
                      
 

1 

 

 
Abstract  

This paper presents optimal closed-form 
guidance laws for two-missile cooperative attack 
missions. Two missiles are dynamically 
decoupled and they cooperate to optimize a 
common cost function under a coupled constraint 
on terminal velocity vectors. Based on the linear 
quadratic tracking theory, we obtain the closed-
form impact angle control guidance law which 
satisfies the coupled impact angle constraints of 
the two missiles. We show that the approach can 
be easily extended to multiple missile cases. The 
performance of the proposed guidance law was 
verified via nonlinear simulation cases with a 
variety of engagement scenarios.  

1 Introduction  

In recent times, along with the development of 
missile techniques, missile defense systems have 
made significant progress. Most of the important 
strategic military assets are well equipped with 
those defense systems. For example, battleships 
are equipped with advanced close-in weapon 
system(CIWS). CIWS is a formidable naval 
point-defense weapon for detecting and 
destroying short-range incoming missiles and 
enemy aircraft which have penetrated the outer 
defenses. Designed to engage anti-ship cruise 
missiles and fixed-wing aircraft at short range, it 
automatically engages functions which are 
usually performed by separate, independent 
systems such as search, detection, threat 
evaluation, acquisition, track, firing, target 
destruction, kill assessment and cease fire. The 

fast-reaction and rapid-fire defense systems 
dramatically drop the survivability of the 
missiles at the terminal phase. Therefore, it has 
been a challenge for a single missile to 
accomplish its missions [1-3]. 
 Cooperative attack with multiple missiles is 
devised as a countermeasure against the 
formidable defense systems. For the reason that 
CIWS is a point-defense, a defense of a single 
object or a limited area, multiple missiles in a 
simultaneous attack is much more effective than 
a consecutive attack in that, other missiles can 
penetrate the formidable defense system while 
one missile encounters it. Therefore, in 
cooperative attack the most two important factors 
are the impact time and the impact angle. In 
controlling time for simultaneous attack, 
synchronization of the time-to-go is essential. 
[1][2] have proposed impact-time-control 
guidance(ITCG) law and cooperative 
proportional navigation(CPN) law that can 
synchronize the impact time of multiple missiles. 
To control the impact angle there have been lots 
of studies and applications such as Impact Angle 
Control Guidance(IACG) [4-6]. Also some 
studies have been done to control the impact time 
and angle together(ITACG) [3]. 
In a view point of communication network 

ITCG is a guidance law which can control the 
predetermined designated impact time which 
implies the guidance has an open loop structure 
without communication. CPN is a guidance law 
which decreases the variance of times-to-go of 
multiple missiles during the homing which 
implies multiple missiles attack a single target 
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simultaneously in a closed loop structure with a 
communication network. As compared with 
impact time control guidance laws, for impact 
angle control guidance laws it is not common to 
construct a closed loop structure with a 
communication network. In other words, those 
guidance laws apply the optimal guidance laws 
derived from a single missile system to 
individual missile. But with the development of 
technology in the field of modular data links the 
creation of a multi-link communication network 
may be established between missiles and the 
launch platform. And the future prospect of such 
ad-hoc networks with many existing guidance 
laws makes it possible to consider the 
cooperative strategies of multiple missiles [7]. 

In this paper we consider optimal guidance laws 
for cooperative attack of two missiles. Two 
missiles cooperate to optimize a common 
objective which couples the terminal vertical 
velocities of the two missiles as a soft constraint. 
Firstly, a Linear Quadratic Regulation(LQR) 
problem is considered in which the cost function 
is designed to minimize the sum of vertical 
velocities at the terminal time with the object of 
enhancing the survivability. Secondly, a Linear 
Quadratic Tracking(LQT) problem is considered 
to control the impact angle of the two missiles 
with a desired angle. Then each guidance input 
consists of both missiles' state which implies that 
the missiles should be connected with a 
communication network. In that point of view 
this paper assumes the missiles are fully 
connected with a communication network in 
other words this is a class of centralized control 
problem [9-11]. 

This paper is organized as follows: Section 2 
describes the optimal guidance law for a single 
missile as a preliminarily, based on [8]. In section 
3 the methodology in section 2 is extended to two 
missiles system. Here we propose the two missile 
impacted angle control guidance(IACG) law and 
show this approach has the scalability to be 
extended to multiple missiles. Section 4 shows 
simulation results of the proposed guidance law. 
Finally, section 5 presents the conclusion. 

