparing their harmonic 
forcing responses with that of full system in 
direct numerical simulations. The harmonic 
forcing signal is in the form as follow: 

                       sin(2 )h A F t                     (7) 

where A is the oscillation amplitude of cylinder 
and F is the reduced frequency of forced 
vibration. 
      Figs.5 and 6 present the time histories of CL 
of a transversely oscillating cylinder predicted 
by ROM and CFD at two typical reduced 
frequencies 2 0.5F  and 2 0.8F  . Figs.7 
and 8 present the compared results of a 
rotationally oscillating cylinder. As can be seen, 
in the case of subcritical Reynolds number 
Re=45, the ROM predictions almost exactly 
match those calculated by the direct numerical 
simulations; On the other hand, in case of 
supercritical Reynolds number Re=60, the ROM 
also gives surprisingly good predictions for the 
initial development stage of the original system. 
As expected, for longer time, the growing 
amplitude of lift coefficient give rise to 
nonlinear dynamics and the solutions diverge to 
nonlinear limit-cycling states which are not 
captured by linear models. 
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            (a) 0.025sin(0.5 )h t                                (b) 0.025sin(0.8 )h t  
Fig.5. Comparisons of time responses of a transversely oscillating cylinder at Re=45 
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       Fig.6. Comparisons of time responses of a transversely oscillating cylinder at Re=60 
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Fig.7. Comparisons of time responses of a rotationally oscillating cylinder at Re=45 
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Fig.8. Comparisons of time responses of a rotationally oscillating cylinder at Re=60 
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4 Application to aeroelastic stability analysis 

      The focus of this paper is on constructing 
simple, linear aerodynamic models for the 
cylinder wake flow which are useful for 
aeroelastic stability analysis. With this in mind, 
the linear models are now tested by using them 
for aeroelastic stability analysis of an 
elastically-suspended cylinder at low Reynolds 
numbers. 

4.1 ROM-based Aeroelastic Model  

The cylinder is free to vibrate in the transverse 

direction. By defining a state vector [ , ]T
sx h h  , 

the cylinder motion equation (2) is then 
transformed into state-space form: 

             
( ) ( ) ( )

( ) ( ) ( )
s s s s a

s s s a

x t A x t qB y t

h t C x t qD y t

 
  


             (8) 

where: 

2

0 1

(2 ) 4s
n n

A
F F  

 
    

,   
0

1sB
 

  
 

 

    1 0sC  ,     0sD  ,    
2

q
M

  

By defining the state vector [ , ]as s ax x x  and 

coupling the structural state equations (8) with 

aerodynamic state equations (6), we get the state 

equations and output equations for the coupled 

system as follows: 

             ( ) ( )t t FS FS FSx A x                      (9) 

      ( ) ( )h t t S FSC 0 x                  (10)                                                     

Where: 

s s s s s a
as

a s a

A q B D C q B C
A

B C A

   
  
 

 

Now, the ROM-based aeroelastic model for an 
elastically-suspended cylinder is found. The 
aeroelastic stability problem is then converted 
into solving and analyzing the eigenvalues of 

asA . The real part of eigenvalue corresponds to 

the growth rate of eigenmode, while the 
imaginary part correspond to the circular 

frequency which is equal to 2 times the 
eigenfrequency of eigenmode. 

4.2 Effect of natural frequency   

The ROM-based aeroelastic model is now 
applied to the stability analysis of VIV at a 
subcritical Reynolds number 33Re  . The effect 
of natural frequency nF on the stability 

characteristics of the aeroelastic system is 
studied in this section. 
         Fig. 9 shows the eigenvalues of the 
aeroelastic system varying with nF at different 

mass ratios. There exist two neutral most 
unstable modes of interest: “the nearly 
structural mode”, renamed here structure mode, 
and the von karmman mode, renamed here wake 
mode. We can see that, the wake mode is 
absolutely stable at the subcritical Re=33. 
However, the interaction between the structure 
mode and the wake mode will eventually lead to 
the instability of the structure mode. It is shown 
that, as the reduced natural frequency nF get 

close to 0.12 (the eigenfrequency of the von 
Karman mode), the root locus of the structure 
mode crosses the imaginary axis into the right 
half-plane, therefore the aeroelastic system will 
become unstable and the cylinder will 
undergoes self-excited oscillations. Generally, 
as the frequency is increased, the intensity of the 
oscillating increases to its maximum lever and 
then decreases. ROM-based aeroelastic model 
clearly shows that the occurring of vortex 
shedding at subcritical Re is essentially due to 
the instability of the structure mode.  
       The instability boundaries predicted by 
ROM-based model agree excellently well with 
that of the direct numerical simulation results. 
With 50M  as an example, the two instability 
boundaries predicted by ROM-based model 
are 0.097n lowerF   and 0.147n upperF   . This is 

