
                      
 

1 

 

 

Abstract  

This paper describes an algorithm for the 

control of a swarm of UAVs based on 

decentralized MPC. For each UAV, our 

algorithm first determines the trajectory taking 

into account the obstacles and the constraints 

on the aircraft performance. Then basing on a 

robust MPC algorithm, optimal guidance laws 

are calculated and tracked by the UAVs by 

means of local PIDs controllers. Our approach 

also allows us to take into account moving 

obstacles and constraints on the minimum 

distance between the vehicles. Validation of the 

approach is obtained by means of simulations 

where for each UAV a 6-DOF model is used. 

1  Introduction  

Symbols 

𝑰𝑩 Aircraft inertial matrix 

𝑰𝒏 Identity matrix of order 𝑛 

𝒎 Aircraft mass 

[𝑳,𝑴,𝑵]𝑻 Sum of external moment 

[𝒑, 𝒒, 𝒓]𝑻 Angular speed vector 

[𝒖𝑩, 𝒗𝑩, 𝒘𝑩]𝑻 Speed vector in  body fixed 

frame 

𝑽𝑻𝑨𝑺 True air speed 

[𝒙𝑬, 𝒚𝑬, 𝒛𝑬]𝑻 Position vector in inertial earth 

frame 

[𝑿, 𝒀, 𝒁]𝑻 Sum of external forces 

𝒛̃𝒕 Reference trajectory point 

𝒛𝒕 Actual trajectory point 

𝒙̃𝒕 Reference states 

𝒙̂{𝒕,…,𝒕+𝑵} Optimal state sequence 

𝒙𝒕 Actual states 

𝒖̃𝒕 Reference control input 

𝒖̂{𝒕,…,𝒕+𝑵} Optimal control input sequence 

𝒖𝒕 Implemented control input 

[𝝓, 𝜽,𝝍]𝑻 Attitude with respect to  the 

inertial earth frame 

𝚿 Heading angle 

 

In the recent years, multi-agent cooperative 

control has been the subject of significant 

research activity. The interest about this topic is 

also related to the applications that multi-

vehicle systems, such as UAV (Unmanned 

Aerial Vehicle) fleets, have both in military and 

civil fields such as intelligence, surveillance, 

exploration, search and rescue, transportation, 

monitoring, and so on. In this area, formation 

flight problems recently have received 

considerable attention.  The main goal of 

formation flight is to achieve a desired group 

formation shape while controlling the overall 

behavior of the group.   

Various control schemes have been 

proposed for UAV formation flight, such as PID 

control [1], potential method [2],[3],[4],[5], 

constraint forces [6], adaptive output feedback 

approaches [7], sliding mode approaches [8], 

consensus based methods [9],[10],[11], model 

predictive control (MPC) [12],[13],[14]. 

In this paper, we will focus on MPC 

method, which is a feedback control scheme 

where the control signal is obtained by solving 

an optimization problem at each sampling time. 

To calculate the objective and constraint 

functions, MPC needs to know a reference 

trajectory and it needs to predict the  behavior of 

the system over a prediction horizon. Although 

prediction and optimization are performed over 

a future horizon, only the inputs for the current 

sampling interval are used. The same procedure 

is repeated at the subsequent sampling time with 
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updated measurements and a shifted horizon. 

On the other hand using a so-called centralized 

MPC and increasing the number of aircraft in 

the swarm, the computational cost required for a 

single optimization can become unsustainable. 

To solve this problem, the optimization is 

typically divided into smaller subproblems and, 

using a decentralized approach (DMPC), each 

aircraft solves only its own subproblem. 

The formation control is based on the so-

called 𝑙 − 𝛼 theory [15]. We assume that there 

exists only one formation leader, which 

conducts the formation to the final position. The 

position that the followers have to keep from the 

leader during the flight is expressed by a 

distance 𝑙 and an angle 𝛼. 

The controller is divided in two main parts, 

characterized by different sampling times: the 

external control loop and the internal one. 

