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Abstract  

With the development of aircraft, the amount of 

monitoring data becomes larger and larger, and 

the transmission channel bandwidth limitation 

and the onboard computational capability 

limitation become challenges for aircraft 

condition monitoring system. In this study, from 

the view point of aircraft condition monitoring, 

a remote fault diagnosis scheme based on 

compressed sensing is proposed, the monitoring 

data are compressed on-board after acquisition, 

and the compressed data can be either used for 

on-board diagnosis directly, or transmitted to 

the ground for data reconstruction, and later 

used for enhanced diagnosis or preventive 

maintenance. From the view point of 

compressed sensing, a bi-step compression 

method is presented, considering the 

requirements and characteristics of aircraft 

condition monitoring. The effectiveness of the 

proposed method is demonstrated with a 

hydraulic plunger pump, and the results 

indicate that the monitoring data is well 

recovered from the compressed data, and the 

accuracy of fault diagnosis is satisfactory. 

1  Introduction  

Aircraft Condition Monitoring System (ACMS) 

provides operators with performance and trend 

information about aircraft systems, and its data 

can be used for fault detection or diagnosis on-

board, and transmitted in flight to the ground for 

real-time monitoring, or downloaded after flight 

for performance assessment. However, with the 

development of aircraft, the aircraft systems are 

more complex than ever, and the amount of 

monitoring data becomes larger and larger. Thus, 

the transmission channel bandwidth limitation 

(especially for satellite communications) and the 

onboard computational capability limitation 

become challenges for the development of 

aircraft prognostics and health management 

(PHM). 

Nowadays, many data compression 

techniques have been proposed for monitoring 

data compression. Ref. [1] compares different 

direct compression techniques used for 

Electrocardiogram data. Parameter extraction 

methods design a pre-processor to extract 

features from the original signal first and then 

compress the signal based on the extracted 

features. Ref. [2] presents a comparison 

between the performances of neural network 

and linear predictors for near-lossless 

compression of electro-encephalo-graph (EEG) 
signals. Unfortunately, neural network based 

methods require a large amount of computing 

resources, which is difficult to achieve from a 

remote port. Transformation compression 

methods include Fast Fourier Transform (FFT), 

wavelet transform (WT) [3], and Hilbert–Huang 

transform (HHT) [4]. However, with these data 

compression methods, the compressed data 

cannot be used for fault detection or diagnosis 

directly, and a large amount of original data still 

handled by on-board embedded computer. 

The other way is to extract the features on-

board, and then conduct fault diagnosis on-

board based on these features, meanwhile, these 

features are transmitted to the ground. For 

example, Wavelet packet transform (WPT) 
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could be employed as an effective tool for 

description of distribution of signal energy in 

time-frequency domains [5]. Empirical mode 

decomposition (EMD), proposed by Huang et 

al., is a superior approach to decompose 

nonlinear signals to achieve desirable feature 

vectors [6]. A review of advanced time-

frequency analysis methods for machinery fault 

diagnosis is carried out by Feng [7], and some 

performance assessment methods for typical 

mechanical components such as bearings and 

gearboxes are proposed [8]. However, a 

problem is usually arises that the original 

monitoring data cannot recovered from these 

features, and it is hard to support enhanced fault 

diagnosis, preventive maintenance and in-depth 

investigations.  

Fortunately, the emerging compressed 

sensing technique, proposed by Emmanuel 

Candès, Terence Tao, and David Donoho 

around 2004[9, 10], provides effective solutions
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Fig. 1 Architecture of condition monitoring based on compressed sensing 

 to the challenges. Compressed sensing is 

based on the principle that, through optimization, 

the sparsity of a signal can be exploited to 

recover it from far fewer samples than required 

by the Shannon-Nyquist sampling theorem. 

With compressed sensing, on the one hand, the 

original monitoring data are compressed on-

board, and these compressed data can be used 

for fault diagnosis directly, according to 

Calderbank Robert’s research [11], on the other 

hand, the compressed data can be transmitted to 

the ground for data recovery, the recovered data 

are nearly same with original data, and can be 

used for enhanced fault diagnosis, etc.  

The remainder of this paper is organized as 

follows. In section 2, the architecture and the 

methodology is described in detail. In Section 3, 

the effectiveness of the proposed approaches is 

demonstrated by using hydraulic pump 

monitoring data with different faults, and the 

results of experiment are presented and 

discussed. In section 4, a conclusion of this 

research is presented. 

