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Abstract  

In this paper, we propose a theoretical 
framework, referred to as the Extended Local 
Scattering Theory, to study the sound 
generation due to scattering of an oncoming 
Tollmien-Schliching (T-S) wave by a local 
scatter in subsonic boundary layers. In this 
framework, a transmission coefficient, defined 
as the ratio of the T-S wave amplitude 
downstream of the scatter to that upstream, is 
introduced to characterize the effect of a local 
scatter on boundary-layer instability. The 
mathematical formulation is based on the triple-
deck formalism, but in order to accommodate 
the acoustic far field, the unsteady (second-
order) terms in the upper-deck equations, which 
play a leading-order role in acoustic radiation, 
are retained. This approach also includes the 
influence of the radiated sound wave on the 
near-wall hydrodynamic perturbation. Through 
computation, the impacts of a steady local 
suction on the hydrodynamic instability and 
acoustic radiation are studied.  

1  Introduction 

When a boundary-layer instability mode 
propagates through a region of streamwise rapid 
distortion, the ensuing scattering causes two 
consequences of physical interest. First, the 
amplitude of the instability mode may be 
suppressed or energized, through which the 
instability and transition is influenced. Second, 
if the flow is compressible, a sound wave of 
substantial intensity can be radiated to the far 
field. 

This paper focuses on this issue by 
extending the recently developed Local 
Scattering framework. The central idea of this 
framework is to treat the abrupt change as a 
scatter, and wave activities in its vicinity as a 
scattering problem, while in the relatively 
smooth regions away from the abrupt change, 
the disturbance evolves as an instability mode. 
Since the mean flow in the smooth regions 
varies slowly along the streamwise direction, 
the evolution of the disturbances can be 
described by the classical linear stability theory 
or parabolised stability equations (PSE). These 
approaches however cease to be valid when the 
perturbations propagate through a rapidly 
distorting mean flow that occurs over a length 
scale comparable with the characteristic 
wavelength of the instability modes. 

The earliest idea of introducing the 
transmission coefficient to characterize the 
impact of a hump on hydrodynamic instability 
was proposed by Wu & Hogg [1]. In that work, 
the governing equations were based on triple-
deck formalism [2, 3], and the analytical 
solution was obtained by assuming the hump to 
be sufficiently small. However, the small hump 
was found to exert a rather weak impact on the 
oncoming T-S wave because the linear limit 
turned out to be a degenerated problem with the 
transmission coefficient being unity to leading-
order approximation, and only by proceeding to 
the second order in the analysis is a non-unity 
transmission obtained. 

In order to solve the problems for large-
roughness cases, Wu & Dong [4] recently 
proposed the first version of the Local 
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Scattering Theory, in which a complete theory 
and numerical approach to describe the impact 
of a scatter on hydrodynamic instability were 
proposed. Since the eigenfunctions of the T-S 
wave at the sufficiently upstream and 
downstream locations are of the same shape, the 
perturbations at these two locations are related 
by the transmission coefficient, leading to a 
quiasi-periodic like boundary condition in the 
streamwise direction. A numerical approach for 
solving the boundary-value problem was 
developed. 

In the compressible case, a sound wave is 
radiated. In order to accommodate sound 
radiation in the far field, an outer acoustic 
region needs to be introduced, where the 
unsteady perturbation is governed by the 
convected wave equation [1]. However, as 
suggested by Wu [5], a formal introduction of 
the acoustic region can be avoided by retaining 
in the upper-deck equations the second-order 
(unsteady) terms, which play a leading-order 
role in radiation in the acoustic region. 
Therefore, in this paper, we will extend the 
Local Scattering Theory by this means. The 
physical model to be studied is a boundary-layer 
flow with a local steady suction, which is 
regarded as an efficient strategy for laminar 
flow control in many applications. 

2  Formulations  

2.1 Physical model  

As shown in Fig. 1, the physical model to be 
studied is a two-dimensional compressible 
boundary layer over a semi-infinite flat plate, 
with a localized steady suction through a slot 
whose centre is at a distance L  downstream of 
the leading edge. Let  TaU ,,,   and   
denote the free-stream velocity, sound speed, 
density, temperature and dynamical viscosity. 
We define the Mach number and Reynolds 
number as  

   /,/ LURaUM .  
In this paper, we take 1M  and 1R . The 
flow is described in the Cartesian coordinate 
system ),( ** yx  with its origin at the centre of 

the suction slot. 

