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Abstract  

For the design of aircraft engines in service life 

it is helpful, in terms of computing time 

reduction, to perform simulations with 

simplified plane cracks geometries subjected to 

simple loads, often polynomial. This work 

focuses on a realistic method of estimating the 

stress intensity factor KI based on the physics of 

the phenomenon.  

The stress intensity factor solution is determined 

from finite elements simulations. For each crack 

geometry, for a given size of the plate in which 

the crack propagates and for a given stress field 

applied to the plate, the stress intensity factor is 

determined with a test matrix. 

The aim of this paper is to give a methodology 

which leads to improve the interpolation of 

tabulated values of KI so that it is more 

representative of the fracture mechanics. For 

this, a finite element based approach is used, 

but with shape functions more adapted to the 

fracture mechanics problem.  The algorithm is 

inspired by soap bubbles mathematics. 

1  Introduction  

In this paper, we focus on an approach to 

determine quickly and accurately enough, the 

stress intensity factors from the data concerning 

the geometry of the propagation plane, loading 

applied to the propagation plane and geometry 

of the crack. 

Before describing the outline of our 

methodology, let's introduce the Bueckner’s 

principle [1, 2]. This principle makes equivalent 

the problem of the initial cracked structure (a) to 

the superposition of two other problems. The 

first (b) is identical to the original one except 

that it contains no crack. In the second (c) the 

load is applied at the lips of the crack such that 

the superposition of the stress field induced by 

both problems leads to a zero load on the lips of 

the crack. The load applied on the lips of the 

crack in the problem (c) is the load which will 

be considered next. Moreover, the stress 

intensity factor of the problem (a) is equal to 

that of the problem (c) since that of the problem 

(b) is equal to zero. 

Typically, engineers replace the original real 

cracking problem with a more simple to solve. 

For example, the crack geometry may be  

semi-elliptical or quarter-elliptical. Further 

simplification is to consider that the loading 

applied to the propagation plane can be 

represented with good accuracy by a polynomial 

stress field of degree 6 (bi- or mono-

dimensional). More general approaches such as 

those on weight functions [3] will not be 

discussed here. 

Several formulas for the stress intensity factor 

are used at Safran Aircraft Engines. Those that 

will interest us in this work are detailed in the 

following table: 
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Fig. 1. Bueckner’s principle. 

 

Both stress intensity factor solutions were 

determined from numerical simulations by finite 

element method. For each crack geometry, for a 

given size of the crack plane and a stress field 

applied to the crack plane, giving a matrix of all 

cases to simulate the stress intensity factor was 

determined. The identification of the stress 

intensity factor solution is based on the 

following formula: 

𝐾𝐼 =  𝜎. 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) .
𝐹𝑊
𝐸𝑘
. √𝜋. 𝑎

 (1) 

Thus the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) factor is determined for each 

of the numerical cases studied, with: 

𝐸𝑘 = 

{
 
 

 
 
√1 + 4,464. (

𝑎

𝑐
)
1,65

 𝑖𝑓 𝑎 ≤ 𝑐

√1 + 4,464. (
𝑐

𝑎
)
1,65

 𝑒𝑙𝑠𝑒

 (2) 

𝐹𝑊 = 
1

√𝑐𝑜𝑠

(

 

𝜋
2 . 𝑐.

√
𝑎
𝑇

𝑊

)

 

 

(3) 

The current method is to extrapolate 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) 

linearly between the discretized values in order 

to get a continuous field. 

The work presented in this paper is to improve 

the previous interpolation so that it is more 

representative of the physics of the problem, 

thanks to the soap bubbles mathematics. 

2 Numerical considerations  

2.1 Analogy between a mesh and a grid data 

For interpolation, a finite element approach is 

used, but with shape functions "adapted" to our 

problem. The discretization is now seen as a 

finite element mesh with quadrangular 

elements. In each node of the mesh, the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) 

factor is known and its partial derivatives with 

respect to a/T and a/c have to be determined. 

The convention defined by the graph for the 

numbering of nodes for a given element will be 

adopted in the next. 

In this approach all degrees of freedom are 

determined at the nodes defined by the 

discretization. An element of type C2-Q5 will 

be used (continuity of second partial derivatives 

in the element with polynomial shape functions 

of degree 5). 36 degrees of freedom are needed 

in order to transmit the regular property from 

the element scale to the mesh in its entirety [4]. 