2  Methodology  

The architecture of condition monitoring based 

on compressed sensing is shown in Fig. 1. First, 

the onboard monitoring data are compressed 

with measurement matrix, then, the compressed 

data are used for fault diagnosis onboard 

directly without data reconstruction, based on 

compressed learning method. Meanwhile, the 

compressed data are transmitted to operational 

ground centers or service providers for 

enhanced diagnosis or in-depth investigations 

after signal reconstruction. Since the monitoring 

data is compressed before fault diagnosis 

onboard, the computational resources and 

transmission bandwidth consumption are much 

lower.  
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Since the original data is compressed with 

measurement matrix, the time domain features, 

frequency domain features and time-frequency 

domain features of compressed data are 

completely changed, therefore, for fault 

diagnosis based on compressed data, traditional 

fault diagnosis algorithms, that is, feature 

extraction and then classification, are generally 

useless. Fortunately, in compressed sensing 

framework, machine learning in the 

measurement domain (with compressed data 

directly) is possible[11], a family of matrices 

widely used in compressed sensing, which 

satisfy near isometry property, preserve the 

learnability of original data set. In other words, 

from the machine learning view-point, 

compressed sensing can be regarded as an 

efficient universal dimensionality reduction 

method from data domain in 
n

 to the 

measurement domain 
m

 where m n . If the 

compressed data is measured directly in the 

compressed domain, a classifier that is trained 

based on the compressed data performs almost 

as well as the classifier in the high domain.  

Furthermore, a high compression ratio, is 

beneficial for the data reduction of machine 

learning algorithms. However, if the 

compression ratio is too high, that is, if m  in 
compress

n m  is too little, the original data are 

hardly recovered from the compressed data 

accurately. To reduce the data size of on-board 

fault diagnosis and ensure the data 

reconstruction accuracy, a bi-step compression 

scheme is used in this study, as shown in Fig. 2. 
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Fig. 2 Bi-step Compression Scheme for Monitoring Data 

In bi-step compression scheme, two 

measurement matrices are used for data 

compression. The first-level compressed data is 

transmitted to the ground, and can be used for 

data reconstruction. To minimize the data size 

used for fault diagnosis, the other measurement 

matrix is employed to compress the first-level 

compressed data, and the size of second-level 

compressed data is suitable for common 

classifiers. These re-compressed data can be 

regarded as features, in fact, the computation of 

data compression is less than traditional feature 

extraction, hence, it is more suitable for on-

board fault diagnosis. 

2.1 Compressed sensing and data 

reconstruction 

This section gives a brief introduction of 

compressed sensing, and it is a guidance for 

data reconstruction in the ground monitoring 

center. Compressed sensing is a signal 

processing technique for efficiently acquiring 

and reconstructing data, by finding solutions to 

underdetermined linear systems. This is based 

on the principle that, through optimization, the 

sparsity of a signal can be exploited to recover it 

from far fewer samples than required by the 

Shannon-Nyquist sampling theorem. There are 

two conditions under which recovery is possible, 

the first one is sparsity which requires the signal 

to be sparse in some domain, the second one is 

incoherence which is applied through the 

isometric property which is sufficient for sparse 

signals. Generally speaking, nearly all natural 

signals have concise representations when 

expressed in a convenient basis. In compressed 

sensing, similar to sparse representation, it is 

assumed that a signal can be sparse in some 

domain, therefore, a one-dimensional signal x  

in 
N

 with length N  can be represented as: 
x      (1) 

Where   is a N N  dictionary matrix,   is 

the sparse vector of x , and the sparsity of   is 

 K K N , meaning that there are K  nonzero 

coefficients in  . 

The measurement process can be 

represented as: 
y x     (2) 
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Where   is a M N  measurement matrix 

and y  is a 1M   vector, and K M N . In 

other words, y  is a linear measurement or a 

condensed representation of x . 

For data reconstruction process, y ,   and 

  are known, and   is unknown. By 

substituting Eq.(1) to Eq.(2), the problem can be 

described as: 

CSy A 
 

     (3) 

The last problem is to estimate 


 from 

CSA  and y , later, with dictionary matrix  , x


 

can be estimated. In general, the sparse vector 




 is estimated from the compression signal y  

using the following optimization process: 

1
= arg min ,s.t . CSy A  




   (4) 

Where 
1

  is the 1L  norm of the vector  . This 

convex optimization problem conveniently 

reduces to a linear program known as basis 

pursuit (BP) algorithm, and another well-known 

reconstruction algorithm is the orthogonal 

matching pursuit (OMP). 

