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Abstract  

Surrogate-based optimization (SBO) represents a type of 
optimization algorithm which makes use of surrogate 
models to approximate to the expensive objective and 
constraint functions, driving the adding and evaluation of 
new sample points towards the optimum. SBO has been 
shown to be very effective for engineering design 
problems where expensive numerical analysis such as 
computational fluid dynamics (CFD) is often employed. 
Despite the increasing popularity of SBO, it is seldom 
used as a generic optimization algorithm, due to its 
insufficient convergence properties, the difficulties 
associated with the so-called “curse of dimensionality”, 
as well as the incomplete functionalities of being a 
generic optimization algorithm. During the past decade, a 
number of researchers have continuously made effort to 
the development of SBO, towards an efficient global 
optimization algorithm which can solve arbitrary 
optimization problems with smooth, continuous design 
space. This paper reviews the recent progress in 
development of SBO in our research group, highlighting 
the development of a generic optimization code, 
“SurroOpt”, and its recent applications to aerodynamic 
and multidisciplinary design optimizations. 

1 Introduction  

During the past two decades, surrogate modeling played 
an important role in different areas of aerospace 
engineering, such as aerodynamic shape optimization, 
aerodynamic data production, structural design, and 
multidisciplinary design optimization (MDO) of aircraft 
or spacecraft. Surrogate-based optimization (SBO) 
represents a type of algorithm which makes use of 
surrogate models to approximate to expensive objective 
and constraint functions, throughout the design space or 
within the specific region, driving the adding and 
evaluation of new sample point(s) towards global or local 
optimum(s)(see [1][2][3]). SBO has been shown to be 
very effective for engineering design problems, in which 
expensive numerical analysis such as computational fluid 
dynamics (CFD) is often employed. Despite the 
increasing popularity of SBO, it is seldom used or viewed 

as a generic optimization algorithm, due to its insufficient 
convergence properties, the difficulties associated with 
the so-called “curse of dimensionality”, as well as the 
incomplete functionalities of being a generic optimization 
algorithm. During the past decade, a number of 
researchers have made continuous effort to the 
development of SBO, towards an efficient global 
optimization algorithm which can be used to solve 
arbitrary optimization problems with continuous and 
smooth design space [4][5][6]. This paper reviews the recent 
progress in development of SBO in our research group, 
highlighting the development of a generic optimization 
code called “SurroOpt” and its recent applications to 
aerodynamic and multidisciplinary design optimizations.   

SurroOpt is a research code developed for academic 
research and engineering designs driven by expensive 
numerical simulations. The distinguished feature is that 
building surrogate models and solving sub-optimization 
problems corresponding to the infill-sampling criteria are 
taken as a new optimization mechanism, whose role is the 
same as any of the conventional gradient-based methods 
or heuristic optimization algorithms. This new 
optimization mechanism leads to the automatic clustering 
of sample points near the optimum and the surrogate 
models are not necessarily accurate throughout the whole 
design space. As a result, the selection of initial samples 
and the approximation accuracy of the initial surrogate 
models have less effect on the final optimum. We 
developed a series of algorithms and techniques to 
guarantee the convergence of SBO to local or global 
optimum and to improve the optimization efficiency for 
higher-dimensional problems, such as trust-region method, 
hybrid sub-optimization methods, etc. Constraint handing 
methods dedicated for SBO are developed, which makes 
it being well suited to engineering design problems with 
multiple constraints.  

The remainder of the paper is organized as follows: 
section 2 reviews the theory and algorithms of SurroOpt; 
section 3 presents examples to show the performance of 
SurroOpt as well as its capability for aerodynamic and 
multidisciplinary design optimizations.  The last section 
gives conclusions and outlook. 
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2  Surrogate-Based Optimization and Main 
Features of SurroOpt code 

For an m-dimensional problem, suppose we are concerned 
with solving the following constrained optimization  
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where  y x  and  gi x  are the objective and constraint 

functions, respectively; CN  is the number of constraints; 

ux  and lx  are the lower and upper bounds of the design 

variables x . 
The framework of a typical SBO for solving the 

above optimization problem is sketched in Figure 1. 
Generally, a SBO process is consist of the following steps: 

1) First, initial sample points are chosen by DoE method 
and the functional responses are evaluated by 
expensive numerical analysis code such as CFD 
solver. 

2) Second, initial surrogate models for the objective and 
constraint functions are built, based on the sampled 
dataset.  

3) Then, a full loop of sub-optimization defined by the 
infill-sampling criteria is executed based on the 
surrogate models, which in turn generates new 
sample points to be evaluated by expensive analysis 
code.  

4) Fourth, the newly selected sample points as well as 
the functional responses are augmented to the 
sampling database and the surrogate models are 
updated. 

5) Steps 3 and 4 are repeated until the termination 
condition is satisfied.    