 
Figure 1 Sketch of the physical model 

2.2 Triple-deck scalings 

According to the triple-deck formalism, we 
introduce a small parameter 

8/1 R ,    
and then there appear three decks in the wall-
normal direction. The widths of which are 
scaling of )(),( 45  OO  and )( 3O ; these are 
referred to as the lower-, main- and upper- 
decks, respectively. The detailed expression can 
be seen in Dong and Wu [6]. Let 

)~,~,~(),,,( vuyvuY  and ),,( vuy  denote the 
normalized wall-normal coordinate, streamwise 
and wall-normal velocities at lower-, main- and 
upper- decks, respectively, while ),,,,( pTX  
denote the normalized streamwise coordinate, 
time, pressure, streamwise wavenumber and 
frequency for all decks, respectively. 

2.3 Mean flow and the unsteady perturbation 

The flow field associating with the interaction 
between an oncoming T-S wave and a local 
steady suction is decomposed as 

..)~,~,~(),,(),,( ccepvuPVUpvu Ti    ,    (1) 
where the first and second terms of the right-
hand side denotes the mean flow and the 
perturbation, respectively, and  the amplitude of 
the perturbation   is assumed to be sufficiently 
small. 

The suction slot is assumed to have a width 
of )( 8/3 LRO  , and the suction velocity is of 

)( 8/3


 URO  or smaller. The boundary condition 
on the local mean-flow distortion is  

)()0,( XVXV s . 

The governing equations and the numerical 
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approaches for the mean flow can be found in 
Wu & Dong [4], and the only difference is the 
boundary condition of the wall-normal velocity 
at the wall. The governing equations of the 
unsteady perturbations are the boundary-layer 
equations 

,0~~~~~~)(

,0~~




YYXYXYX

YX

upuVuUvUuUi

vu
(2) 

subject to the boundary conditions at the wall 
and matching condition with with the main-deck 
solution, 

,  )(
~~

,0  0~~





YasXAu

Yatvu
        (3) 

where the displacement function )(
~

XA  and the 
pressure )(~ Xp  of the unsteady perturbation 
satisfy the pressure-displacement relation (P-D 
law), which is to be derived by matching with 
the upper-deck equations. 

Let the pressure in the upper deck be 
written as TieyXp ),( , and further introduce 

)1/(ˆ, 2
0

ˆ MMspep MXsi  , (4) 

Where   2/18/18/124/1
0 )1( wTCM , with 

wTC,,  being the wall shear of the Blasius 

profile, the constant of the Chapman viscosity 
law and the wall temperature. 

It follows that p  satisfies 

).(
~

)()0,(

,0ˆ

2
0

ˆ XAi
X

eXP

pspp

MXsi
y

yyXX













 (5) 

Taking the Fourier transform with respect to X , 
we can solve the above system to obtain 

)ˆ(ˆ])ˆ([
1

ˆ 2
0 sMkAisMkiep y 


  ,  (6) 

where p̂ and Â  denote the Fourier transform of 
p  and A

~
, respectively, and  












. ̂|| )ˆ(

,ˆ|| )ˆ(
2/122

2/122

skforsk

skforksi
 

For 0y , we may invert (6) by using the 

convolution theorem to obtain p , which is 
then inserted into (4) to give the pressure at 

0y , 






 



 dAieXGXp XsiM )(
~

)()()(~ 2
0

)(ˆ ,(7) 

where the Green's function is expressed as 

}
ˆ

)cos(

ˆ

)cos(
{

1
)(

ˆ

ˆ

0 2222 















s

s
dk

ks

k
idk

sk

k
G  

for 0 . 
Equation (7) is the generalized P-D law, 

which accounts for acoustic radiation. 
The transmission coefficient Τ  is defined 

as the ratio of the amplitude of the T-S wave 
downstream of the suction slot to that upstream. 
With the aid of  Τ , the asymptotic behaviors of 
the unsteady perturbation in the upstream and 
downstream limits are expressed as   

,-X 

)ˆ,ˆ,ˆ)(()ˆ,ˆ,ˆ()~,~,~(


 

as

pvuXPepvupvu SSS
Xi

 (8) 

,-X 

 ))(1()ˆ,ˆ,ˆ()~,~,~(


 

as

XOepvupvu XiT
 (9) 

where )ˆ,ˆ,ˆ( pvu  is the eigenfunction of the 
oncoming T-S wave with  being its 
wavenumber, while )ˆ,ˆ,ˆ( SSS pvu  stands for the 

Stokes-shear wave generated by the radiated 
sound wave in the free stream, with its 
amplitude being )(XP . The terms of )( XO  
in (9) is due to the transmitted T-S wave being 
re-scattered by the wake of the scatter, which is 
neglected in this paper because the mean flow is 
truncated at a downstream location. 

