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Abstract
Estimation of temperature-dependant thermal
conductivity of material is a typical inverse heat
conduction problem. The temperature range can
be divided into several segments and the
thermal conductivity is linearly interpolated
from the thermal conductivities on these
segment points whose values are to be estimated
by Genetic Algorithm(GA) method from some
measurement information. However, under
some circumstances such as the measurement
noise being significant, some unphysical results
of significant oscillation may come out of the
estimated result. So, in this paper, physical
constraints that the thermal conductivity value
should be greater than zero and not decrease
with the temperature rise are taken into the
estimation method of GA with two strategies.
One is to estimate the non-negative incremental
value of the thermal conductivity with the
temperature rise, the other is to implement the
penalty function in the estimation process. From
the numerical results of examples, it can be
found that the constrained estimation methods
of both strategies are feasible and effective, and
the estimated values of both strategies are
agreeable and generally better than the
constraint-free result. The estimated result
reflects the basic temperature-dependant
characteristic of the material well and the
method is of good prospect in engineering
practices.

1 Introduction
Determination of the thermal conductivity value
of the structural material plays an important role
on the prediction of heating environment and
heating response of airplane and aerospace
vehicles. Presently, the prevailing methods to
get the thermal conductivity of material include
the flashing method, steady state measurement
method, and sensitivity method [1,2]. In these
methods, the thermal conductivity is assumed to
be a constant or a predetermined function of
temperature. But in many engineering
circumstances, this assumption is not rational
and under some circumstances, the steady state
is difficult to be realized in the experiments. So,
when the temperature-dependant function of the
thermal conductivity is unknown, the thermal
conductivity is discretized in different
temperature ranges and estimated from the
boundary or interior temperature measurements
by bisearch method, complex-variable-
differentiation method, and Genetic
Algorithm(GA) in the references[3][4][5].
However, it is found in practice that when the
measurement noise is significant or there are
some deviation between the computational
model and the real physics of the heat
conduction problem, the estimated result may
exhibit significant numerical oscillation, and
even the unphysical result that the value of the
thermal conductivity is less than zero may come
out. So, it’s necessary to implement some
constraints in the estimation process such as the
value of the thermal conductivity should be
greater than 0, and for many common-used
materials the value of thermal conductivity
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should not decrease with the temperature rise.
Based on this idea, in this paper, the GA method
used to estimate the thermal conductivity is
modified to take the physical constraints into
account, and some examples are studied.

2 Mathematic model

Fig.1 Sketch of thermal conductivity estimation

As far as a typical one dimensional heat
conduction problem in Fig.1 is concerned, when
the temperatures or heat flux are specified at the
left and right boundaries, the temperature
measurements at the interior points can be used
to estimated the thermal conductivity of
material. Without losing generality, when the
temperature boundary conditions are given at
the both boundaries and the temperatures at
interior points of xi(i=1,P) are measured, the
control equations can be written as
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where  is the material density, Cp is the heat
capacity per unit volume and v is the
measurement noise. k(T) means the thermal
conductivity of material is temperature-
dependant.
If the temperature-dependant function of k(T) is
not clearly known a prior, the discretized
expression can be utilized. i.e., the whole
temperature range is divided into several
segments and the thermal conductivity in every
segment is assumed to be a linear function of
temperature, illustrated in Fig.2. So, when there

are M interval nodes in the whole temperature
range discretization, the thermal conductivity
can be expressed as,
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where  i are the base functions for linear
interpolation,
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Fig.2 Sketch of temperature-dependant thermal
conductivity

Provided the ki(i=1,M) known, the Eq.(1) can be
solved with Finite Control Volume(FCV) [1]

method. But for the inverse problem, when ki
are unknown, the measurement equations,
Eqs.(2), should be used to estimate the ki values
by changing the inverse problem to an
optimization problem to minimize the following
objective function,
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where ),,( 1 Mkkk 

 , [0, tf] is the time span of

measurement and wi are the weighting factors.
The optimization algorithm is presented as
follows.