From the above procedure, one can see that the main 
ingredients of such a SBO process are: DoE method, 
surrogate modeling, infill-sampling criteria and sub-
optimization, and termination conditions.  
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Figure 1. Framework of a typical SBO-type optimization 

“SurroOpt” is a state-of-the-art, surrogate-based 
optimization code, which can be used to efficiently solve 
arbitrary single and multi-objective (Pareto front), 
unconstrained and constrained optimization problems. 
SurroOpt has built-in modern DoE methods suited for 
deterministic computer experiments, such as Latin 
hypercube sampling (LHS)[7], uniform design (UD)[8], and 
Monte Carlo design (MCD). A variety of surrogate 
models were developed such as quadratic response 
surface model (PRSM), kriging, gradient-enhanced 
kriging (GEK)[9], hierarchical kriging (HK)[10], 
cokriging[11], radial-basis functions (RBFs), artificial 

neutral network (ANN), support-vector regression (SVR) 
etc. A number of infill-sampling criteria and the dedicated 
constraint handling methods were implemented, such as 
minimizing surrogate prediction (MSP), expected 
improvement (EI), probability of improvement (PI), mean 
squared error (MSE), lower confidence bounding (LCB) 
and target searching (TS). Some well-accept and highly 
matured optimization algorithms, such as Hooke&Jeeves 
pattern search, BFGS quasi-Newton’s method, sequential 
quadratic programming (SQP), single/multi objective 
GAs, are employed to solve the sub-optimizations, in 
which the cost function(s) and constraint function(s) are 
evaluated by the cheap-to-evaluate surrogate models. In 
turn, new sample point(s) are generated and evaluated by 
the expensive analysis code. SurroOpt is mainly 
developed in Windows system and a branch has been 
created for Linux system. SurroOpt has been paralleled by 
MPI, which allows the user to run the code with multiple 
cores (or processors) to speed up the optimization. 
SurroOpt has a flexible user-defined interface, with which 
the user can set up their own optimization problems of 
interest. The main features of SurroOpt (version 2016) are 
listed in Table 1. 

Table 1. List of main features of SurroOpt (version 2016), a generic 
surrogate-based optimization code 
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DoE methods
Latin hypercube sampling(LHS) 
Uniform design(UD), 
Motel Carlo design (MCD) 

Infill-sampling 
method 

MSP, EI (and local EI), PI, MSE, LCB, TS
Combined infill sampling  
parallel infill sampling, e.g. q-EI, kriging believer (KB)  

Sub-optimizer Hooke & Jeeves, single/multi objective GAs, BFGS, 
SQP 

Constraint 
handling

Probability method, e.g. constrained EI, PI, MSE,... 
Traditional methods, e.g. penalty function or SQP 

Multi-objective Transform into single objective by linear weighting
Pareto front 

S
ur

ro
ga

te
 m

od
el

in
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Surrogate 
models 

Polynomial response surface model (PRSM) 
Kriging (simple, ordinary, universal)
Gradient-enhanced kriging (GEK) 
Cokriging 
Hierarchical kriging (HK) 
Radial-basis functions(RBFs) 
Support-vector regression (SVR), artificial neutral 
network (ANN), polynomial chaos expansion (PCE) 
Variable-fidelity model (VFM) with additive, 
multiplicative and hybrid bridge functions

Correlation  or 
kernel 
functions  

Gaussian (GS) 
Gaussian exponential (GSE)  
Cubic spline (CUSP) 
Thin-plate spline (TPS) 
Power function (PS) 
Multi-quadratic (MQ)  
Inverse multi-quadratic (IMQ)  

D
at

a 
&
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ro

gr
am

 Data format Tecplot, ASCII 
Program 
language Fortran, C/C++, MPI,  Python, Matlab 
Version
control SVN repository 
Operating 
system Windows, Linux 

User-defined 
interface 

“ interface.f “ , file I/O  or library for importing the 
objective, constraint  function values and gradients   

2.1 Design of Experiments 
To build a surrogate model, DoE method is usually used 
to determine a number of locations in the design space 
(called sampling sites) to be evaluated by numerical 
analysis code. DoE is a procedure with the general goal 
of maximizing the amount of information gained form a 
limited number of sample points [7]. Currently, there are 
different DoE methods which can be classified into two 
categories [7]: “classic” and “modern” DoE methods. The 
classic DoE methods, such as full-factorial design (FFD), 
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central composite design (CCD), Box-Behnken and D-
optimal design (DOD), were developed for laboratory 
experiments. In contrast, the modern DoE methods such 
as Latin hypercube sampling (LHS), orthogonal array 
design (OAD) and uniform design (UD) were developed 
for design and analysis of deterministic computer 
experiments.  