The external control loop, on the basis of 

the knowledge of the mission goals and the 

operating environment (obstacle and aircraft 

positions), computes the aircraft commands in 

order to follow the reference trajectory. Its 

architecture relies on a multilayer scheme 

originally proposed in [16] for general 

interacting subsystems. In [16] the reference 

trajectory is generated taking into account the 

minimum safety distances between the vehicles 

and obstacles; in this paper we also add 

operational constraints for a swarm of fixed 

wing UAVs, such as stall velocity and 

maximum angular turn rate. A robust DMPC 

method is then used to compute the reference 

signal for the PID control system that computes 

the aircraft commands. 

The internal control loop is based on 

feedback linearization and on a PID control 

system and it obtains command for the aircraft 

actuators from the solution of a DMPC method. 

To test the controller we consider a fleet of 

five aircrafts, each one equipped with its own 

Inertial Measurement Unit (IMU, 3-axes gyros, 

accelerometers, and magnetometers) and GPS. 

The dynamics of the aircrafts are simulated by 

using a 6-DOF model [17] and performance 

constraints are taken into account. 

The papers is organized as follows. In 

Section 2 we describe the architecture and each 

part of the formation flight control system. In 

Section 3  the dynamic model of the aircrafts 

used to test control algorithms is shown. In 

Section 4 we describe the scenarios simulated 

and we show the numerical results. At the end, 

in Section 5 we draw some conclusions. 

Notation: In the sequel by |⋅| we will 

denote the Euclidean norm, whereas by |⋅|𝑇 we 

will denote  the Euclidean norm weighted by the 

positive definite matrix 𝑇. By 𝐴 ≻ 0 we mean 

that each element of the matrix 𝐴 is greater than 

0. The symbol ∧ denotes the cross product 

between two vectors. The symbols ⊕ and ⊖  

denote respectively the Minkowski sum and the 

Pontryagin difference [18]. The operator 

𝑠𝑖𝑔𝑛(𝑎) returns +1 if 𝑎 > 0, −1 if 𝑎 < 0 and 0 

if 𝑎 = 0. 

2 Formation Flight Control System 

Architecture 

The formation flight control system 

developed is based on a robust DMPC method; 

hence each aircraft solves only its own 

subproblem. As shown in Fig 1, the control 

system is divided into two main parts with two 

different sampling times. 

The external loop first of all generates the 

reference trajectory taking into account 

operational constraints. At each sampling time a 

new point of the trajectory is calculated solving 

an LQ optimization problem: the cost function 

is defined considering the mission goals and the 

constraints guaranteeing the aircraft 

performance and minimum safety distances 

between the vehicles and obstacles. The aircraft 

inputs needed to track the reference trajectory 

are calculated by solving another LQ 

optimization problem, that is introduced in order 

to implement a robust MPC method. To predict 

the aircraft behavior, the MPC algorithm makes 

use of a dynamic model of a material point in a 

plane, defined in terms of position and heading 

angle. 

The outputs of the external loop are 

processed by the inner loop to obtain the 

commands for aircraft actuators. In particular, 

using the feedback linearization technique we 

obtain from the MPC outputs the reference 

speed and heading angle. Eventually a PID 
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Fig. 1 Formation Flight Control System Architecture

control system computes the actuators 

command from the reference signal. 

3 Reference Trajectory Generation 

The MPC algorithm needs to know the 

reference trajectory over a future horizon of 

length 𝑁 to calculate the control input. 

The i-th aircraft  of the swarm, at time t 

calculates the next point 𝑧̃𝑡+𝑁
[𝑖]

 of its own 

trajectory on the basis of the knowledge of the 

point 𝑧̃𝑡+𝑁−1
[𝑖]

, of the mission goals and of the 

position of the other aircrafts and obstacles. In 

particular, 𝑧̃𝑡+𝑁
[𝑖]

 is obtained as the solution of the 

following constrained optimization problem: 

min
𝑧𝑡+𝑁

[𝑖]
𝐿𝑧
[𝑖]   

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠; (1a) 

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠; (1b) 

𝑧̃𝑡+𝑁
[𝑖]

∈ ℬ𝑡+𝑁
[𝑖]  ; (1c) 

𝑧̃𝑡+𝑁
[𝑖]

∈ ℤ[𝑖] ; (1d) 

𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒  

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  
(1e) 

where, the quadratic cost function 𝐿𝑧
[𝑖]

 

guarantees the formation control during the 

mission and it is based on 𝑙 − 𝛼 theory [14]. 