 
 
 

2 Optimal Guidance Law for a Single Missile  

Modern guidance techniques are mainly based 
on optimal control theory. Proportional 
Navigation guidance, namely, PN which is in 
widespread use obtained from Linear Quadratic 
Regulator problem where the cost is the missile's 
control effort with a zero miss distance imported 
as a terminal condition. And the perfect intercept 
guidance, namely, Optimal Rendezvous, is 
obtained with an additional terminal condition to 
minimize the terminal relative vertical velocity 
between the missile and the target. The optimal 
guidance laws are derived by calculus of 
variation, which gives the necessary condition 
for optimality. 

 
 
 
We shall make the following assumptions: 
1) The missile-target conflict is two-dimensional 

in the horizontal plane. 
2) The speed of the missile m and the target t 

are constant. 
3) The trajectories of m and t can be linearized 

around their collision course. 
 
The geometry for deriving the missile guidance 

general solution is depicted in Fig.1. The nominal 
closing velocity  is given by 

 	 (1)

Where  and  are the velocities and  
and  are the nominal heading angles of the 
missile and the target respectively. And then the 
nominal terminal time is given by 

 (2)

Where R(t) is the nominal length of the nominal 
line-of-sight, LOS, at time t and  is the initial 
time. Let y be the relative vertical distance 
between the missile and the target from the LOS 
namely, ≡ . Then we can find the 

Fig. 1 Single missile-target guidance geometry 
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expression for the LOS angle and its rate of 
change, where LOS is  

 (3)

	 (4)

Allowing the control input to be the normal 
acceleration, we can obtain the following state-
space equation where the state vector x and 
control input u are defined as 

	 	 	  (5)

 

0 1
0 0

 0
1

 
(6)

2.1 General Solution 

The cost function of the optimal control 
problem where the object is to minimize the 
missile's control effort is the following:  

2 2
1
2

 (7)

Where 0  are the penalty imposed by the 
miss distance and 0  to minimize the 
terminal vertical velocity. Then the Hamiltonian 
is defined by the scalar 

 (8)

Where  and  is a costate vector. 
The first-order necessary condition for optimality 
are the following costate equation 

∂H
  

	 0	 	 	 (9)

The terminal conditions are 

 

  
(10)

Then the optimal control input is 

 (11)

By substituting the optimal control input to the 
system (6) and integrating it yields 

1
2

1
2 3 3

1
2

1
2

1
2

 

(12)

Evaluating them at  we can get the 
transition matrix of  from  to  

,  (13)

Then we can solve the resulting linear algebraic 
equations for the unknown terminal value  
and thus arrive at an expression for  by 
replacing the arbitrary  by : 

 

	 	 	 	 	 	 1 0
0

,

  

(14)

Where time-to-go is defined as  and 
the optimal feedback gains are 

bτ 1
2 1

12 3 1	
	  

1
3

12 3 1	

 

(15)

Notice that the problem can be solved by 
employing the associated Riccati equation: 

 (16)

With the terminal conditions 

0
0

 

Then the optimal strategy takes the form 
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	  (17)

2.2 Proportional Navigation Guidance(PNG) 

For Proportional Navigation Guidance(PNG)  
the terminal condition is the zero miss distance 
which can be obtained by taking → ∞  and 

0  which is the velocity weighting factor. 
Then from Eqn. 15 the optimal feedback gains 
are 

3
	 	

3
 (18)

Then the optimal control input is as follow, 
where N=3 is the optimal navigation constant 

	 	   

	 	 	 	  
(19)

2.3 Optimal Rendezvous(OR) 

For perfect intercept guidance, namely, Optimal 
Rendezvous(OR), the terminal conditions are 
zero miss distance and minimum vertical 
velocity, which can be obtained by taking ,
→ ∞  in Eqn.15. Then the optimal feedback 

gains are 

6
	 	

4
 (20)

That gives the optimal control input as 

	 	 	 	 	 	   

4
2

 
(21)

3 Optimal Guidance Law for Two Missiles 

In this section, the optimal guidance solution for 
a single missile described in section 2 is extended 
to two missiles. 

The geometry for deriving two missiles 
guidance general solution is depicted in Fig. 2. 
As the two missiles are dynamically decoupled 
the assumptions and geometric parameters 
defined at section 2 are still valid to each missile 
identically. 

 
Fig. 2 Two missiles-single target guidance geometry 

One additional assumption is that the closing 
velocity and the initial lengths of two missiles are 
well defined, for instance identical, so that we 
can handle the two missiles in an equivalent time 
horizon given in Eqn. 2. Then by allowing each 
control input to be the normal acceleration for 
each missile, we can obtain the extended state-
space equation 

	  

u u  
(22)

 

0 1
0 0

0 0
0 0

0 0
0 0

0 1
0 0

, 

0
1

0
0

0
0

0
1

(23)

3.1 Linear Quadratic Regulation Problem 

In LQR problem the object is to minimize the 
sum of vertical velocities of two missiles in the 
terminal time to enhance the survivability at the 
terminal phase. For that the cost function is 
designed as 

2

2
 

	 	

(24)

Notice that at the terminal time, the velocities of 
the two missiles are coupled and they have to 
cooperate to minimize the cost function. By 
following the same methodology of Eqn. (8)-(13) 
we can obtain the transition matrix of  from  
to  

,  (25)
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Then we can arrive at an expression of  by 
replacing the arbitrary  by  

1 0 0
0 0 1

0
0

0 0
0

0 0
0

0
0

Φ t .