The DoE methods implemented in SurroOpt are the 
LHS, UD and MCD methods. More DoE method will be 
integrated in the future. Figure 2 shows an example of 
choosing 25 sample points by LHS and UD for a two-
dimensional problem. 
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Figure 2. Schematics of 25 sample points chosen by Latin hypercube 

sampling (left) and uniform design (right) for a 2-D problem 

2.2 Surrogate Models 
For an m-dimensional problem, suppose we are 
concerned with the prediction of the output of a high-
fidelity and expensive computer code, which corresponds 
to an unknown function m:y   . By running 
expensive numerical analysis, y  is observed at n  sites 

chosen by DoE  
(1) ( ) T

1[ ,..., ] , { ,.., }n n m m
mx x   S x x x          (2) 

with the corresponding responses  

(1) ( ) T (1) ( ) T
S [ ,..., ] [ ( ),..., ( )]n n ny y y y  y x x  .    (3) 

Surrogate modeling is such a procedure to build an 
approximation model  ( )y


x  based on the sampled dataset  

( S , Sy )   

A variety of surrogate models are available in 
SurroOpt (see Table 1). They can be classified into two 
categories: parameterized and non-parameterized models. 
Parameterized models include polynomial response 
surface model (PRSM), polynomial chaos expansion 
(PCE). Non-parameterized models include kriging and its 
variants (e.g. gradient-enhanced kriging, hierarchical 
kriging and cokriging), radial-basis functions (RBFS), 
artificial neutral network (ANN), support-vector 
regression (SVR).  The reader is referred to [1]-[5] for the 
formulation and algorithms of the surrogate models.  

2.3 Infilling-Sampling Criteria and Constraint 
Handling 

Once the surrogate models are built, they can be used 
guide the generation of new sample points by solving sub-
optimization problems defined by infill-sampling criteria.  
The terminology of “infill-sampling criteria” [2][4][12] 
denotes “clever” ways of selecting new samples which are 
supposed to better than any of the existing sample points, 
and the terminology “sub-optimization” denotes the loop 
of solving the mathematical model defined by the infill-

sampling criteria. Since the objective and constraint 
functions are evaluated by cheap surrogate models, the 
computational cost is usually neglectable, compared to the 
expensive numerical analysis.  

A number of infilling-sampling criteria is available 
in SurroOpt (see Table 2), such as minimizing the 
surrogate prediction (MSP)[4][14], maximizing the 
expected improvement (EI)[4][15][16], maximizing the 
probability of improvement (PI)[13][17][18], maximizing the 
mean squared error (MSE)[12][17], minimizing the lower 
confidence bound (LCB)[19], target searching(TS), etc.  

Table 2. List of infill-sampling criteria implemented in SurroOpt 
(version 2016) 
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To explain how these criteria work, we use an 
example of a one-dimensional test function. A kriging 
surrogate model is built for the following function taken 
from [2], based four sample points T[0,0.4,0.6,1.0]S  

( ) sin( ), [ , ]y x x x   26 2 12 4 0 1 .            (4) 

2.3.1 Minimizing Surrogate Prediction (MSP) 

This is the most straightforward method. When surrogate 
models are built, they can be used to replace the 
expensive numerical analysis within the loop of a 
conventional gradient-based or gradient-free optimization 
process. The sub-optimization problem is defined as  

 

 

ˆMinimize   

w.r.t.         

ˆs.t.            g 0,      1, ,
l u

i C

y

i N

 

  

x

x x x

x

，        (5) 

where  ŷ x and  ĝi x are the surrogate models for the 

objective and constraint functions, respectively. A hybrid 
method of combing GA, Hooke&Jeeves pattern search 
and gradient-based method is used to solve the above sub-
optimization, and then an optimum *x  is obtained. To 
enhance the local convergence of MSP, a trust-region 
method can be used. The new sample site *x is evaluated 
by expensive numerical analysis and the functional 
responses together with *x are augmented to the sampling 
database to update the surrogate models. The procedure of 
building surrogate models, sub-optimization, and 
evaluation of new sample point is repeated until 
termination condition is satisfied.  

The minimum upon the surrogate model for the 1D 
test function is shown in Figure 3, where red circles 
represent the sample points, blue dash double-dotted line 
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stands for the surrogate model built from the sample 
points, and the red filled-circle is the minimum upon the 
surrogate model, which is taken as the new sample point.  

x

y

0 0.2 0.4 0.6 0.8 1

-10

0

10

20
Samples
True function
Kriging

MSP

 
Figure 3.  Schematics of MSP infilling-sampling criterion for a 1D 

problem 

2.3.2 Expected Improvement (EI)  

This method was proposed by Jones et al.[16] in 1998. The 
surrogate-based optimization using EI criterion is also 
known as the efficient global optimization (EGO) method. 
Assume that the best observed object function as far is 

miny and the prediction of a kriging model coincides a 

Gaussian normal distribution with mean of ˆ( )y x  and 

standard deviation of s（ ）x , i.e. 2ˆ ˆ( ) ( ),Y N y s   x x . The 

probability density function is   

2ˆ1 1 ( ) ( )ˆ( ( )) exp ( )
2 ( )2  ( )