The form of cost function and the constraints 

(1a) and (1b) will be discussed in the following 

sections. Constraint (1c) is included to take into 

account the aircraft performance (cruise and 

stall velocity, maximum angular turn rate) and 

the definition of the set ℬ𝑡+𝑁
[𝑖]

 will be described 

in the following sections. Constraint (1d) is 

added to guarantee that the MPC problem will 

be feasible and the set ℤ[𝑖] depends on the 

algorithms applied at the lower layer of flight 

control system. For this reason, the ℤ[𝑖] 

definition will be given in the following section 

with the description of MPC algorithm. 

Finally, constraint (1e) is added only in the 

optimization problem of leader UAV. The 

nominal position of the followers is only a 

function of the leader's position and of the 

geometrical structure of the formation. With 

constraint (1e) we guarantee that all these 

nominal positions are outside the regions 

occupied by the obstacles. 

3.1 Definition of cost function for formation 

flight 

The formation control is based on the so-called 

𝑙 − 𝛼 [14] theory. We consider a swarm of 𝑀 

UAV and we assume that there exists only one 
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formation leader, for instance aircraft 1. The 

position that the follower i has to keep from the 

leader during the flight is expressed in terms of 

both a distance 𝑙[𝑖] and an angle 𝛼[𝑖] with 

𝑖 = 2,3, . . . , 𝑀 (see Fig. 2). 

 

Fig. 2 𝒍 − 𝜶 Formation Control 

The leader goal is to conduct the formation 

to the final position 𝑧𝑔𝑜𝑎𝑙 = [𝑥𝐸
𝑔𝑜𝑎𝑙

, 𝑦𝐸
𝑔𝑜𝑎𝑙

]
𝑇
. 

Therefore, the cost function of the formation 

leader is 

𝐿𝑧
[1]

= 𝛾 ‖𝑧̃𝑡+𝑁
[1]

− 𝑧̃𝑡+𝑁−1
[1]

‖
2

+ ‖𝑧̃𝑡+𝑁
[1]

− 𝑧̃𝑔𝑜𝑎𝑙‖
𝑇

2

 ; 
(2) 

where the weights 𝑇 and 𝛾 are tuning knobs 

satisfying 𝑇 ≻ 𝛾 𝐼2 ≻  0. 

To achieve and hold the formation 

position, each follower 𝑖 = 2,3, . . . , 𝑀 

minimizes the following cost function 

𝐿𝑧
[𝑖]

= 𝛾 ‖𝑧̃𝑡+𝑁
[𝑖] − 𝑧̃𝑡+𝑁−1

[𝑖] ‖
2

+ ‖𝑧̃𝑡+𝑁
[𝑖] − 𝑧̃𝑓𝑜𝑟𝑚

[𝑖] ‖
𝑇

2

 ; 
(3) 

where the nominal position 𝑧𝑓𝑜𝑟𝑚
[𝑖]

 is defined as 

𝑧̃𝑓𝑜𝑟𝑚
[𝑖] = 𝑧̃𝑡+𝑁−1

[1]
+ 𝑙[𝑖] [cos 𝛼[𝑖]

sin 𝛼[𝑖]
] ; (4) 

In this way, each follower can pursue its own 

goal knowing the leader position and the 

formation definition. 

3.2 Definition of constraints for obstacle and 

inner-UAV collision avoidance 

To obtain an LQ optimization problem we 

formulate the obstacle and inner-UAV collision 

avoidance requirements as linear constraints. 

We assume that in the operative scenario there 

exist 𝑁𝑜𝑏𝑠 circular obstacles and the generic h-th 

obstacle is centered at point 𝑧𝑜𝑏𝑠
[ℎ]

 with radius 

𝑅𝑜𝑏𝑠
[ℎ]

. Denoting by 𝑅[𝑖] the radius of the circle 

circumscribing the i-th aircraft, the obstacle 

avoidance constraint can be formulated as 

‖𝑧̃𝑡+𝑁
[𝑖] − 𝑧𝑜𝑏𝑠

[ℎ]
‖ ≥ 𝑅[𝑖] + 𝑅𝑜𝑏𝑠

[ℎ]
+ 𝛿[𝑖]; (5) 

where the distance 𝛿[𝑖] is a safety distance 

which takes into account the maximum 

uncertainty about the aircraft position depending 

on the MPC algorithms. This distance is 

estimated using the algorithm in [16]. However 

constraint (5) is nonlinear and non convex, 

therefore a linear approximation is used. In 

particular, we use the formulation originally 

proposed in [19]. 