 

(26)

Where the optimal feedback matrix ∈ 	  
can be obtained by employing the associated 
Riccati equation, Eqn. 16, with the terminal 
condition  

0
0

0 0
0

0 0
0

0
0

 

3.1.1 Two missiles OR  
In PNG law the weighting factors of the soft 

constraint in cost function are → ∞,  0 
which does not handle the terminal velocity 
constraint. For that reason, two missiles are not 
cooperative and follow the PN guidance 
independently. 

In OR law the weighting factors are , → ∞ 
for the purpose of obtaining zero miss distance 
and zero sum of vertical velocities respectively. 
Such approach gives the feedback gain 

9
2

	
7
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3
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(27)

And then the optimal control strategies are 

7
2

1
2

	

7
2

1
2

	
(28)

Notice that the velocity constraint 
0 provides a symmetric impact for the 

two missiles about the -axis and the impact 
angle of each missile depends on the property of 
that. And the worst case is the singularity that 
both missile’s impact angle can be 0. 

3.2 Linear Quadratic Tracking Problem 

 
Fig. 3 Two missiles-single target guidance geometry for 
impact angle control 

In LQT problem the objective is to control the 
impact angle of two missiles for the purpose of 
not only enhancing the survivability but also 
maximizing the destructibility. For that the 
geometry is given as Fig.3. As the trajectory of 
each missile can be linearized around their 
collision course, the relation of the heading 
angle( , velocity(  and the state   are as 
follow:  

≅  (29)

Assume the velocity of each missile is identical 
to  then we can obtain the relation of the 
desired impact angle( ),  and state  as 

≅  (30)

Then by defining a new parameter  
we can design the cost function to control the 
impact angle while minimizing the control 
efforts as 

2

2
1
2 1

2
2
2

0

 

(31)
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In LQT problem it is known that the optimal 
strategy consists of the feedback and feedforward 
terms. Therefore the transition of state  can be 
expressed  

, 	 		 (32)

Where the transition matrix ,  and the 
forced response  are given as 

,  

	 	 	 	 	 	

 

   

(33)

Then we can arrive at an expression of  
which is given as a linear combination of  and 

 

 

Rewriting it in terms of  and  it gives 

1 0 0
0 0 1

0
0

0 0
0

0 0
0

0
0

Φ t .

0 0
0 0

	  

Kx t Vr  

(34)

Where the optimal feedback gain is ∈
	 and the feedforward gain is ∈ 	 . 

3.2.1 Impact angle control guidance(IACG) 
For two missile IACG law we take the 

weighting factors , → ∞ to obtain both the 
zero miss distance and the desired impact angle. 
Then the feedback and forward gains are 

9
2

	
7
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(35)

V
1

V
1

 

And then the optimal control strategies are 

7
2

1
2

1
	

7
2

1
2

1
	

(36)

Notice that if the closing velocities, the line-of-
sights and the rates of the two missiles are 
identical then the optimal feedback gains follows 
that of the PN guidance law. 

Furthermore, one advantage of this approach is 
the scalability that it can be easily extended to 
multiple missiles. Consider there are  missiles 
then the state space equation is 

 

, … ,   
(37)

here ∈  where  is defined in Eqn. 6 
and  ∈  is a column vector with all 
elements are zero except the 2  element is 1 
for 1,2, … , n . And the state vector  and 
control input  are well defined with the same 
approach with Eqn. 22. To control the impact 
angles of n missiles it is necessary to constrain 

 missile’s vertical velocity about that of 
1  and 1  for 2,… , 1 . 

Notice that the two missile case is the special 
case where the missiles are at 1 and  
respectively. For that concept the cost function 
can be designed as [9] 

2 2

1
2

	
(38)

The result can be obtained by following the same 
methodology but depends on the number of 
missiles, . 
 
 
 
 



 

7  

OPTIMAL GUIDANCE LAW FOR COOPERATIVE ATTACK OF
TWO MISSILES WITH COUPLED TERMINAL VELOCITY CONSTRAINT

4 Simulation Results 

 In this section the performance of the IACG law 
is investigated. Nonlinear simulations are 
performed with a simple point-mass model is 
applied. That is 

   sin  

   cos  

/  

It has been used and proven useful in a wide 
range of literature from classical optimal 
guidance problems [9]. 
 The simulations are implemented for 
cooperative salvo attack scenarios. For two 
missile IACG the cases of launched from a single 
platform and different platform are implemented 
with some interpretation on the effect with the 
initial heading angles. 