Y y
P Y

ss
 

  
 

x x
x

xx
.  (6) 

For a minimization problem, the statistical improvement 
is defined as    

 min
ˆ( ) max ( ),0I y Y x x .                           (7) 

And the expectation of the improvement function is  

min min
min

ˆ ˆ
ˆ( ) ( ) ( )  if  s>0

[ ( )]
0                                                         if  s=0

y y y y
y y s

E I s s


     


x , (8) 

where ( )   and ( )   are cumulative distribution and 

probability density functions of a standard normal 
distribution, respectively.  
 The computation of EI for the 1D test function is 

illustrated in Figure 4, where ˆ( )P Y is the probability 

density function predicted by the kriging surrogate model, 
the blue shaded area denotes the probability of 

improvement [ ( )]P I x  and the integral of ˆ( ) ( )I P Yx  with 

respect to ( )I x  over the blue shaded area gives [ ( )]E I x . 

The red solid line represents the distribution of EI 
function in the design space. 
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Figure 4. Schematics of EI function for a 1D problem 

 For a constrained optimization problem, one can also 
build surrogate models for the constrained functions 

 ˆ ig x , and assume that the corresponding random 

variable ( )iG x is normally distributed, with mean of 

 ˆ ig x and standard derivation of , ( )g is x . The probability 

of satisfying the constraint at any site can be calculated as   
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Then the sub-optimization problem can be defined as 
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Maximize  ( ) 0

w.r.t.         
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which is a global optimization problem with multiple 
local extra. In SurroOpt, we use a hybrid of GA, multi-
starting-point Hooke&Jeeves and gradient-based methods 
to solve above sub-optimization and get the optimum site 

*x . Practice suggests that this hybrid strategy enables us 
to find more accurate solution, which in turn accelerates 
the main optimization process by reducing the calls of 
expensive numerical analysis. To enhance the local 
convergence, we also proposed a method called “local EI” 
to search for the maximum EI in the neighbored region of 
the current best. The new sample site *x  is evaluated by 
expensive numerical analysis again and the surrogate 
models are rebuilt. The procedure is repeated until 
termination condition is satisfied. 

2.3.3 Probability of Improvement (PI)  

Instead of maximizing the expected improvement, one 
can also maximize the probability of improvement (PI). 
According to Eq.(6), the PI function can be calculated by 

 

   
 

min ˆ-
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x
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x
                     (11) 

For the 1D test case, the PI function (the red solid line) is 
sketched in Figure 5. 
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Figure 5. Schematics of PI function for a 1D problem 

For constrained optimization, one can use a similar way to 
the constrained EI method and solve the following sub-
optimization  

   
1

Maximize  P ( ) 0

w.r.t.         

CN

i
i

l u

I P G


 

 
x

x x x
             (12) 

to get the new sample sits x . 

2.3.4 Mean Squared Error (MSE)  

miny
ŷ

ˆ( )P Y

 ( )P I x
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To fully explore the design space, there is a criterion of 
maximizing MSE to improve the global accuracy of 
surrogate models. The root MSE of the 1D test function 
(red solid line) is shown in Figure 6. For constrained 
optimization, the following sub-optimization is solved  

   
1

ˆMaximize   ( ) 0

w.r.t.          

CN

i
i

l u

MSE y P G


 

 
x

x x x
         (13) 

to get the new sample sits x . 
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Figure 6.  Schematics of RMSE function for a 1D problem` 

2.3.5 Lower Confidence Bound (LCB) 

In addition to EI, PI, and MSE, another kind of method 
making use of the uncertainty of kriging prediction is 
called LCB[19] , which was proposed in 1998. Recall that 
the prediction of a kriging model can be viewed as a 
normal distribution with mean of  ŷ x  and standard 

deviation of ( )s x , one can minimize the lower confidence 

bound of the kriging prediction to get the new sample 
site x . LCB function (also see [2][12]) is defined as ： 

     ˆLCB y A s  x x x   ,               (14) 

where A is a user-defined parameter to balance the 
exploitation and exploration. When ˆ0,  LCB ( )A y  x  

the LCB reverts to a MSP, in which the surrogate model 
prediction is directly minimized; 
when ,  LCB ( )A s  x , the LCB is identical to a 

MSE criterion, which is a pure exploration. Out best 
practice is to set A in the range from 1 to 4. The LCB (red 
solid line and A = 1) for the 1D test function is sketched 
in Figure 7.   
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Figure 7. Schematics of LCB function for a 1D problem 

For constrained optimization, one can solve the following 
sub-optimization  

ˆ ˆMinimize   ( ) ( )

w.r.t.         
ˆs.t.            ( ) 0, 1,...,
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i c
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x x
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to get the new sample sits x . 