We consider a polytope 𝒫𝑜𝑏𝑠
[ℎ𝑖]

 with 𝑟𝑜𝑏𝑠
[ℎ𝑖]

 

edges that circumscribes the circle centered at 

𝑧𝑜𝑏𝑠
[ℎ]

 with radius 𝑑[ℎ𝑖] = 𝑅𝑜𝑏𝑠
[ℎ]

+ 𝑅[𝑖] + 𝛿[𝑖] (Fig. 

3), its k-th edge is defined by the equation 

𝑎𝑘 𝑥 + 𝑏𝑘 𝑦 + 1 = 0. We introduce the 

operator 

𝜌𝑘
[ℎ𝑖](𝑧̃𝑡+𝑁−1)

= −𝑠𝑖𝑔𝑛(𝑎𝑘 𝑥𝑜𝑏𝑠 + 𝑏𝑘 𝑦𝑜𝑏𝑠  

+ 1)
𝑎𝑘 𝑥̃𝑡+𝑁−1

[𝑖] + 𝑏𝑘 𝑦̃𝑡+𝑁−1
[𝑖]  + 1

√𝑎𝑘
2 + 𝑏𝑘

2
; 

(6) 

in particular, 𝜌𝑘
[ℎ𝑖](𝑧̃𝑡+𝑁−1) < 0 if the points 

𝑧̃𝑡+𝑁−1
[𝑖]

 and 𝑧𝑜𝑏𝑠
[ℎ]

 lie at the same side with respect 

to the line lying on the k-th edge of the 

polytope, otherwise 𝜌𝑘
[ℎ𝑖](𝑧̃𝑡+𝑁−1) > 0 and it 

returns the distance between the point 𝑧𝑡+𝑁−1
[𝑖]

 

and the line lying on the k-th edge of the 

polytope. To obtain the obstacle avoidance 

constraint, we select the index 𝑘̅ corresponding 

to the maximum value of 𝜌𝑘
[ℎ𝑖](𝑧̃𝑡+𝑁−1) and we 

include in the optimization problem the 

following linear inequality 

𝜌
𝑘̅

[ℎ𝑖](𝑧̃𝑡+𝑁) > 0; (7) 
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It is worth noting that this linearization of the 

constraint (5) introduces some conservativeness 

only because the circular region which specifies 

the obstacle is approximated by a polytope.   

 

Fig. 3 Linear Approximation for Obstacole Avoidance 

Constraints 

In the similar way it is possible to solve the 

inter-aircraft collision avoidance problem. The 

condition that guarantees the collision 

avoidance between aircraft i and aircraft j with 

𝑗 = 1,2, . . . , 𝑀 and 𝑗 ≠  𝑖 is 

‖𝑧̃𝑡+𝑁
[𝑖] − 𝑧𝑡+𝑁

[𝑗]
‖

≥ 𝑅[𝑖] + 𝑅[𝑗] + 𝛿[𝑖]

+ 𝛿[𝑗]; 
(8) 

but it is nonlinear and non convex. To solve this 

problem, we assume that the position 𝑧̃𝑡+𝑁−1
[𝑗]

 is 

available to aircraft i and we build the polytope 

𝒫𝑜𝑏𝑠
[𝑗𝑖]

 with 𝑟𝑜𝑏𝑠
[𝑗𝑖]

 edges that circumscribes the 

circle centered at 𝑧𝑡+𝑁−1
[𝑗]

 with radius 𝑑[𝑗𝑖] =

𝑅[𝑖] + 𝑅[𝑗] + 𝛿[𝑖] + 𝛿[𝑗] + Δ𝑗, where Δ𝑗 is the 

maximum distance that aircraft j can cover in 

one external loop stepping time. At the edges of 

𝒫𝑜𝑏𝑠
[𝑗𝑖]

 we can apply the operator (6) and obtain 

the collision constraint linear inequality. 