3 Genetic Algorithm to Estimate Thermal
Conductivity
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Generally, for the optimization problem of
Eq.(3), two methods often can be used. One is
the gradient-based method, the other is the GA.
Because the gradient-based method is sensitive
to the initial value and prone to reach local
extremum point in the optimization process
when the number of parameter is large, the GA
is utilized to carry out the optimization in this
work. The GA method is robust and capable of
finding the global extremum point of
optimization theoretically. The basic underlying
principle of GA is that of the Darwinian
evolutionary principle of natural selection,
wherein a population consisting of individuals
which is composed of the parameters to be
estimated is generated randomly and evolved
according to the individual’s objective function
J, or the fitness value defined as

F=1/J or
F=a-J (a is a large positive value) (5)

And the fittest individuals survive and are
favored to produce offspring, which is analogy
to the law of ”the survival of the fittest”. Then
after several generations of evolution, the
individual in the final population with the best
fitness can be obtained as estimated result. The
detailed evolution algorithm for the thermal
conductivity estimation problem is presented as
follows.
(1) Use the binary coding rule to turn the
parameters ki (i=1, M) to sequential binary code
strings, called as “chromosome”. Each string
represents a solution point in the search space,
and is composed of sub-strings that are
analogous to genes.
(2) Generate the initial population consisting of
N samples randomly with binary coding method.
Perform the direct heat conduction problem
solving for every sample in the population, and
get the objective function and fitness of every
sample with Eq.(4) and Eq(5).
(3) By weighted roulette wheel method, select
new samples from current population and copy
strings with regard to their fitness, to generate
the next population.
(4) Perform the crossover and mutation
operations on the new population.
(5) Solve the direct heat conduction problem
for every sample in the new population. The
new population usually has higher fitness values,

which means that the population improves from
generation to generation. Then, find the
individual with the best fitness value, and
decide the evolution is convergent or not. If
convergent, stop the population’s evolution,
otherwise, return to step(3) to continue the
evolution.
Two numerical examples are given as follows.
The first example is the heat conduction
problem of a plate with a constant heat flux Q at
x=0 and insulted at x=L, there exist analytical
temperature results of boundary and internal
points when the thermal conductivity is a
constant. So when these analytical temperatures
at the left and right boundaries are given as
boundary conditions and the analytical
temperature at the middle point x=0.5 is both
directly used and added with white noise as
measurement, the thermal conductivity can be
estimated by the aforementioned method. In the
example, L=1, Cp=1, Q=1, and the exact value
of thermal conductivity is 1. Table 1 shows the
estimated result for three cases. The first case is
that the analytical temperature at x=0.5 is
directly used as measurement(denoted
as ”  =0”), and in the other two cases, the
analytical temperature at x=0.5 are added with
the white noises whose standard deviation are
1% and 5% of the maximum temperature value
respectively to simulate the measurements. The
results show that the estimated value agrees
with the exact value, even when the standard
deviation of measurement noise is 5% of the
maximum temperature value, the difference
between the estimated and exact value is less
than 3%, which verifies the feasibility of both
the FCV and the GA methods.

Table 1 Exact and estimated values of const thermal
conductivity

Exact
value

Estimated values

=0 =1%Tmax

(x=0.5)
=5%Tmax

(x=0.5)
k 1.0 1.0005392 1.0054315 1.0249013

In the second example, the basic parameters are
given as,  =1000kg/m3, Cp=1000J/kgK,
L=0.01m, T0=600K, the left and right
temperature boundary conditions are shown as
“x=0” and “x=10mm” in Fig.3. Two
measurement points locate at the positions of
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x=3mm and x=6mm. When the Ti and ki values
of thermal conductivity in Eq.(3) are given in
the first two rows in Table 2, the temperature

histories at the two measurement points can be
calculated, shown as “x=3mm” and “x=6mm” in
Fig.3.

Table 2 Specified temperature-dependant thermal conductivity and estimation results
Temperature Ti(i=1,5) 600K 700K 800K 900K 1000K

Exact values of thermal conductivity ki(i=1,5) 1.0 1.01 1.1 1.38 2.0

Estimated values of ki (without constraints)
=0 0.99914 1.008 1.1047 1.3742 2.0042
=4K 1.1561619 0.9800952 1.0812671 1.4738692 1.9721296
=10K 1.3942136 0.9470426 1.0345725 1.6438015 1.9117926

Estimated values of ki (Incremental method) =4K 1.025508 1.025508 1.033474 1.478722 1.911060
=10K 1.007471 1.007471 1.007471 1.499597 1.829573

Estimated values of ki (Penalty method) =4K 1.0342977 1.0343893 1.0343893 1.4865043 1.9250686
=10K 0.9874199 0.9874199 0.9875115 1.4949276 1.7783006
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Fig.3 Temperatures of boundary condition and
measurement points
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Fig.4 Temperatures with measurement noise
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Fig.5 Estimated value of thermal conductivity

As for the inverse problem, the calculated
temperature histories at the two measurement
points are both directly used and added with
white noise of standard deviation of 4K and
10K to be used as measurement data to estimate
the thermal conductivity. In the GA algorithm,
the population is chosen as 50 and the
probabilities for crossover and mutation being
0.8 and 0.05 respectively. The results are shown
in Fig.5 and Table 2, and it can be seen that,
(1) When the measurement noise is not added to
the calculated temperature histories, the
estimated result of agrees with the given value
well, the relative error is less than 5‰，which
also validate the effectiveness of the estimation
method.
(2) When the measurement noise is considered,
there exhibit some significant oscillations in the
estimated results. Especially, the estimated
value of k1 is greater the value of k2、k3 and k4,
which is significantly different from the real
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physical situation. So, in the next section, some
physical constraints of the thermal conductivity
are taken into account in the estimation
algorithms.