2.4 Discretization 

Let the computational domain in the lower deck 

IXXX 0  and JYYY 0  be divided into 

rectangular cells by a grid consisting of 1I  
lines in X  direction with the width 

1 iiX XX , and a non-uniform mesh is 

used in the Y  direction with the width at each 
interval 1 jjY YY

j
. The mean flow can be 

calculated by the same method as that 
introduced in Wu & Dong  [4]. 

The system governing the unsteady 
perturbation consists of the lower-deck 
equations (2),  the boundary conditions (3), the 
P-D law (7) and the upstream- and the 
downstream- asymptotic conditions (8) and (9). 
The system can be discretized by similar 
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approaches as those in Wu & Dong [4]. For a 
finite computational domain, the perturbation 
field for the inlet boundary condition (8) and 
outlet boundary condition (9) can be recast to a 
'quasi-periodic' type of condition, 

)
~~

(
~

00
)( 0

S
XXi

I PTe I   , (10) 

where 
~

 denotes ),,( pvu , S
~

 represents the 

Stokes layer, and )( 00 XPP  , and I
~

 

represents  the perturbation to be solved 

2.5 Eigenvalue framework for the local 
scattering problem 

Let the unknown variables be written as a vector 
T

IIJ Pppp ],~,,~,~,,,,[ 0100100  φ . (11) 

where )~,~,~( ,ijYijijij uvu . The discrete system 

can be written as a linear eigenvalue problem of 
the form 

BφAφ T ,   (12) 
where A  and B  are coefficient matrices, whose 
expression can be obtained by similar method of 
Wu & Dong [4], and Τ  is the eigenvalue of the 
system. 

2.6 Far-field sound  

The pressure in the acoustic zone is given by 











 dksMkAMsk
e

p
yXsMki

s )ˆ(ˆ)(
2

1 2
0

)ˆ(

.(13) 

Use of stationary-phase method shows that in 
the far field  

)()( 12/122  OyXr , 
the pressure is expressed as 

]
4

)(ˆ[

2/1

222

)(ˆ
)ˆ2(

)cos1(ˆ 






MXrsi

ss ekA
sr

MMsi
p ,(14) 

where )/(tan 1 Xy , and )cos(ˆ  Msks .  

Since the Stokes layer in (8) is generated 
by the upstream propagating acoustic wave, as 

X , we have 
)()(  spXP , 

and so 
))(1(ˆ2/1

0
0

0)()( XXMsii
i

ie
X

X
PXP  . (15) 

3 Numerical results 

3.1 Steady mean flow  

We consider the case of the suction velocity 
distribution  being Gaussian, i.e. 

)/exp()( 22
0 dXVXV ss  ,  (16) 

where 0sV  is the suction velocity at the slot 

centre, which is negative/positive for a 
suction/injection, and d  characterizes the width 
of the suction slot. 

Fig. 2-(a) displays the streamwise 
distribution of the normalized pressure 

||/)( 0sVXP  for different suction/injection 

velocities. In general, suction produces a sharp 
adverse pressure gradient in the vicinity of the 
slot centre 0X , and gradual favorable 
pressure gradients in the regions upstream and 
downstream. The opposite is true for injection. 
The pressure tends to be zero as X . The 
displacement function, as shown in Fig. 2-(b), 
also undergoes a sharp increase/decrease in the 
vicinity of the slot centre for the 
suction/injection case. However, after 2X , it 
approaches zero at a much slower rate as 

X  than the pressure does. For 1.0|| 0 sV , 

the mean-flow distortion increases with the 
|| 0sV  proportionally, and has opposite signs for 

0sV . However, obvious differences on 

||/)( 0sVXP  and ||/)( 0sVXA  are observed for 

0.1|| 0 sV  from those for 1.0|| 0 sV  due to the 

nonlinear effect coming into play at large 
suction or injection velocities. 
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Figure 2 The normalized pressure (a) and displacement 
function (b) for a suction/injection slot with 0.1d  

and different suction/injection velocities. Solid, dashed, 
dot-dashed and dot-dot-dashed lines represent 

001.0|| 0 sV , 0.01, 0.1 and 1.0, respectively. 