3.3 Definition of constraints for UAV 

performance  

The reference trajectory is defined as a sequence 

of waypoints satisfying the constraints (1c). To 

obtain a feasible trajectory, the region  

ℬ𝑡+𝑁
[𝑖]   is built taking into account the aircraft 

cruise and stall velocity, respectively 𝑉𝑐𝑟𝑢𝑖𝑠𝑒 and 

𝑉𝑠𝑡𝑎𝑙𝑙, and the maximum angular turn rate 

Ψ̇𝑚𝑎𝑥  . 

Fig. 4 shows how ℬ𝑡+𝑁
[𝑖]   is obtained. In 

particular, the minimum distance and the 

maximum one between two successive points 

are defined as 

𝑑𝑚𝑖𝑛
[𝑖] = 𝑉𝑠𝑡𝑎𝑙𝑙

[𝑖] 𝜏;  

𝑑𝑚𝑎𝑥
[𝑖] = 𝑉𝑐𝑟𝑢𝑖𝑠𝑒

[𝑖] 𝜏;  

where 𝜏 is the sampling time of the outer control 

loop. To constrain the maximum angular turn 

rate, we calculate the direction of the UAV i as 

𝛼𝑡+𝑁−1
[𝑖] =  ⦟ (𝑧̃𝑡+𝑁−1

[𝑖] − 𝑧𝑡+𝑁−2
[𝑖] ) ;  

and the maximum turn angle 

Ψ𝑡+𝑁
[𝑖] = Ψ̇𝑚𝑎𝑥 

[𝑖] 𝜏;  

As shown in Fig. 4, since we want the 

region ℬ𝑡+𝑁
[𝑖]   to be convex, we approximate the 

arc of the circumference with radius 𝑑𝑚𝑖𝑛
[𝑖]

 with 

the segment tangent to the circumference. 

 

Fig. 4  Set 𝓑𝒕+𝑵
[𝒊]   definition 

4 Distributed robust MPC algorithm  

The aircraft control inputs are computed to keep 

the states and inputs as close as possible to the 

reference trajectory; they are solution of an LQ 

optimization problem, that is defined to 

implement a distributed robust MPC algorithm. 

Each UAV computes its own control inputs 

independently from the other vehicles using the 

same algorithm. Indeed the interaction between 

the aircrafts has already been considered when 

calculating the reference trajectories. 

In order to predict the aircraft behavior, the 

MPC algorithm uses as a nominal model a 

linear approximation of the dynamic model of a 

material point in a plane. The reference 
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trajectory is processed by the state/input 

trajectory layer, in order to obtain the reference 

trajectory for the states and inputs of the MPC 

nominal model. 

4.1 Definition of nominal model  

The MPC algorithm approximates the UAV 

dynamic with the model of a material point in a 

plane, defined in terms of position and heading 

angle: 

{

𝑥̇𝐸 = 𝑉 cosΨ
𝑦̇𝐸 = 𝑉 sinΨ

Ψ̇ = 𝜔
𝑉̇ = 𝑎

 (9) 

A linear approximation of (9) is obtained with a 

feedback linearization procedure [15]. 

Defining 𝜂1 = 𝑥𝐸, 𝜂2 = 𝑥̇𝐸, 𝜂3 = 𝑦𝐸 , 

𝜂4 = 𝑦̇𝐸 and introducing the linear accelerations 

𝑎𝑥 and 𝑎𝑦, we obtain a set of two decoupled 

double integrators 

{

𝜂̇1 = 𝜂2

𝜂̇2 = 𝑎 cosΨ − 𝑉𝜔 sinΨ ≡ 𝑎𝑥

𝜂̇3 = 𝜂4

𝜂̇4 = 𝑎 sinΨ + 𝑉𝜔 cosΨ ≡ 𝑎𝑦

 (10) 

We compute a linear approximation of 

system (9) by means of the following Euler 

discretization of equation (10) with sampling 

time 𝜏: 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡;
 (11) 

𝑧𝑡+1 = 𝐶𝑥𝑡+1; (12) 

Where 𝑥𝑡 = [

𝜂1𝑡

𝜂2𝑡

𝜂3𝑡

𝜂4𝑡

], 𝑢𝑡 = [
𝑎𝑥𝑡

𝑎𝑦𝑡
], 𝑧𝑡 = [

𝑥𝐸𝑡

𝑦𝐸𝑡
], 

𝐴 = [

1 𝜏
0 1

0 0
0 0

0 0
0 0

1 𝜏
0 1

], 𝐵 =

[
 
 
 
 
𝜏2

2
0

𝜏 0

0
𝜏2

2

0 𝜏 ]
 
 
 
 

 and 𝐶 =

⌈
1 0
0 0

0 0
1 0

⌉. The disturbance 𝑤𝑡 has been 

introduced to model uncertainties and 

approximation errors of the UAV model and 

external disturbances. We assume that 𝑤𝑡 ∈ 𝕎, 

where 𝕎 is a known bounded uncertainty set. 