Each node is associated with 9 degrees of 

freedom corresponding to the nodal values of 

the function 𝛷 (𝑥 = (
𝑎

𝑇
)
𝑖 𝒓𝒆𝒅𝒖𝒄𝒆𝒅

, 𝑦 = (
𝑎

𝑐
)
𝑖 𝒓𝒆𝒅𝒖𝒄𝒆𝒅

) 

(represent 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) and its derivatives in reduced 

coordinates). 

= +

Cracked body
External 

loading

Uncracked body

(a) (b) (c)

= +

Cracked body
External 

loading

Uncracked body

(a) (b) (c)
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Fig. 2. Discretized values seen as a mesh. 

2.2 1D shape functions 

The 2D shape functions of this element are built 

from the following 1D polynomial shape 

functions: 

{
 
 
 
 
 

 
 
 
 
 𝐶1,1(𝑥) =

0,5 − 0.9375. 𝑥

+0,625. 𝑥3 − 0,1875. 𝑥5

𝐶1,2(𝑥) =
0,3125 − 0.4375. 𝑥 − 0.375. 𝑥2

+0,625. 𝑥3 + 0,0625. 𝑥4 − 0,1875. 𝑥5

𝐶1,3(𝑥) =
0,0625 − 0.0625. 𝑥 − 0.125. 𝑥2

+0,125. 𝑥3 + 0,0625. 𝑥4 − 0,0625. 𝑥5

𝐶2,1(𝑥) = 0,5 + 0.9375. 𝑥 − 0,625. 𝑥
3 + 0,1875. 𝑥5

𝐶2,2(𝑥) =
−0,3125 − 0.4375. 𝑥 + 0.375. 𝑥2

+0,625. 𝑥3 − 0,0625. 𝑥4 − 0,1875. 𝑥5

𝐶2,3(𝑥) =
0,0625 + 0.0625. 𝑥 − 0.125. 𝑥2

−0,125. 𝑥3 + 0,0625. 𝑥4 + 0,0625. 𝑥5

 (4) 

The first index indicates the node number on 

which the nodal value is taken. 

The second index indicates the nature of the 

nodal value: 

 1 : nodal value of  

 𝛷 (𝑥 = (
𝑎

𝑇
)
𝑖 𝒓𝒆𝒅𝒖𝒄𝒆𝒅

, 𝑦 = (
𝑎

𝑐
)
𝑖 𝒓𝒆𝒅𝒖𝒄𝒆𝒅

) 

 2 : nodal value of the derivative of   

𝛷 (𝑥 = (
𝑎

𝑇
)
𝑖 𝒓𝒆𝒅𝒖𝒄𝒆𝒅

, 𝑦 = (
𝑎

𝑐
)
𝑖 𝒓𝒆𝒅𝒖𝒄𝒆𝒅

)  with 

respect to x 

 3 : nodal value of the second derivative of  

𝛷 (𝑥 = (
𝑎

𝑇
)
𝑖 𝒓𝒆𝒅𝒖𝒄𝒆𝒅

, 𝑦 = (
𝑎

𝑐
)
𝑖 𝒓𝒆𝒅𝒖𝒄𝒆𝒅

)  with 

respect to x 

The 1D element associated with these shape 

functions is defined so that the first node is 

located at x = -1 and the second at x = 1. 

 

 

 
 

 

Fig. 3. 1D Interpolating functions and their derivatives. 

2.3 2D shape functions 

2D shape functions are products of the 

preceding elementary functions. The final 

interpolation is written as the dot product of two 

vectors, one of which contains all the necessary 

information regarding the computation of 𝛷  at 

nodes. 
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Fig. 4. Mathematical representation of 𝜱 

The following notation is used for Ф, the top 

index is the node number for which the nodal 

value is given and the low index refers to 

variables against which the partial derivative is 

calculated. The reference element thus defined 

is square and its boundaries are the boundaries 

of the domain [-1, 1] × [-1, 1]. 

Here are some visualizations of 2D shape 

functions associated with the unit nodal values 

at the node 1. For other nodes, the shape 

functions are similar to those associated with the 

node 1. 

 

 

 

Fig. 5. Example of shape functions associated with the 

first node 

2.4 Contributions of such an approach 

When the test field associated with an element 

is equal to 1 with the derivatives equal to 0 at 

nodes: 

• A constant field is obtained as expected 

• This is the result obtained with a linear 

interpolation as that used in the previous 

version of our tools. 

When the test field and its derivatives are equal 

to 1 at nodes: 

• Complex shape field 

• The shape cannot be represented by a 

simple linear interpolation. 

The advantages of this interpolation method: 
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• C2 regularity of Ф in the common 

boundary of two elements. This property 

is extended to the whole mesh. 