3.2 Scattering effect on T-S wave 

Including the second-order terms in the upper-
deck governing equations leads to a 
modification of the dispersion relation of the T-
S wave, as was shown in Fig. 2 and 3 of Dong 
& Wu [6]. For 2.0M  and 610R , the 
frequency of neutral mode is 3.16, and the most 
unstable frequency is 8.10  with the growth 
rate of 0.410. In this paper, the frequencies of 
interest are in the range of 8.100.4  . 

Figures 3-(a) and 4-(a) plot the streamwise 
distribution of the displacement function for 
suction velocities 1.00 sV  and -1.0, 

respectively. The displacement function 
amplifies in general exponentially, but with a 
shift on amplitude in the vicinity of X = 0 due to 
the scattering effect. This phenomenon is not 
quite obvious for the case of 1.00 sV , but is 

apparent when the suction velocity increases to 
0.10 sV . In order to monitor the scattering 

effect on the amplitude, we normalize the 
displacement function by the value in the 
smooth case Xie  , i.e. 

XieXAX  )(
~

)(A .  (17) 

The asymptotic behavior of A  is 











X

XeP
X

Xi

 as

 as11
)( 0

TA  (18) 

This trend is shown in Fig. 3-(b) and Fig. 4-(b), 
where we observe the effect of suction on the 
amplitude near the slot. The ’normalized’ 
displacement function drops to nearly zero for 
the case of 0.10 sV , indicating a remarkable 

suppressing effect on the oncoming T-S wave. 

 

 
Figure 3 The real (solid line) and imaginary (dashed 
line) parts of the displacement function (a) and the 
normalized displacement function (b), where 

)1 ,10 ,2.0 ,8 ,1.0(),,,,( 6
0  dRMVs . 
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Figure 4 The real (solid line) and imaginary (dashed 
line) parts of the displacement function (a) and the 
normalized displacement function (b), where 

)1 ,10 ,2.0 ,8 ,0.1(),,,,( 6
0  dRMVs . 

As expected on physical ground, the 
parameter controlling the contribution to the 
effect of the T-S wave is the mass flux through 
the suction/injection slot, which is defined as 





 dXXVs )(M .  (19) 

For a Gaussian suction/injection velocity,  

0sdVM . 

It is found from the calculation that the 
displacement function and the transmission 
coefficient only depends on the mass flux of the 
suction/injection, rather than on the individual 
suction/injection velocity or slot width.  

Fig. 5 shows the transmission coefficient as 
a function of the mass flux for different 
frequencies. Only a slightly difference can be 
observed between the three curves (for different 
frequencies of interest), implying that the 
transmission coefficient depends less on the 
frequency. However, it is strongly dependent of 
the mass flux. For linear cases, in which the 
mass flux M  is sufficiently small, the 
transmission coefficients are 1.0. As M  
increases, the transmission coefficient 
decreases/increases monotonically for suction/ 
injection cases. When the mass flux becomes 
O(1), the transmission coefficient is as small as 
O(0.1) for suction, or as large as O(10) for 
injection. 

 

 
Figure 5 The transmission coefficient vs. suction- (a) 

and injection- (b) mass flux for )10 ,2.0(),( 6RM . 

Solid, dashed and dot-dashed lines are for 0.4 , 
8.0 and 10.8, respectively. 

3.3 Acoustic radiation due to the scattering 
effect  

3.3.1 The pressure of the acoustic field  
In order for the results to be more accessible to 
a general reader, the familiar non-dimensional 
frequency, 62* 10/   Uf ,  will be used in 

presentation, where *  is the dimensional 
frequency. The global non-dimensional 
frequency f  is related to the local non-
dimensional frequency   by 

64/314/14/122/3 10)1(   RTCMf w . 

Fig. 6 shows the pressure field of the 
radiated sound wave for different frequencies. 
The wavelengths of the radiated acoustic waves 
are related to the frequencies of the T-S waves. 
The acoustic directivity for different frequencies 
seems to be similar, i.e. the radiated sound is 
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found to be propagating upstream, and an angle 
of silence about 80 degree is observed. It can 
also be seen the intensity of the acoustic wave 
increases with the frequency. A quantitative 
analysis will be shown in the following sections. 