2.3.6 Target Searching (TS)  

If one roughly know the value of the best objective 
function, targety , the goal of the sub-optimization can be 

set to achieve or exceed this target value.  For example, 
we can calculate the expected improvement over this 
target, rather than over the best among the observed 
sample points. The idea is similar to the goal seeking (GS) 
using conditional likelihood method (see [2]). The 
statistic improvement is redefined as  

 target target
ˆ( ) max ( ),0I y Y x x .               (16) 

Then we obtain the expected improvement for target 
searching 

target target
target

target

ˆ ˆ
ˆ( ) ( ) ( )  if  s > 0

[ ( )]

0                                                           if  s = 0

y y y y
y y s

E I s s


 
   



x . (17) 

2.3.6 Combined and Parallel Infill-Sampling 
Criteria   

The infill-sampling criteria can be combined to overcome 
the drawback of a single criterion. For example, we can 
use MSP and EI to select two sample points at each 
updating cycle. Note that different combination of infill-
sampling criteria can be used in SurroOpt. To further 
improve the optimization efficiency, a single criterion can 
be paralleled by selecting multiple points, which are 
evaluated by numerical analysis code in parallel. Some 
popular methods such as q-EI and “kriging believer” 
method were implemented in SurroOpt. 

2.4 Multi-Objective Optimization 
For multi-objective optimization, two kinds of method 
were implemented in SurroOpt. The first method is a 
linear weighting method to transform the multi-objective 
optimization to a single-objective optimization. The 
weighted objective function is 

1 obj1 2 obj2 n objn =  + ... + y w y w y w y .                 (18) 

Then we build surrogate model for it and execute SBO in 
a same way as the single-objective optimization. The 
second kind of method is Pareto front optimization. First 
we build surrogate models for all the objective and 
constraint functions; then we use multi-objective genetic 
algorithm NSGAII to solve the sub-optimization below 

     

 

obj1 obj2 objnˆ ˆ ˆMinimize   , ,...,

w.r.t.          

ˆs.t.             g 0,      1, ,
l u

i C

y y y

i N

 

  

x x x

x x x

x

         (19) 

to get a group of new sample points, which are then  
evaluated by expensive analysis code and used to update 
the surrogate model, driving the process towards a final 
Pareto front solution. Other methods using EI, LCB 
functions are also available, but not fully tested.   

2.5 Termination Conditions and Restart 
Four termination conditions were defined in SurroOpt. 
The first one is about the distance between samples and 
difference of their objective responses 
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x x x
 .                      (20) 

The second one is about the approximation accuracy of 
surrogate model 

 3ˆ /best best besty y y   .                        (21) 

The third one is about the maximum number of expensive 
function evaluations 

maxN N .                                           (22) 

The fourth is a specific one for EI infill-sampling criterion 

4max( )EI  .                                     (23) 

In general, if one of above conditions is reached, the 
optimization is terminated.  

SurroOpt has a nice feature of restart. The 
optimization can terminated and necessary information 
for restart will be stored. It is very convenient for the user 
to continue the optimization from the last termination 
point, just setting restart  = 1.  

2.6 Flowchart of SurroOpt 
The flowchart of SurroOpt is sketched in Figure 8. Note 
that the code has been paralleled by MPI and a user-
define interface can be used to set up their own problems 
of interest.  
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Stop ?
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Solver Solver ……

New samples
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Tune  hyperparameters

……

User interface

User interfaceParallel 
Computing

Parallel 
Computing

Off‐line investment

 
Figure 8. Flowchart of SurroOpt, a generic optimization code 

3  Examples  

3.1 Benchmark Analytical Test Cases  
Four analytical test cases are used to validate and 
demonstrate the SurroOpt code. 

3.1.1 Rastrigin Test Case 
Here we test SurroOpt for a two-dimensional 
unconstrained global optimization problem (see Figure 9 
for the landscape of 2D Rastrigin function). The 
mathematical model is  

   
 

2
2

1

Minimize    10 2 10 cos 2

w.r.t.         5.12,5.12 ,     1, , 2

i i
i

i

f x x

x i




      
  




x     (24) 

The theoretical optimal solution is at * *
1 2( , ) (0, 0)x x   and 

with * *
1 2( , ) 0f x x  . Four sample points are chosen by 

DoE to build the initial surrogate model. The convergence 

histories of the objective function of using different infill-
sampling criteria as well as combined criteria is shown in 
Figure 10. By using EI, LCB and different combined 
criteria, SurroOpt successfully finds the global optimum, 
but fails when using single criteria of MSP, MSE or PI.  It 
is also observed that both “MSP+EI” and “MSP+LCB” 
have great performance in this test case. 

