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Abstract  

This paper introduces a method to realize the 
fairing design of wing structure. Through the 
definition of energy function of structure, the 
structure fairing degree is defined quantitatively. 
At the same time, analytical derivative formula 
of energy to design variables has been derived. 
The quick sensitivity analysis of objective 
function to design variables and genetic 
algorithm are combined to realize the 
optimization. A composite structure application 
finally proves the method’s efficiency.  

1 General Introduction 
The performance of civil aircraft mainly 
depends on the accurate aerodynamic design of 
wing. It is desired that the actual wing shape 
keep consistent with the ideal shape. In order to 
obtain the best aerodynamic shape after wing 
deformation at cruise state, it is necessary to 
design the jig shape accurately. The jig shape 
generally is calculated from the ideal cruise 
shape iteratively. However, for the concentrate 
load from the engine, which causes the 
revulsion of shear distribution, the bending 
moment and torsion moment, it induces the 
local unfairness of the wing structure. Therefore, 
it is necessary to optimize the wing structure to 
keep the wing shape fairing. 

 
Fig. 1.Concentrate load from the engine 

2 Optimization Method and Process 
“Fairing” is a concept from engineering, which 
is different from “smooth” of mathematics. If 
the wing shape is not fairing, it can neither 
fulfill the aerodynamic design nor the 
manufacture demand. Smooth often refers to the 
continuity or geometry continuity of curve or 
surface which is defined mathematically and has 
rigid mathematical definition. Fairing includes 
the property of continuity, but emphasizes more 
on functional demand, such as aerodynamic, 
manufacture and dynamic. In the overall fairing, 
the widely used method is energy method[1-2] 

that is to make the energy of the line minimized 
or optimized with the proper constraints. 

The wing is usually designed based on the 
rectilinear generator method. Fairness of the 
wing can be evaluated by the structure along the 
spanwise (approximately along the rectilinear 
generator). The chordwise stiffness is provided 
by the ribs and the length chordwise is 
obviously shorter than the spanwise, so the 
fairing problem along the chordwise aroused by 
the engine could be ignored. 

This paper adopts the energy method to 
evaluate the fairness of the structure. The energy 
method of dispersed points has been well 
studied. However, these methods are often 
applied in ship, automobile and other products. 
The application in wing structure is rarely 
reported. 

The method is given by formula 1[3]. The 
points marked with 1.1,1.2….m.n are type value 
points and a set of points along the spanwise 
constitute a type value line marked with 
1,2 …m in Fig. 2. 
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Fig.2.Definition of type value points of the wing    
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In equation one, Ec is the energy of the 
spanwise structure. 
݈௜ ൌ ԡ݌௜ െ ௜ିଵԡ݌ is the length of spanwise 

vector formed by the adjacent points. 
݁௜ ൌ

ԡ௣೔ି௣೔షభԡ
௟೔

is the unit vector of the 
adjacent points of type value point set. 

The more closer to zero of Ec, the more 
fairing the structure is. 

The fairing optimization of the wing 
structure at cruise state is to minimize the  
energy function with the minimum weight 
increment. The question can been described as: 

Min     EC 
St.      w≤[w] 
For the composite wing, the design 

variables are the thickness increment Δxk of each 
ply orientation.  

This energy optimization is often used in 
fairing of curve and surface in which the genetic 
algorithm(GA)[4] is directly applied. This paper 
derives the analytical derivative form of this 
equation. The sensitivity of the energy 
functionis acquired with the analytical equation 
and with the sensitivity the optimization is 
carried out based on the genetic algorithm[5]. 

2.1 Sensitivity Analysis of Energy Function to 
Design Variables  

For the design variables are the increment Δxk of 
thickness of each ply orientation of the whole 
wing skin, the number of the design variables 
mostly could reach to several thousand. Before 
the optimization, the problem of the quick 
analysis of the sensitivity of energy to the 
design variables should be settled. 

To calculate the sensitivity of energy to 
design variables is to calculate the derivative of 
formula 2. 

∂ா೎ೕ
∂௫೔

＝
∂∑

ǁ೐೔శభష೐೔ǁ
మ

೗೔శ೗೔శభ
೙షభ
೔సభ

∂௫ೖ
   (2) 

The value of energy function is determined 
by the location of the type value points. The 
points will generate displacement with the wing 
deformation, therefore, the energy function 
could be transformed to the function of 
displacement of type value points. 

(u )cj iE f=  
The displacement of type value points 

could be taken as the intermediate variable, so 
the formula 2 can be expanded to formula 3. 
The problem is decomposed to the derivative of 
energy function to displacement డ௙

డ௨೔
and the 

derivative of displacement to design 
variablesడ௨೔

డ௫ೖ
. 

డா೎ೕ
డ௫ೖ

ൌ డ௙ሺ௨೔ሻ
డ௫ೖ

ൌ డ௙
డ௨೔

డ௨೔
డ௫ೖ

  (3) 

2.2 Derivative of Displacement to Design 
Variables 
Based on the finite element model, the 
derivative of displacement to design variables 
could be settled with two methods: finite 
difference method and direct derivative method. 

For those structure of which design 
variables are smaller than 1000, the finite 
difference method could be used. The large 
scale parallel computation is suggested to be 
applied to accelerate the efficiency.  

For the problem with large scale design 
variables, the direct derivative method has 
higher efficiency. In the static problem，the 
displacement to design variables derivative 
could be stated with formula 4.  

1

i i

U KK U
x x

−∂ ∂
= −

∂ ∂     (4) 
Virtual load methodis used to solve this 

formula so as to avoid the calculation of inverse 
matrix of stiffness matrix K.  