4 Estimation method with physical
constraints taken into account
Physically, the value of the thermal conductivity
of a material should be greater than 0, and
generally, the value of the thermal conductivity
may not decrease with the temperature rise. So,
in the estimation algorithm, these two typical
physical constraints are taken into account in the
estimation algorithms. As for the first constraint,
it can be implemented straightforwardly in GA
by setting the lower range bounds of the
parameters to be estimated to be greater than 0.
For the second constraint, it can be implemented
by the following two strategies.

4.1 Incremental method(IM)
The basic idea of this method is that instead of
the absolute value of ki (i=1,M), the value k1 and
the incremental values  ki (i=2,N) are to be
estimated and the values of ki are required to
be not less than 0. i.e.,

ki=ki-ki-1， ki 0 （i=2，M） (6)

With Eq.(5), the constraint of thermal
conductivity does not decrease with the
temperature rise can be satisfied.

4.2 Penalty method(PM)
The basic idea of implementing this method in
GA is to exert some penalty functions, being
positive values, on the objective function to
reduce the sample’s fitness value when the
constraint is not satisfied, and in GA the
probability of the sample to be selected in the
next generation can be greatly reduced. In
contrary, without penalty added, the sample
satisfying the constraint may have a larger
fitness value, letting it won more opportunities
to be selected and evolved in the following
generations. Then, when the evolution is
converged, the sample satisfying the constraints
and with large fitness value can be obtained as
estimated result. In this problem, the constraint

of thermal conductivity does not decrease with
the temperature rise can be rewritten as,

For km,m[1,M-1],knkm,n[m+1,M] (7)

And the objective function of Eq.(4) turns to,
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where  is the penalty factor and its value may
play an important role on the estimated result.
When the value is small, the effect of penalty
function may be neglected in selection process
of GA and the constraints still be violated in the
estimated result. While when the value is large,
many potentially eligible individuals may be
abandoned in the early generations of GA
evolution because the constraints are slightly
violated. So, in practices, this value should be
adjusted according to that whether the estimated
result satisfy the constraints or not.

5 Results
Still taken the second example with
measurement noise considered in Section 2 to
be studied, both IM and PM are implemented in
GA to estimate the thermal conductivity with
physical constraints. Especially, in IM, the
parameters to be estimated are k1, k2, k3, k4,
k5; and in PM, the penalty factor  is chosen to
be 100. The estimated results are tabulated in
Table 2 and shown in Fig.6(a)(b) denoted
as ”GA(With IM)” and ”GA(With PM)”
respectively. It can be found that, first, under
these two circumstances of different
measurement noise level, the estimated values
of both ”GA(With IM)” and ”GA(With PM)”
satisfy the two constraints that the value should
be greater than 0 and not decrease with the
temperature rise, and this results verify the
feasibility of the estimation method of GA
accompanied with IM and PM. Second, When
the measurement noise increase, the deviation
between the exact values and estimated results
increase, but generally speaking the estimated
results agree with the exact values well such as
for the =10K case, the deviation between the
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exact values and estimated results is less than
10%. Third, the estimated values of
both ”GA(With IM)” and ”GA(With PM)” are
basically close, but from the view of algorithm
development, the IM is simple, convenient,
without free parameter while it’s experiential to
determine the value of the penalty factor in the
PM.
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Fig.6 Estimated value of thermal conductivity with
constraints taken into account

Conclusion
In this paper, two physical constraints that the
thermal conductivity value should be greater
than zero and the value should not decrease with

the temperature rise are taken into the
conventional estimation method of GA to
develop a constrained estimation method with
two strategies. One is to estimate the
incremental values of the thermal conductivity
with the temperature rise and restrict the
incremental values to be not negative. The other
is to implement the penalty function on the
objective function in the GA evolution when the
estimated parameters violate the constraints.
From the numerical results of examples, it can
be found that when the constraints is not
considered, there exhibit some significant
oscillations in the estimated results for the case
with large measurement noise, and when the
constraints is considered in estimation algorithm,
the estimated results agree with the exact values
well. This constrained estimation method may
have a bright prospect in engineering practices.
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