• Possibility to calculate the curvatures 

on the surface (possibility to optimize 

the smoothing). 

(a)  

(b)  

Fig. 6. Examples of smoothing functions:  

(a) case where the field values to the nodes are the same 

with derivatives equal to zero in the same nodes,  

(b) case where the field values and its derivatives to the 

nodes are the same. 

2.5 Drawbacks of such an approach 

Several numerical simulations were performed 

taking into account the distribution of 

discretized values of 
𝑎

𝑇
 and 

𝑎

𝑐
 : 

{

𝑎

𝑇
∈ {0,1; 0,2; 0,4; 0,6; 0,8}

 
𝑎

𝑐
∈ {
0,1; 0,2; 0,4; 0,6; 0,8;
1; 1,2; 1,5; 2; 5; 10

}
 

 

(5) 

However, the results of this regular grid led to 

smoothing of the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
)  factor with very 

pronounced spatial oscillations. The problem 

was not the code or the process, but the intervals 

defined by the discretization introduce scale 

effects induced by the different dimensions of 

the elements. To solve this problem, we had to 

introduce a virtual mesh leading to the same 

dimension of the elements: 

{

𝑎

𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙
∈ {1; 2; 3; 4; 5}

 
𝑎

𝑐𝑣𝑖𝑟𝑡𝑢𝑎𝑙
∈ {
1; 2; 3; 4; 5; 6;
7; 8; 9; 10; 11

}
 

 

(6) 

In the next section 
𝑎

𝑇
  is designate instead of 

𝑎

𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙
 and 

𝑎

𝑐
 instead of 

𝑎

𝑐𝑣𝑖𝑟𝑡𝑢𝑎𝑙
. The transition 

from virtual to real mesh will be specified soon. 

3 Operating soap bubbles mathematics 

3.1 Mesh with only one element 

The aim is to get a smooth surface through the 

discretized values of the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
)  factor to the 

nodes of the element. The element selected is of 

kind C2-Q5, which implies that smoothing is 

regular. However, to obtain the most natural 

surface, one possibility is to minimize the 

surface of the smoothing and the local 

curvatures induced. The following functional is 

proposed: 

𝑱𝒆𝒍𝒆𝒎 =∬ µ(𝑢, 𝑣). 𝜴(𝑢, 𝑣). 𝑑𝑢. 𝑑𝑣
 

𝑆 𝑒𝑙𝑒𝑚

,

𝑤𝑖𝑡ℎ 𝑢 =
𝑎

𝑇
 𝑒𝑡 𝑣 =  

𝑎

𝑐

  
(7) 

To understand the different terms in this 

expression, some recalls of differential 

geometry are presented. The infinitesimal 

volume element can be written from the 

coefficients of the first fundamental form 

characterizing the surface. Thus: 

𝒅𝑺 = √𝑬(
𝑎

𝑇
,
𝑎

𝑐
) . 𝑮 (

𝑎

𝑇
,
𝑎

𝑐
) − 𝑭(

𝑎

𝑇
,
𝑎

𝑐
)
𝟐

. 𝒅 (
𝑎

𝑇
) . 𝒅 (

𝑎

𝑐
)  

(8) 

with µ (
𝑎

𝑇
,
𝑎

𝑐
) = √𝑬 (

𝑎

𝑇
,
𝑎

𝑐
) . 𝑮 (

𝑎

𝑇
,
𝑎

𝑐
) − 𝑭 (

𝑎

𝑇
,
𝑎

𝑐
)
𝟐

. 

From the second fundamental form (coefficients 

H and K), the mean square radius is defined by: 

𝛺 =
𝑘1
2 + 𝑘1

2

2
= 2.𝐻2 − 𝐾 (9) 

So 𝑱𝒆𝒍𝒆𝒎  can be seen as a kind of curvature 

energy that is to be minimized. The link with 

the physics of soap bubbles is thus cleared. 
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Indeed, the geometry of a soap bubble can be 

deduced from a problem of energy minimization 

quite similar to that which has just been stated. 

3.2 Constraints of discretized data 

In practice, discretized values of the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) 

factor of the stress intensity factor at the nodes 

of the mesh are given. Therefore, in order to 

take into account it, it is required that the first 

node value associated with a node n is equal to 

the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) factor of this node. This nodal value 

will never change during iterations of the 

algorithm. 

Now our definition of gradient vector and 

Hessian matrix can be justified. These are 

constructed from derivatives relatively to the 

nodal values except those that match the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) 

factor at nodes (those we have set here actually). 