We impose the set of feasible state 𝑥𝑡 ∈ 𝕏, 

where 𝕏 is a convex set. It can be readily 

verified that the triple (𝐴, 𝐵, 𝐶) is reachable, 

observable, and does not have invariant zeros in 

𝑧 = 1. 

4.2 Reference state/input trajectory  

The MPC algorithm computes the control input 

of i-th UAV 𝒖𝒕
[𝒊]

 as a solution of an optimization 

problem defined over a future horizon of 𝑁 

prediction steps. In order to calculate the cost 

function of the optimization problem, we have 

to know the reference trajectory for the states 

and the inputs of the nominal model. 

In particular, from the sequence of 𝑁 

geometrical points 𝒛̃{𝒕,…,𝒕+𝑵−𝟏}
[𝒊]

 we have to 

compute the sequence of references states 

𝒙̃{𝒕,…,𝒕+𝑵−𝟏}
[𝒊]

 and inputs 𝒖̃{𝒕,…,𝒕+𝑵−𝟏}
[𝒊]

. 

To solve this problem, we implement in the 

state/input trajectory layer the following 

dynamic system 

[
𝑥̃𝑡+1

[𝑖]

𝑒̃𝑡+1
[𝑖]

] = [
𝐴 0

−𝐶 𝐼2
] [

𝑥̃𝑡
[𝑖]

𝑒̃𝑡
[𝑖]

] + [
𝐵
0
] 𝑢̃𝑡

[𝑖]

+ [
0
𝐼2

] 𝑧̃𝑡+1
[𝑖]  

(13) 

where the new state variable 𝒆𝒕+𝟏
[𝒊]

 is the integral 

of the tracking error 𝑧̃𝑡+1
[𝑖] − 𝐶 𝑥̃𝑡

[𝑖]
. Given the 

reachability of the pair (𝐴, 𝐵) and the absence 

of invariant zeros in 𝑧 = 1 of the model (11), it 

is possible to compute the control law 

𝑢̃𝑡
[𝑖] = 𝐾̃𝑥𝑥̃𝑡

[𝑖] + 𝐾̃𝑒𝑒̃𝑡
[𝑖] (14) 

where the gain 𝐾̃ = ⌊𝐾̃𝑥 𝐾̃
𝑒
⌋ can be designed 

with any stabilizing algorithm, such as LQ or 

pole placement control. 

4.3 Definition MPC optimization problem  

At each instant the i-th UAV solves the 

following LQ optimization problem to 

implement the robust MPC algorithm discussed 

in [16]. 
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min
𝑥̂𝑡

[𝑖]
,𝑢_{𝑡,…,𝑡+𝑁−1}

∑ ‖𝑥̂𝑡+𝑗
[𝑖] − 𝑥̃𝑡+𝑗

[𝑖] ‖
𝑄

2
𝑁−1

𝑗=0

+ ‖𝑢̂𝑡+𝑗
[𝑖] − 𝑢̃𝑡+𝑗

[𝑖] ‖
𝑅

2

+ ‖𝑥̂𝑡+𝑁
[𝑖] − 𝑥̃𝑡+𝑁

[𝑖] ‖
𝑃

2
 

 

𝑥̂𝑡+1
[𝑖] = 𝐴𝑥̂𝑡

[𝑖] + 𝐵𝑢̂𝑡
[𝑖]  (15a) 

𝑥̂𝑡+𝑗 ∈ 𝕏̂[𝑖],   ∀𝑗 = 1,… ,𝑁 − 1 (15b) 

𝑥𝑡
[𝑖] − 𝑥̂𝑡

[𝑖] ∈ 𝜀[𝑖]  (15c) 