2.2 Bi-step compression and fault diagnosis 

For fault diagnosis, we suppose the number of 

patterns is p , include normal and all fault types, 

and these patterns are denoted as 1 2, , , pT T T , 

and each pattern contains s  data segments, the 

length of each data segment is N , represented 

as jT

ix , where 1,2, , , 1,2, ,i s j p  . The 

training matrix N spX R   is composed of 

monitoring data acquired from all patterns: 
1 1 1 2 2

2

1 2 1 2

1 2

, , , , , , ,

, , , , ,p p p

T T T T T

s

T T TT

s s

x x x x x
X

x x x x

 
  
  

  (5) 

Before the training process of classifier, the 

training matrix is normalized: 

  / max maxNX X X
  (6) 

Define the first compression matrix as 

 1

1 1

M N
R M N


  , 1  satisfying restricted 

isometry property (RIP), and 

1 12
1, 1,2, ,T

i i M   . With the first 

compression matrix, the length of training data 

is compressed to 1M  from N , and the first-

level compressed data NCX  is used for 

reconstruction: 

1

NC NX X  
           (7) 

To minimize the size of data used for on-

board fault diagnosis, the first-level compressed 

data is re-compressed with the other 

measurement matrix  2 1

2 2 1

M M
R M M


  , 

and the length of the second-level compressed 

data is 2M , the re-compression process is 

represented as: 

2

NCC NCX X          (8) 

The length of the second-level compressed 

data is much smaller than the original data, and 

can be used for on-board fault diagnosis directly. 

In this study, a radial basis function (RBF) 

neural network is used as fault classifier, based 

on the training matrix, the target matrix of 

training process is 
p spG R  ,  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G G G G

G G G G

G G G G G

G G G G

 
 
 
 
 
 
 
 

   (9) 

Where 0 0,0, ,0

s

G
 
 
  

, and 1 1,1, ,1

s

G
 
 
  

. 

 The RBF neural network C  is trained 

with NCCX  and G . Later, the trained classifier 

C  can be used for fault diagnosis, based on the 

re-compressed monitoring data. 

3  Case study 

In this study, a test rig of hydraulic plunger 

pump, shown in Fig. 3, was tested and analyzed 

to verify the presented method. In the test, two 

common fault types in plunger pump were 

introduced: slipper loose fault and valve plate 

wear fault. Under three kinds of states, 

including normal state, vibration signals were 

acquired from the end face of plunger pump, 
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respectively. The rotational speed was 528r/min, 

and the sampling rate was 1000Hz. 

 

Fig. 3 Hydraulic plunger pump test rig 

3.1 Data compression and reconstruction 

Data reconstruction is conducted in the 

monitoring center, and the original vibration 

data is reconstructed from the first-level 

compressed data. In this study, Gaussian 

random matrix was selected as measurement 

matrix, and the dictionary matrix is a Fourier 

matrix, and data reconstruction is based on 

OMP algorithm. 

In this test, vibration data acquired from 

normal state was used for data compression and 

reconstruction validation. A segment of 

vibration data was acquired from the test rig, 

and the length was 2048N  , as shown in Fig. 7, 

the red curve. Then, the compression ratio of the 

first-level compression was 0.5, and the size of 

the first measurement matrix was 

1024 2048M N   , shown in Fig. 4, the length 

of the first-level compressed data was 

1024M  , shown in Fig. 5. Since the size of 

dictionary matrix is determined by the length of 

original data, the size of dictionary matrix used 

in this case was 2048 2048N N   , shown in 

Fig. 6. 

 
The first measurement matrix 1024*2048

 
Fig. 4 The First Measurement Matrix 
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Fig. 5 The First-level Compressed Data-Normal 

FFT dictionary matrix 2048*2048

 
Fig. 6 The Dictionary Matrix 
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Fig. 7 The Original Data and The Reconstructed Data-

Normal 
The reconstructed data is shown in Fig. 7, 

the blue curve. The reconstruction results 

indicate that the reconstructed data were nearly 

same with the original data, and it suggests that 

we can use the reconstructed data to conduct 

enhanced fault diagnosis, preventive 

maintenance or in-depth investigations. 

3.2 Fault diagnosis based on bi-step 

compression 

Since the fault classifier was RBF neural 

network, the training matrix and test matrix 

should be constructed before fault diagnosis. In 

this case, the data were acquired based on 
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sliding window method, and the interval of 

sliding window is =4 , the length of each data 

segment was 512N  , and the number of 

patterns was 3p  . In training matrix, each 

pattern contains 192Trs   data segments, and in 

test matrix, each pattern contains 64Tes   data 

segments. The arrangement of training matrix 

and test matrix is shown in Table 1.  
 