Tr
pse

i i

U KU U
x x

∂ ∂
= −

∂ ∂    (5) 
Here, ܷ௣௦௘is given by ିܭଵ

௥ܲ. 
Equation 5 is the analytical expression of 

the displacement derivative to design variables. 
The derivative of displacement to design 
variables can be calculated by solving the 
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stiffness derivative matrix, displacement vector 
and virtual displacement vector. 

2.3 Derivative of Energy to Displacement 
The load causes the bending and torsion 

deformation of the structure. Therefore, the 
location of each type value point on the curve 
will change correspondingly. 

The energy of the type value line is 
determined by the location of the point that it    
composes of. Taking three points for example, 
the coordinates of the points are assumed to be 
P୧ିଵሺx୧ିଵ, y୧ିଵ, z୧ିଵሻ , P୧ሺx୧, y୧, z୧ሻ , 
P୧ାଵሺx୧ାଵ, y୧ାଵ, z୧ାଵሻ, so the energy of this type 
value line can be calculated by this formula. 
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(6) 
The displacement vector of the type value 

point could be decomposed into three directions. 
The derivative of energy to displacement equals 
to the calculation of derivatives in three 
directions respectively. 

൞
ሬԦ௜ିଵݑ ൌ ሺݑ௫௜ିଵ, ,௬௜ିଵݑ ௭௜ିଵሻݑ

ሬԦ௜ݑ ൌ ሺݑ௫௜ , ௬௜ݑ , ௭௜ݑ ሻ
ሬԦ௜ାଵݑ ൌ ሺݑ௫௜ାଵ, ,௬௜ାଵݑ ௭௜ାଵሻݑ

  (7) 

Taking the above equation into (6), the 
derivatives can be calculated. For the 
convenient of expression, the function of energy 
can be transformed to the following form. The 
characters A to D are defined in equation 9. 

௖ܧ ൌ ܤሺܣ ൅ ܥ ൅  ሻ   (8)ܦ

ە
ۖۖ
۔

ۖۖ
ۓ ܣ ൌ ଵ

௟೔ା௟೔శభ

ܤ ൌ ሺ௫೔శభି௫೔
௟೔శభ

െ ௫೔ି௫೔షభ
௟೔

ሻଶ

C ൌ ሺ୷౟శభି୷౟
୪౟శభ

െ ୷౟ି୷౟షభ
୪౟

ሻଶ

ܦ ൌ ሺ௭೔శభି௭೔
௟೔శభ
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ሻଶ

     (9) 

The derivative of energy to each type value 
point can be further simplified with formula 10 
to 13 . 
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 In the same way, డா೎

డ௠
, డா೎
డ௠೔శభ

ሺ݉ ൌ ,ݔ ,ݕ  ሻݖ
can also be expressed with the form of equation 
10 to 13. It can be found that after the derivative, 
the energy function include the displacement of 
each type value point, which needs once static 
analysis to get the current displacement of each 
type value point. This set of equation is derived 
with three points and obviously, the derivative 
of P୧ିଵ , P୧ ,P୧ାଵare different from each other. 
For those lines that include more than three type 
value points, the Ec derivative function remains 
the same form. The value of Ec can be 
calculated by summation of the derivative of all  
sets of type value point that each set includes 
the adjacent three points. 

For each type value line 
ሼPଵ, Pଶ, … , P୧, … P୬ିଵ, P୬ሽ, the first point P1 comes 
up only once in the Ec derivative formula. The 
corresponding values of the second point P2 
obviously occur twice in Ec derivative formula. 
Similarly，the last point Pn will be counted once 
and point Pn-1 twice. Except for these four 
points, the left points will be counted three 
times. The derivative of different type value 
points are listed in table one. According to the 
location of each point in the line, the derivative 
of each point can be calculated. 
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Table 1. Derivative formula of  type value points 

poi
nt the corresponding derivative formation 
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A set of sample points are used to identify 

the derivative stated above. These points are 
showed in Fig.3. The transverse axis stands for 
the coordinate x and the longitudinal for y. 
From the distribution of the points, some 
primary and qualitative conclusions can be 
gotten.  

 Firstly, the longitudinal value of point 
1(points are sequenced from left to right) keeps 
invariable or decreases will contribute to the 
fairness of the curve. Secondly，appropriate 
increment on y value of the third point will be 
good for the fairness. Thirdly, the fifth point has 
the maximum y value. The increment on the y 
value of the fifth point will make the fairness of 
this curve getting worse.  
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Fig.3.Distribution of sample points 

Fig.4 displays the result of sensitivity 
calculated through derivative and finite 
difference. It shows that the sensitivity 
calculated from the derivatives equation are 
nearly the same with the finite difference. It 

should be mentioned that the less the energy is, 
the more fairness of the curve becomes. 
Therefore, the more negative of the derivative 
becomes, the more contribution it will make to 
the decrease of the energy with the same 
increment on its value. 
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Fig.4. Sensitivity calculated by different methods 

4 Application 
Based on the method described above, a 
composite wing is optimized. The objective is to 
minimize the fairing energy function with the 
minimum weight increment. 

 
Fig. 5.Finite element of wing model  

According to the finite element model, 15 
type value lines are selected. The type value 
points are the crossover points of the ribs and 
stringers showed in Fig. 6. From the trailing 
edge to leading edge, the stringers are cut off for 
the geometry changes. The number of type 
value point decreases accordingly. 
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FAIRING OPTIMIZATION DESIGN OF WING STRUCTURE

The analytical derivative formula of energy 
to design variables has been derived so as to 
realize quick sensitivity analysis.  

In this application, the fairing problem 
caused by the engine load is limited. The 
structure fairing of the wing for manufacture 
and aerodynamic is not so obviously. However, 
this research has a new try in fairing design. It 
is a method which can be used for relative 
research and application. 
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