𝐶 (𝑥̂𝑡+𝑗
[𝑖] − 𝑥̃𝑡+𝑗

[𝑖] ) ∈ Δ𝑧
[𝑖]  ∀𝑗

= 1, … , 𝑁 − 1 ; 
(15d) 

𝑥̃𝑡
[𝑖] − 𝑥̂𝑡

[𝑖] ∈ 𝜅[𝑖]𝜀[𝑖]  (15e) 

The set 𝜀[𝑖] in (15c is defined as the robust 

positively invariant (RPI) set 

𝜀[𝑖] =⊕𝑗=0
∞ (𝐴 + 𝐵𝐾)𝑗𝕎[𝑖]  

(16) 

where the gain 𝐾 must be defined so as to 

obtain (𝐴 + 𝐵𝐾) to be Schur stable. Methods 

for computing approximation of (16) are 

discussed in [23]. The set 𝕏̂[𝑖] in (15b) is 

computed as 

𝕏̂[𝑖] = 𝕏[𝑖] ⊖ 𝜀[𝑖] (17) 

The set Δ𝑧
[𝑖]  ⊆  ℝ2 in (15d) is characterized by a 

trade-off: a small size of this parameter permits 

only small deviations of the nominal state 

trajectory with respect to the reference one, but 

it can have  the effect of limiting the robustness 

of the control scheme. Finally, 𝜅[𝑖] > 0 in (15e 

is a tuning parameter. 

In the functional cost, the symmetric 

weighting matrices 𝑄 ≥  0 and 𝑅 > 0 are free 

design parameters, while 𝑃 is assumed to satisfy 

the Lyapunov equation 

(𝐴 + 𝐵𝐾)𝑇𝑃(𝐴 + 𝐵𝐾) − 𝑃
= −(𝑄 + 𝐾𝑇𝑅𝐾) (18) 

The input controls for the i-th aircraft are 

calculated from the solution of the optimization 

above problem as 

𝑢𝑡
[𝑖] = 𝑢̂𝑡|𝑡

[𝑖] + 𝐾(𝑥𝑡
[𝑖] − 𝑥̂𝑡

[𝑖]) (19) 

5. Inner control loop 

In order to track the reference trajectory, the 

inner control loop computes the command input 

for the aircraft actuators from the input controls 

calculated by the MPC algorithm. It is 

characterized by a sampling time smaller than 

the outer loop 𝝉𝒊𝒏  ≪ 𝝉 and two main parts: the 

feedback linearization procedure and a PID 

control system. 

The feedback linearization procedure 

allows us to calculate the speed reference 𝑽̃𝒕+𝟏
[𝒊]

 

and the heading angle reference 𝚿̃𝒕+𝟏
[𝒊]

 from the 

linear accelerations obtained by the MPC 

algorithm. In particular, using the definition of 

𝒂𝒙
[𝒊]

 and 𝒂𝒚
[𝒊]

 in (10) and the knowledge of the 

true air speed 𝑽𝒕
[𝒊]

 and heading angle 𝚿𝒕
[𝒊]

, we 

obtain 

𝑉̃𝑡+1
[𝑖] = 𝑉𝑡

[𝑖] + 𝜏𝑖𝑛 (𝑎𝑥
[𝑖] cosΨ𝑡

[𝑖]

+ 𝑎𝑦
[𝑖] sinΨ𝑡

[𝑖]) ; 
(20a) 

Ψ𝑡+1
[𝑖] = Ψ𝑡

[𝑖] +
𝜏𝑖𝑛

𝑉𝑡
[𝑖]

(−𝑎𝑦
[𝑖] sinΨ𝑡

[𝑖]

+ 𝑎𝑦
[𝑖] cosΨ𝑡

[𝑖]) ; 
(20b) 

Finally, the command signals for the 

aircraft actuator are computed by a PID control 

system (see Fig. 5). In particular, the speed 

control system computes the thrust needed to 

control the true air speed. The aircraft changes 

the heading angle performing a coordinated 

turn. For this reason, the heading control system 

calculates the reference roll angle, that is used 

by the roll-attitude hold to obtain the aileron 

command. To maintain zero sideslip angle, a 

sideslip control and yaw dumper system are 

implemented and they compute the rudder 

command. The PID control system includes also 

an altitude control system to maintain constant 
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the altitude during the mission. It calculates the 

reference pitch angle, that is used by the pitch-

attitude hold to obtain the elevator command. 