 
Figure 9.  Schematics of 2D Rastrigin function 
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Figure 10.  Convergence histories of using different infill-sampling 

criteria for 2D Rastrigin test case 

3.1.2 G9 test case 
This is benchmark test case for strongly constrained 
global optimization [20]. The mathematical model is 

2 2 4 2
1 2 3 4

6 2 4
5 6 7 6 7 6 7

2 4 2
1 1 2 3 4 5

  ( ) ( 10) 5( 12) 3( 11)

                         10 7 4 10 8   

w.r.t.     [ 10,10], =1,..,7

s.t.           127 2 3 4 5 0

                

i

Mnimize f x x x x

x x x x x x x

x i

g x x x x x

g

      

     

 

       

x

2
2 1 2 3 4 5

2 2
3 1 2 6 7

2 2 2
4 1 2 1 2 3 6 7

282 7 3 10 0

                196 23 6 8 0

               4 3 2 5 11 0

x x x x x

g x x x x

g x x x x x x x

       

      

      

  (25) 

There are 7 design variables and 4 constraints, in which 
the first and last ones are active constraints. This is very 
difficult optimization since the feasible region is only 
0.5% of the design space and the value of the objective 
function ranges from hundreds to ten millions. Although 
the real optimum is unknown, the optimization 
community has observed a best solution of 

*

*

(2.330499,1.951372, 0.4775414, 4.365726,

        0.6244870,1.038161,1.594227)

( ) 680.6300573

x

f x

 




, (26) 

which is taken as a reference for comparison. Fourteen 
initial sample points are chosen to build initial surrogate 
models. The results of using different in-filling sampling 
criteria are shown in Table 4. It is observed that the 
combined criterion “MSP+EI” gets the best objective 
functional of 680.64287, which is very close to the 
reference value of 680.63006. The results and efficiency 
of using SurroOpt is compared with GA, which shows 
that SurroOpt is much more efficient, with respect to 
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number of functional evaluations. The best results of 
using SurroOpt are compared with the reference in Table 
4. It can be observed that, for the reference, the last 
constraint （g4=0.00014）is actually violated a little bit, 
but all the constraints are strictly satisfied when using 
SurroOpt, which explains why the optimal objective 
function obtained by SurroOpt is slightly larger than the 
reference value.  
Table 3. Comparison of different methods for G9 benchmark test case, a 

strongly constrained global optimization   

Opt. algorithms  Best objective Number of function 
evaluations

Best observed so far 680.63006 n/a 

Kriging MSP 688.41155 175 

Kriging EI 680.66619 1331 

Kriging local EI 680.82861 1011 

Kriging LCB 689.65021 401 

Kriging MSP+EI 680.64287 1009 

Kriging MSP+LCB 684.72006 402 

Kriging MSP+MSE 687.90582 987 

GA 681.00720 21000 

Table 4. Optimal results of G9 test case using combined MSP and EI 
infill-sampling criteria 

Opt algorithms Optimum design variables Best obj.
SurroOpt x*=( 2.3331998,1.942837, -0.479546, 

  4.387811, -0.632617,1.039775,1.600996) 
680.64287

Best observed 
so far 

* (2.330499,1.951372, 0.4775414,
        4.365726, 0.6244870,1.038161,1.594227)
x  


 680.63006

 Constraint at optimal point  
SurroOpt g1=-0.000259 g2=-252.519016 g3=-144.882960 g4 = -0.00133
Best observed 
so far g1=-0.000043 g2=-252.561721 g3=-144.877817 g4 =  0.00014

3.1.3 TNK Multi-Objective Test Case 
TNK is a 2D constrained multi-objective optimization, 
whose mathematical model is  

   

    
     

1 1 2 2

2 2
1 1 2 1 2

2 2

2 1 2

Minimize    ,

w.r.t.          [0, ], 1,2

s.t.              1 0.1cos 16arctan / 0

                  0.5 0.5 0.5 0

i

f x f x

x i

g x x x x

g x x


 

 

     

     

x x

x

x

.  (27) 

In Table 5, the optimal Pareto front by SurroOpt is 
compared to the true optimum and those by directly using 
NSGAII, which validates the functionality of Pareto front 
optimization of SurroOpt. Further comparison with 
NSGAII is conducted and illustrated in Table 5, with 
respect to number of Pareto front points, convergence and 
diversity of the front, and number of function evaluations. 
It can be seen that the number of function evaluation of 
using SurroOpt is much less than that of using NSGA II, 
when reaching a comparable level of solution quality.  
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Figure 11. Comparison of Pareto fronts obtained by using SurroOpt and 

NSGAII for a TNK test case 

 

Table 5. Comparison of Pareto front solutions obtained by SurroOpt and 
NSGA II for TNK test case 

Opt. algorithms No.of Pareto 
front solutions

Convergence Diversity No. of function 
evaluations

SurroOpt
( repeat 30 times) 112 1.6978E-3 0.625964 278 

NSGA-II
(repeat 30 times) 100 1.7136E-3 0.657046 20000 

3.1.4 MDO test case 
Note that, as a generic optimizer, SurroOpt (version 2016) 
is able to deal with both inequality and equality 
constraints. Hence, we can use SurroOpt as the optimizer 
in different MDO architectures [22], such as 
multidisciplinary design feasible (MDF), individual 
design feasible (IDF) and simultaneous analysis and 
design (SAND), collaborative optimization (CO), 
concurrent subspace optimization (CSSO), etc.  