 

 

 
Figure 6 The real part of the pressure of the acoustic 

field, for )1 ,10 ,2.0 ,001.0(),,,( 6
0 dRMVs  

3.3.2 Dependence of acoustic radiation on mass 
flux  
Based on the far-field acoustic pressure (14), the 
intensity of the sound wave can be measured by 

rpQ s .  (20) 

It is also found that the directivity of the 
radiated sound wave merely depends on the 
mass flux of the suction/injection, rather than on 
the velocity or the slot width.  

The directivity of the acoustic field can be 
better characterized by  

mQQQ /||
~
 ,  (21) 

where ||  QQm  denotes the upstream 

propagating sound wave. The normalized 
directivity of the acoustic field for different 

suction mass flux are plotted in Fig. 7. In each 
figure, the difference of the four curves, 
representing different mass flux, is quite small, 
i.e. the dominant sound is upstream propagating, 
and there exists an angle of silence at about 80 
degree in each case, indicating that the suction 
mass flux does not affect substantially the 
directivity of the emitted sound. However, mQ  

varies considerably with the mass flux, as is 
shown mQ  in Fig. 8. It is found that the acoustic 

strength in general increases with the mass flux, 
except for some extreme cases when the suction 
mass flux is )1(O , and the frequency is also 
high.  

 

 
Figure 7 The normalized directivity of the acoustic 

field as shown by plotting Q
~

 in the polar coordinate, 

where solid, dashed, dot-dashed and dot-dot-dashed 

lines represent  001.0M ,  01.0 , 

 1.0  and  5.0 . 
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Figure 8 The strength of the upstream radiated sound 
vs. the suction mass flux. The solid, dashed and dot-

dashed lines represent 0.4 , 8.0 and 10.8, 
respectively. 

3.3.3 Dependence of acoustic radiation on 
frequency 

Fig. 9 shows the normalized directivity for 

 01.0M  with different frequencies. The 
directivity behaves similarly for different 
frequencies, indicating a weak dependence of 
the former on the latter. 

However, the strength of the radiated 
sound depends strongly on the frequency as is 
shown in Fig. 10. For a moderate suction mass 
flux, the acoustic intensity increases with the 
frequency monotonically. This effect is more 
pronounced when the mass flux is larger.  

3.3.4 Dependence of acoustic radiation on the 
distribution of the suction velocity 

 
Figure 9 Directivity of the acoustic field as shown by 

plotting Q
~

 in the polar coordinate for 

 01.0M . The solid, dashed and dot-dashed 

lines represent 0.4 , 8.0 and 10.8, respectively. 

It is also observed that, if the mass flux is 
fixed, changing the distribution of the suction 
velocity does not affect either the scattering 
effect or the acoustic radiation. 

 
Figure 10 The strength of the upstream radiated sound 

vs. the frequency for  01.0M  (solid line) and 

 1.0  (dashed line). 

4 Concluding remarks 

The framework of the Extended Local 
Scattering Theory is proposed by retaining the 
unsteady (second-order) terms in the upper-deck 
governing equations of the triple-deck 
formalism. The resulting framework describes 
not only the impact of a local scatter on the 
hydrodynamic instability but also the acoustic 
radiation due to scattering of an oncoming T-S 
wave. 

Numerical investigations on the impact of 
a local steady suction show that suction 
/injection suppresses/enhances the oncoming T-
S waves, with the transmission coefficient 
decreasing/increasing with the mass flux. The 
transmission coefficient is of O(0.1) and O(10) 
when the suction/injection mass flux is of order-
one, respectively, implying that transition can 
be affected significantly by suction or injection 
on the wall surface. The transmission coefficient 
is not affected appreciably by the frequency of 
the oncoming T-S waves.  

The Qm-normalized directivity of the 
radiated sound wave remains the same, or at 
least similar, for all the frequencies, mass flux 
and suction velocity distributions. The dominant 
acoustic field is on the upstream side, and there 
exists an angle of silence of about 80 degree. 
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The intensity of the radiated sound wave 
depends on both the frequency and the suction 
mass flux. It is found that, the intensity of the 
radiated sound increases with the mass flux and 
frequency, except when )1(OM  and the 
frequency is high. The intensity of the sound 
wave radiated by the suction slot attains its 
maximum value at )1.0(OM , and becomes 

weaker when )1(OM . 
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