Now, it can be understood why these particular 

nodal values no longer vary in the algorithm and 

can no longer be considered as variables. 

Express a derivative with respect to these nodal 

values would therefore have no relevance. 

3.3 Optimization algorithm 

The smoothing optimization algorithm uses a 

Newton coupled to a linear search method. This 

is described below: 

 

Algorithm:  
Initialization: Equalize the concerned 

nodal values with those of the 

discretized 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) factor. Initialize other 

nodal values at 10
-3

. 

Until the arrest criterion is not 

reached, do: 
a) Find the search direction 𝑑𝑘 with 

𝑯(𝐽(𝑈𝑘)) . 𝑑𝑘 = −𝑮𝒓𝒂𝒅 (𝐽(𝑈𝑘)) 

b) Find  𝛼𝑘 which minimizes 

𝜱(𝛼𝑘) = 𝑱(𝑈𝑘 + 𝛼𝑘 . 𝑑𝑘) (the linear search 

step) 

c) Compute 𝑈𝑘+1 = 𝑈𝑘 + 𝛼𝑘. 𝑑𝑘 

𝑈𝑘 is the vector encompassing all nodal values at 

the kth iteration of the algorithm. 𝑯(𝐽(𝑈𝑘)) and 

𝑮𝒓𝒂𝒅 (𝐽(𝑈𝑘))  are, respectively, the Hessian 

matrix and the gradient vector associated with 

the functional to minimize at the kth iteration. 

4 A method to move from virtual to real 

representation 

4.1 Introduction 

Earlier the discretized values in 
𝑎

𝑇
 and 

𝑎

𝑐
 for 

which the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
)  factor was obtained 

numerically by finite element method had been 

presented. These discretized coordinate values 

are the same for both forms of study (semi-

elliptical and quarter-elliptical crack): 

{

𝑎

𝑇
∈ {0,1; 0,2; 0,4; 0,6; 0,8}

 
𝑎

𝑐
∈ {
0,1; 0,2; 0,4; 0,6; 0,8;
1; 1,2; 1,5; 2; 5; 10

}
 

 

(10) 

Now, to avoid some numerical instabilities, one 

solution is to determine the smoothing on virtual 

coordinates that lead to identical dimensions 

elements: 

{

𝑎

𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙
∈ {1; 2; 3; 4; 5}

 
𝑎

𝑐𝑣𝑖𝑟𝑡𝑢𝑎𝑙
∈ {
1; 2; 3; 4; 5; 6;
7; 8; 9; 10; 11

}
 (11) 

A method to move from virtual coordinates to 

real coordinates without degrading regularity of 

the smoothing will be given in the next. 

4.2 Solution of the problem 

4.2.1 Definition of the metrics 

To simplify the notation, the following 

associations will be made: 𝑥 =
𝑎

𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙
, 𝑋 =

𝑎

𝑇
, 

𝑦 =
𝑎

𝑐𝑣𝑖𝑟𝑡𝑢𝑎𝑙
, 𝑌 =

𝑎

𝑐
. The resolution of the problem 

needs the introduction and determination of 

metrics characterizing the problem: 

{
 

 𝑑𝑋 = 𝑓(𝑥). 𝑑𝑥 ⇒
𝑑𝑋

𝑑𝑥
= 𝑓(𝑥)

 𝑑𝑌 = 𝑔(𝑦). 𝑑𝑦 ⇒
𝑑𝑌

𝑑𝑦
= 𝑔(𝑦)

 (12) 

For the regularity of a smoothing to be 

preserved, it is necessary that the two functions 

introduced either are continuous with the first 

derivative continuous also. To reuse what's 

already been done, the one-dimensional shape 

functions presented previously is used. More 
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specifically, these functions serve to represent 

the primitive of 𝑓(𝑥) and 𝑔(𝑦), respectively, 𝐹(𝑥) 

and 𝐺(𝑦). 