confirmed via direct numerical simulations 
shown in Fig.10 where the time responses at the 
vicinity of onset frequencies are compared. As 
can be seen, the time responses calculated by 
ROM-based aeroelastic model are in good 
agreement with that simulated by direct 
CFD/CSD method.  
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     In addition, the effect of M on the instability 
boundaries is also investigated. From fig. 9(a) 
we can see that the range of the coupled 
frequency does not change with M . However, at 
low mass ratios, the instability boundaries of the 
aeroelastic system can be significantly affected 
by M , as shown in fig. 9(b). When 50M  , the 

instability boundaries rarely change with the 
mass ratio of the spring-mass system. This is 
most clearly shown in fig. 23 where the 
instability boundaries varying with M are 
plotted. Good agreement with that of Mittal et al. 
(2005) is observed. 
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Fig.9. Root loci of the open-loop aeroelastic system at different mass ratios ( 33Re  ): (a) root loci 

versus the dimensionless frequency nF ; (b) real part and imaginary part of the root loci. 

 

 

t

h/
D

0 100 200 300
-0.02

-0.01

0

0.01

0.02

CFD/CSD
ROM

Fn=0.087

t

h/
D

0 100 200 300
-0.02

-0.01

0

0.01

0.02
CFD/CSD
ROM

Fn=0.097

t

h/
D

0 50 100 150 200 250 300

-0.04

-0.02

0

0.02

0.04 CFD/CSD
ROM

Fn=0.105    

t

h/
D

0 50 100 150 200

-0.001

0

0.001

CFD/CSD
ROM

Fn=0.159

t

h/
D

0 20 40 60 80 100 120

-0.001

0

0.001

CFD/CSD
ROM

Fn=0.147

t

h/
D

0 50 100 150 200

-0.002

0

0.002

CFD/CSD
ROM

Fn=0.135  
(a)The lower boundary                  (b) the upper boundary 
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Fig.11. Instability boundaries versus the dimensionless mass ratio at 33Re   

 

4.2 Effect of Reynolds number 

Reynolds number has a significant effect on 
the dynamics of the fluid flow and the 
aeroelastic system past a circular cylinder. 
Buffoni[17] found that vortex shedding could be 
triggered under subcritical conditions 
( 25 49Re  ) by transversely forced vibrations 
of the cylinder at specific frequencies. At lower 
Re, no vortex shedding is  observed. Mittal et al. 
(2005) found that self-excited oscillations, 
accompanied by vortex shedding, are possible 
at Re as low as 20 through extensive numerical 
simulations. 

Linear ROMs for several typical Reynolds 
numbers are constructed to investigate the effect 
of Re. Fig.12 shows the root loci of the 
aeroelastic system at various Re . And fig.13 
shows the instability boundaries versus 
the Re for 4.73M  and 50M   . We can see 
that the aeroelastic system is marginally stable 
at ~ 20Re . For 20Re  , no self-excited 
vibrations will be observed at all combinations 
of nF and M , which is consistent with the 

results of Mittal et al. (2005) got by direct 
numerical simulations. However, the efficiency 
of ROM-based aeroelastic model  is nearly 2 
orders higher than that of numerical simulations. 
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                Fig.12. Root loci of the coupled aeroelastic system at different Re  
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 (a) 4.73M                                                (b) 50M   

                       Fig.13. Instability boundaries varying with Re  

 

5 Conclusions 

This paper has focused on founding 
unsteady aerodynamic models for both the 
stable and unstable flows past a circular cylinder. 
From a practical point of view, these linear 
ROMs are useful for aeroelastic stability 
analysis and feedback controller design. For 
subcritical conditions ( crRe Re ), the flow is 

absolutely stable, thus linear models can be 
identified directly using the input-output data 
based on the ARX model. While for 
supercritical conditions ( crRe Re ), the 

unstable flow develops from a linear regime to 
finally nonlinear saturated state. Therefore, 
linear models for the unstable flow can be 
constructed by performing data training on the 
steady-state base flow in the linear regime. 

The linear ROMs are then validated in the 
time domain by comparing their harmonic 
forcing responses to that of the direct numerical 
simulations. The results obtained by the linear 
models show excellent agreement with those 
calculated through direct numerical simulations. 
Moreover, the ROMs capture the dominant 
dynamics over the frequency where the unstable 
von Karman mode is found, which drives the 
design of a feedback controller. Therefore he 
models are capable for model-based controller 
design in future research.  

Finally, the utility of linear models has been 
demonstrated most clearly by using them for 
aeroelastic stability analysis of an elastically- 
suspended cylinder at low Reynolds numbers. 
Once the ROM is constructed, the stability 
analysis of the aeroelastic system varying 

with nF and M can be carried out expeditiously. 

The instability boundaries predicted by ROM-
based aeroelastic model compared reasonably 
well to that of the direct numerical simulations 
and other’s results, while the computational cost 
can be reduced by nearly 2 orders of magnitude. 

The results indicate that the instability of the 
coupled aeroelastic system at subcritical Recr is 
due to the instability of the structure mode. 
Comparing the direct numerical method, linear 
models can provide great insight into the 
underlying mechanism of the occurring of 
vortex shedding as well as the frequency lock-in 
phenomenon in VIV. 
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