Table 1 The Arrangement of Training Matrix and Test 

Matrix 

Pattern Normal valve plate 

wear fault 

slipper loose 

fault 

Pattern 

Number 

1 2 3 

Training 

matrix 

column 

number 

1~192 193~384 385~576 

Test matrix 

column 

number 

1~64 65~128 129~192 

 

As previously mentioned, the ratio of the 

first-level compression was 50%, the size of the 

first compression matrix is 256 512

1 R   , and 

Gaussian random matrix was selected as the 

compression matrix (or measurement matrix), 

after the first-level compression, the size of 

training matrix was compressed to 

   1 * 256 192*3Tr
M s pNCX R R

 
  , as shown in Fig. 8. 

s
Tr

*p=192*3

M
1
=

2
5
6
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Fig. 8 The First-level Compressed Training Matrix 

Later, several second-level compression 

matrices were designed to validate the accuracy 

of fault diagnosis based on bi-step compression. 

The sizes of these Gaussian random matrix were 
32 256

21 R  
，

16 256

22 R  
，

8 256

23 R  
，

7 256

24 R  
，

6 256

25 R  
，

5 256

26 R  
，

4 256

27 R  
，

3 256

28 R  
, these second-level 

compressed training matrices are shown in Fig. 9 

and Fig. 10. with these second-level compression 

matrices, the length of training matrix and test 

matrix were compressed to 

2 32,16,8,7,6,5,4,3M  , respectively. Then, 

these second-level compressed data were used 

to train and test the fault classifier.  
M

21
=32

M
22

=16

M
23

=8

M
24

=7

   
Fig. 9 Second-level Compressed Training Matrices (1) 

M
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M
26

=5

M
27

=4

M
28

=3

 
Fig. 10 Second-level Compressed Training Matrices (2) 

Here, RBF neural network were selected as 

fault classifier, the parameters of neural network 

were: the mean squared error goal was 0.001, 

the spread of radial basis was 3, and the 

maximum number of neurons was 240. 

Based on the test matrix arrangement and 

pattern number listed in Table 1, the fault 

diagnosis results are shown in Fig. 11 and Fig. 12. 
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Fig. 11 Fault Diagnosis Results based on Second-level 

Compressed Data (1) 
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Fig. 12 Fault Diagnosis Results based on Second-level 

Compressed Data (2) 

Fault diagnosis time consumption and 

accuracy were shown in Fig. 13 and Fig. 14. The 

number of horizontal axis (1~8) represent the 

different tests based on the different second-

level compression matrix (from left to right, 

2 32M 
， 2 16M 

， 2 8M 
， 2 7M 

，

2 6M 
， 2 5M 

， 2 4M 
， 2 3M 

). It can 

be seen from Fig. 13, the time consumption of 

fault diagnosis decreases with the increase of 

second-level compression ratio, and the results 

indicated that based on bi-step compression 

method, the computational resource were 

decreased significantly. However, with the 

increase of second-level compression ratio, the 

fault diagnosis accuracy also decreased, 

nevertheless, the accuracy is higher than 95%, 

when the length of second-level compressed 

data is longer than 2 6M  , generally speaking, 

it is acceptable for on-board fault diagnosis. 
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Fig. 13 Time Consumption of Neural Network Training (s) 
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Fig. 14 Fault Diagnosis Accuracy 

4 Conclusion  

This study presents a compressed sensing based 

fault diagnosis scheme. The monitoring data are 

acquired and compressed on-board, and these 

compressed data can be used for fault diagnosis 

directly, or transmitted to the ground monitoring 

center for reconstruction. Compared with 

commonly used prognostics and health 

management scheme, the advantage of the 

proposed scheme is the size of data to be 

processed on-board or transmitted via wireless 

communication is relatively low, meanwhile, 

original data can be well reconstructed from the 

compressed data, these features make it very 

adept in aircraft condition monitoring. However, 

one of the requirements for data reconstruction 

process is the enormous computational 

capability, and the data reconstruction is a time-

consuming process, fortunately, these 

requirements can be satisfied based in 

computing center on the ground. 

Future works mainly concentrate on the 

fault diagnosis algorithm design based on 

compressed data, and the on-board compression 

matrix construction, considering the 

characteristics and requirements of aircraft 
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condition monitoring system. Meanwhile, data 

from other aircraft systems will be used to 

validate and improve the fault diagnosis 

scheme/algorithms based on compressed 

sensing. 
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