4.1 Two missile IACG 

Table 1 Scenario parameters 

 γ t  
°  

V t  
m/s  

Launch position 
x, y  

Case 1 (0, 0) 300 (0, 0), (0,0) 
Case 2 (30, 15) 300 (0, 0), (0,0) 
Case 3 (0, 0) 300 (0, 2000), (0,-2000)

 
Three cases of initial conditions are considered 

which are listed in Table 1 and the desired impact 
angles [60°, 90°, 120°, 150° , [30°, 60°, 90°], 
90°, 120°, 150°, 180°  for each case 

respectively.   
Fig.4, 5 show the trajectories of two missiles of 

IACG law for case 1 in a full scale and 
concentrated on the terminal phase respectively. 
Fig. 6 shows the guidance commands of the 
proposed guidance law, and Table 1 shows the 
final impact angles of the missiles. The guidance 
commands are linear before the impact and 
increases its magnitude at the terminal phase so 
that it can yield the desired impact angle. The 
results show that two missiles impact the target 
properly with the desired impact angle. 

 
Fig. 4 Trajectories for case 1 in a full scale 

 
Fig. 5 Trajectories for case 1 at terminal phase 

 
Fig. 6 Guidance command histories for case 1 

Table 2 Impact angles of missiles in case 1  

°  60 90 120 150 

° -30 -45 -60 -75 

°  30 45 60 75 

 
Fig. 7, 8 show the trajectories of case 2. And Fig. 

9 and Table 2 show the guidance commands and 
the imact angles for case 2. It is obvious that the 
error of impact angle increases for larger desired 
impact angle along with larger guidance 
command which can result in a severe miss 
distance if there is a command limit.  
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Comparing case 1and 2 the trajectories of case 
1 are symmetric to x-axis that implies the two 
missiles are solvable in a identical time horizon 
which is mentioned at Section 3 while in case 2 
the time horizons are different for each missile. 
For that more practical appraoch should be 
considered to handle such problems. 
Fig. 10, 11 show the trajectories of case3. Fig. 

12 shows the guidance command and the impact 
angles are listed in Table 3. 

 
Fig. 7 Trajectories for case 2 in a full scale 

 
Fig. 8 Trajectories for case 2 at terminal phase 

 
Fig. 9 Guidance command histories for case 2 

Table 3 Impact angles of missiles in case 2 

	 °  30 60 90 
°  -27.5 -44.75 -65.3 
°  2.75 19.86 40 

The results show that launching from different 
platforms is more effective in the view point of 
that more severe desired impact angles are 
obtainable properly with less guidance 
commands which is intuitive. In this case for 
180 °  attack two missiles make a big turn to 
secure a feasible path to impact. 
 
 
 

 
Fig. 10 Trajectories for case 3 in a full scale 

 
Fig. 11 Trajectories for case 2 at terminal phase 

 
Fig. 12 Guidance command histories for case 3 

Table 4 Impact angles of missiles in case 3 

°  90 120 150 180 
° -45 -60 -75 -90 
° 45 60 75 90 

0 2000 4000 6000 8000 10000 12000

X(m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
104

target
missile1
missile2

Y
(m

)
u(

m
/s

2 )

0 2000 4000 6000 8000 10000 12000

X(m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
104

target
missile1
missile2

7000 7500 8000 8500 9000 9500 10000 10500

X(m)

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000
target
missile1
missile2

0 5 10 15 20 25 30 35 40

t(s)

-100

-80

-60

-40

-20

0

20

40

60

80

100
missile1
missile2



 

9  

OPTIMAL GUIDANCE LAW FOR COOPERATIVE ATTACK OF
TWO MISSILES WITH COUPLED TERMINAL VELOCITY CONSTRAINT

5 Conclusion 

 In this paper, a homing guidance problem for 
two-missile cooperative mission is considered. 
We have proposed an essential approach to 
achieve the coupled impact angle constraints of 
multiple missiles. The single-missile optimal 
guidance law was extended to two-missile IACG 
by imposing a cost function with coupled 
terminal velocity constraints. We further show 
that the approach can be easily extended to 
multiple missile cases. The performance was 
investigated via nonlinear simulation cases with 
various impact angle constraints and initial 
conditions. Under mild assumptions the 
proposed law provides satisfactory performance 
for salvo missions under coupled impact angle 
constraints. In future studies, several practical 
issues, such as the time horizon difference and 
the communication limitation, should be 
addressed in order to apply the proposed 
guidance law in more realistic situations. 
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