Thus, in the j
th

 element:  

{
 
 
 

 
 
 𝑧 =

𝑥 − 𝑥𝑗+1

𝑥𝑗+1 − 𝑥𝑗
+

𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗

𝐹𝑗(𝑧) = (

𝐹11
𝑗
. 𝐶1,1(𝑧) + 𝐹12

𝑗
. 𝐶1,2(𝑧)

+𝐹13
𝑗
. 𝐶1,3(𝑧) + 𝐹11

𝑗+1
. 𝐶2,1(𝑧)

+𝐹12
𝑗+1
. 𝐶2,2(𝑧) + 𝐹13

𝑗+1
. 𝐶2,3(𝑧)

)

𝐹(𝑥) = 𝐹𝑗(𝑧)

 (13) 

{
 
 
 

 
 
 𝑧 =

𝑥 − 𝑥𝑗+1

𝑥𝑗+1 − 𝑥𝑗
+

𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗

𝐺(𝑥) = (

𝐺11
𝑗
. 𝐶1,1(𝑧′) + 𝐺12

𝑗
. 𝐶1,2(𝑧′)

+𝐺13
𝑗
. 𝐶1,3(𝑧′) + 𝐺11

𝑗+1
. 𝐶2,1(𝑧′)

+𝐺12
𝑗+1
. 𝐶2,2(𝑧′) + 𝐺13

𝑗+1
. 𝐶2,3(𝑧′)

)

𝐺(𝑥) = 𝐺𝑗(𝑧)

 (14) 

To determine the unknown parameters of the 

metrics in each item uniquely, some 

relationships have to be determined. The goal is 

to have one relationship between the two 

representations so that there is no gain or loss of 

information. 

4.2.2 Metrics compatibility with scales of the 

real and virtual elements 

To simply understand the validity of these 

relationships, the reader can rely on the 

following figure. 

 

Fig. 7. Example of 1D mesh:  

a) mesh in the real space, 

b) mesh in the virtual space. 

Only the equations on the function 𝐹(𝑥) will by 

presented. Those on 𝐺(𝑦)  are deduced by 

analogy with the same approach. 

The first equation to satisfy concerns the 

position of the node 1: 

𝐹(𝑥1) = 𝐹1(𝑧(𝑥1)) = 𝑋1 (15) 

The properties of the shape functions, lead to 

𝐹11
1 = 𝑋1. 

It is possible to prove the following formulas by 

simple deduction for a mesh with N elements: 

{
 
 

 
 𝐹(𝑥𝑗) = 𝐹𝑗 (𝑧(𝑥𝑗)) = 𝐹𝑗−1 (𝑧(𝑥𝑗))

𝐹(𝑥𝑗) = 𝐹11
𝑗
= 𝐹21

𝑗−1
= 𝑋𝑗                     

, 𝑓𝑜𝑟 𝑗 ∈ ⟦1; 𝑁⟧

𝐹(𝑥𝑗) = 𝐹𝑗−1 (𝑧(𝑥𝑗)) = 𝐹21
𝑗−1

= 𝑋𝑗 , 𝑓𝑜𝑟 𝑗 = 𝑁 + 1

 (16) 

4.2.3 Minimization of curvature energy on the 

degrees of freedom to be determined 

The previous equations can reduce the number 

of degrees of freedom and allow the 

correspondence between the nodes of real-

dimensional mesh and those of the virtual mesh. 

Nevertheless, it remains to identify a bijective 

relationship between the two representations for 

points between nodes. 

By analogy with what was presented in the 

previous section, the functional to minimize is 

(if the mesh consists of n-1 element): 

𝑊𝑥 = ∫ √(1 + (𝑓(𝑢))
2
) . (𝜅(𝑢))

2
. 𝑑𝑢

𝑥𝑛

𝑥1

 
(17) 

Solving this optimization problem will be 

analogous to what was proposed in the previous 

sections. 

5 Results 

Some results are shown in the following figures. 

The case of a quarter-elliptical crack loaded 

with a uniform stress field and the 𝐹𝐼 (
𝑎

𝑇
,
𝑎

𝑐
) factor 

corresponds to the point c is considered. On the 

left figure it is shown that gives a classic linear 

interpolation between finite element results. 

Right, the same input data is used but the 

smoothing corresponds to the method presented 

in this article. The result is much smoother. 
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(a)  

(b)  

Fig. 8. Interpolation of the 𝑭𝑰 (
𝒂

𝑻
,
𝒂

𝒄
) factor:  

(a) linear interpolation,  

(b) the present methodology. 

The figure below shows the differences between 

the two kinds of smoothing. The latter may 

reach 5% in this example and this impact with 

the same order of magnitude the stress intensity 

factor. And we therefore highlight the 

fundamental role of smoothing in the context of 

the life computed in crack propagation. While 

smoothing impact the stress intensity factor, it 

will impact inevitably the life computed. 

 

Fig. 9. Gap field between the two methods. 

6 Conclusions 

The method proposed should not be seen as a 

way to restore the stress intensity factor 

accurately. It is only a smoothing proposal 

which nevertheless seems more natural and 

physical than linear interpolation. 
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