An analytical test case by Sellar[21] is employed to 
demonstrate SurroOpt in different MDO architectures. 
The optimization problem is defined as 

22
1 2 3 2 3 1

1 2 3

1 1

2 2

Minimize  ( , , ) = 

w.r.t.       -10 10,0 , 10

s.t.            8 0

                10 0

yf x x x x x y e

x x x

g y

g y

  
   

  
  

 .     (28) 

There are two disciplines. One is given by, 
2

1 1 2 3 20.2y x x x y     ,                           (29) 

and the other is given by 

2 1 1 3y y x x   .                                     (30) 

The global optimum is located at (3.0284, 0, 0) and has a 
best objective of 8.00286. For clarity, the coupling of the 
discipline is sketched in Figure 12. 

 
Figure 12. Schematics of two coupled disciplines for a MDO test case 

The results are presented in Table 6 and compared 
with those obtained by a gradient-based method. It is 
shown that SurroOpt successful solves this MDO problem 
with different architectures, and needs less number of 
function evaluations both in system and disciplinary 
levels.   

Table 6. Comparison of SurroOpt and gradient-based method for an 
analytical MDO test case 

Opt. 
methods

MDO 
architectures

Optimum objective and 
constraint functions  

Number of function 
evaluations

Obj. 1g  
2g  MDA Disciplinary 

1 
Disciplinary 

2 

SBO via
SurroOpt

(2016)

MDF 8.002860238 -1.10e-8 -4.14315 22 95 95 

IDF 8.002860326 -9.27e-6 -4.14313 0 33 33 

SAND 8.002860225 -8.84e-10 -4.14314 0 35 35 

Gradient-
based 

method

MDF 8.002860227 -1.78e-15 -4.14315 32 284 284 

IDF 8.002860227 1.75e-8 -4.14316 0 61 61 

SAND 8.002860227 0 -4.14315 0 67 67 

3.2 Aerodynamic Shape Optimization  

3.2.1 Airfoil Design 
This is a benchmark test case (case 2) defined by 
AIAA aerodynamic design optimization discussion 

Discipline 1 Discipline 2 

1 2 3, ,x x x
1 3,x x

1y  

2y  
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group (ADODG). The objective is to minimize the 
drag of an RAE 2822 airfoil, subject to lift, pitching 
moment and sectional area constraints. The design sate 
is 60.734 Re 6.5 10Ma    . The mathematical model 
is of the form 

0

Minimize

s.t.           0.824

       0.092

       

d

l

m

C

C

C

A A







,                        (31)  

where , ,l d mC C C  represent  lift, drag, and moment 

coefficients, respectively; 0,  A A  stand for the sectional 

areas of optimal and baseline airfoils, respectively. After 
grid convergence study, we used a grid of 512  256, as 
sketched in Figure 13(left).  The convergence history of 
the drag w.r.t. number of RANS (Reynolds-averaged 
Navier-Stokes) simulations is shown in Figure 13(right). 
The pressure distributions and geometric shapes of the 
baseline and optimal airfoils are shown in Figure 14. The 
aerodynamic performances before and after optimization 
are illustrated in Table 7, which shows that the drag is 
dramatically reduced and all the constraints are satisfied. 
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Figure 13. Computational grid (left) and convergence history (right) for 

drag minimization of benchmark RAE 2822 airfoil test case 
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Figure 14 Comparison of pressure distributions (left) and geometries 

(right) for baseline and optimial airfoils 

Table 7. Comparison of performances of baseline and optimum airfoils 

Airfoils lC (counts) dC (counts) mC  A  

Baseline 82.4  195.00 -0.0921  0.07794 

Optimal  82.4 104.29 -0.0880  0.07794

3.2.2 Wing Design 
As a three-dimensional aerodynamic shape optimization, 
the objective is to minimize the drag for the ONERA M6 
wing, parameterized with 30 design variables (4 for 
platform shape and 26 for shapes of two control sections). 
The design point is at the free-stream condition of 

0.8395Ma  , 6Re 11.72 10  , 3.06   . The constraints 
are associated with the lift coefficient, maximum 
thickness-to-chord ratio of the root and tip sections, and 
area of the wing. The following formula gives the 
mathematical model of optimization 

0

0

0

0

Minimize  C

s.t.            C C

                

                

                 

d

l l

r r

t t

Thick Thick

Thick Thick

Area Area







 .                   (32) 