 

Fig. 5 PID control system 

6. Numerical simulations 

To test the controller we considered a fleet of 

five aircrafts, each one equipped with its own 

Inertial Measurement Unit (IMU, 3-axes gyros, 

accelerometers, and magnetometers) and GPS. 

 We considered tactical uninhabited vehicles 

primarily intended for medium endurance and 

short range surveillance, reconnaissance and 

patrolling missions. Each aircraft is powered by 

one pusher propeller located at the end of the 

fuselage. The principal features of the UAV 

configuration are: high aspect ratio, tapered, 

untwisted, high mounted wing with no dihedral, 

high horizontal tail, double vertical tail with 

double rudder and cylindrical fuselage. Aircraft 

main parameters can be found in Table 1. 

Parameter Value 

Length 2.13m 

Height 0.570m 

Wing Span 3.162m 

Aspect Ratio 10 

Wing Area 1.0m2 

Maximum Take Off Weight 29kg 

Payload 10kg 

Operational Radius 50Nmi 

Loitering Time 2hrs 

Max Cruise Speed 90kts 

Max Cruise Altitude 5000m 

Table 1 Aircraft main parameters 

The UAV mathematical model is obtained 

from the nonlinear six degree of freedom model 

and the aerodynamic forces and moments are 

obtained considering a linear aerodynamic 

model of the UAV. In particular, the stability 

and control derivatives were calculated using a 

statistical approach [20],[21],[22]. 

The controller performance are tested in 

simulation in a scenario with two circular 

obstacles characterized by 𝑅𝑜𝑏𝑠
[𝑖] = 500𝑚 with 

𝑖 = 1,2. The shape formation is designed by the 

following parameters 

𝑙[2] = 100𝑚 𝛼[2] = 135𝑑𝑒𝑔 

𝑙[3] = 100𝑚 𝛼[3] = 135𝑑𝑒𝑔 

𝑙[4] = 100𝑚 𝛼[4] = −135𝑑𝑒𝑔 

𝑙[5] = 200𝑚 𝛼[5] = −135𝑑𝑒𝑔 

At the beginning of the simulation the 

followers positions are random, so their first 

goal is to reach the leader and achieve the 

formation. Meanwhile, the leader flies to its 

position goal avoiding the obstacles. 

The numerical results are shown in the 

following figures. In Fig. 6a we show the 

reference trajectories computed by the 

Reference Trajectory Generation layer while in 

Figure 6b we show the trajectories carried out 

by the aircrafts. 

The tracking error of the flight control 

system can be analyzed by overlaying the 

curves: for instance in Fig. 7 we compare the 

reference and actual trajectory of UAV #1. 

Despite the tracking error, the collision 

avoidance constraints are respected. The Fig. 8a 

and 8b show that the no-fly zone are not 

violated and Fig. 8c shows that the minimum 

safety distances between leader and followers 

are respected. 



 

9  

MODEL PREDICTIVE CONTROL FOR A SWARM OF FIXED WING UAVS 

 

Fig. 6  Aircraft trajectories 

 

 

Fig. 7 Comparison Aircraft 1 trajectories 

Finally, to verify that during the mission 

the aircraft real position reach the shape 

formation, we introduce the following error 

index 

𝐸𝑡
[𝑖] = ‖𝑧𝑡

[𝑖] − 𝑧𝑡
[1]

− 𝑙[𝑖] [cos 𝛼[𝑖]

sin 𝛼[𝑖]
]‖ (21) 

Fig. 9 shows that before and after the obstacles 

the error indices decrease because the aircrafts 

are composing the formation. Because of the 

maneuvers to avoid the obstacles the formation 

is broken and the indices increase. 

 

 

Fig. 7 Verification collision avoidance constraints 

 

Fig. 8 Error indices 

7. Conclusions 

In this paper, an algorithm for the control of a 

swarm of UAVs based on decentralized MPC 

has been proposed. The first step of the 

algorithm consists of the calculation of the 

trajectory of each UAV so as to take into 

account the obstacles and the constraints on the 
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aircraft performance. Then optimal guidance 

laws are calculated based on a robust MPC 

algorithm. Some numerical simulations show 

the effectiveness of the proposed approach. 
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