The computational grid and the geometric 
parametrization are sketched in Figure 15. The 
convergence history of drag w.r.t. number of RANS 
simulations is shown in Figure 16. One can see that 
although none of the initial sample point is feasible, 
SurroOpt is able to drive the searching of feasible new 
designs with reduced drag. It is also shown that the 
parallel infill-sampling method of choosing 4 samples 
simultaneously is more efficient than the EGO method [16], 
in which only one sample point is chosen at each update 
cycle. The pressure contours for baseline and optimized 
wings are compared in Figure 17, which shows that the 
shock waves are smoothed out. The sectional pressure 
distributions at two span-wise locations (37.6% and 
72.7% semi-spans, see Figure 18) also confirm the 
suppression of shock waves.  
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Figure 15.  Computational grid (left) and geometric parameterization 

(right) for drag minimization of M6 wing (30 design variables) 
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Figure 16.  Convergence history of objective function for drag 

minimization of M6 wing (left)  and comparison of single EI and parallel 
infill-sampling methods (right) 

    
Figure 17.  Comparison of pressure contours for baseline M6 and the 
optimized wings (surface and sectional at 37.6%, 72.7% semi-spans)  
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Figure 18. Comparison of pressure distributions for baseline M6 and 

optimized wings (left: 37.6% half span; right: 72.7% half span) 
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The aerodynamic and geometric performances of the 
baseline and optimized wings are listed in Table 8 , which 
shows that drag coefficient is reduced by 27.07% after 
200 RANS simulations. Please note again that all the 
constraints are strictly satisfied, which indicates that 
SurroOpt has a good capability of constraint handling.  

Table 8. Comparison of aerodynamic force coefficients and geometric 
parameters of baseline M6 and optimized wings  

 Baseline Optimum 

dC   0.01751 0.01277 (-27.07%) 

lC  0.23803 0.23814 (+0.05%) 

rThick  0.09786 0.09786 (+0.00%) 

tThick  0.09786 0.10021 (+2.40%) 

Area  0.75318 0.75529 (+0.28%) 

In addition to the M6 wing, SurroOpt has been applied 
to aerodynamic shape optimization of transport aircraft 
wing, flying wing as well as helicopter rotors, blades of 
propeller and wind turbines, with number of design 
variables in the range from 30 to 52. The results are not 
given here due to the limited length of the paper.  

3.2 Multidisciplinary Design Optimization  
SurroOpt (version 2016) was tested for 
aerodynamic/structural integrated design of the wing of a 
wing-body configuration, representative of a high-
subsonic transport aircraft (see Figure 19). The aircraft is 
cruised at an altitude of 10km and Mach number of 0.76; 
the wing area is 105m2. The aerodynamic shape and 
structural layout of the wing are parameterized with 23 
design variables. The mathematical model is  

 
max

max

Minimize

s.t.           54 ton

  

σ

     27

       

      1 m

σ

wingW

L

L D









,                        (33) 

where wingW  is structural weight of single wing; L and 

L D  are the lift and lift-to-drag ratio of the wing-body 

configuration, respectively; maxσ  and max  are maximum 

equivalent stress and wing deformation, respectively.  The 
design variables are cruise angle of attack, taper ratio of 
the wing, linear twist angle and the thickness distribution 
of skin along the wing span (20 variables). The detailed 
description about the aerodynamic and structure analysis 
models can be found in [23]. MDF architecture is used to 
solve this MDO problem. Note that within the MDF 
architecture, a complete MDA (multidisciplinary design 
analysis) involves a full static aeroelasticity analysis, in 
which aerodynamic and structural analysis are coupled 
with a loose coupling strategy, until both the aerodynamic 
force and structural deformation converge.  

200 hundred of initial sample points are generated by 
LHS and evaluated by MDA. The initial surrogate models 
for the objective and constraint functions are built and 
repetitively updated by selecting new sample points, 
through the sub-optimizations using the combination of 
MSP and EI criteria.  The optimization converges after 50 
iterations (see Figure 20), which means that the total 
number of MDAs is around 300.  A detailed performance 
comparison of baseline and optimized configurations can 

be found in Table 9. It is shown that, by using SurroOpt, 
the wing weight is significantly reduced, while the 
aerodynamic characteristics are maintained. A 
comparison of deformations and skin thinness 
distributions of baseline and optimized wings is sketched 
in Figure 21.  

In the future, more design variables and constraints as 
well as higher-fidelity of MDA will be adopted to refine 
the optimization.  
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Figure 19. Aerodynamic model of a wing-body configuration and 
structural layout of wing for a high-subsonic transport aircraft   
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Figure 20. Convergence history of MDO of the wing of a wing-body 

configuration representative of a transport aircraft.   

Table 9. Performance of the baseline and optimum configurations for a 
wing-body configuration 

Features of wing Baseline Optimized
Taper ratio of wing 0.21 0.21 
Linear twist angle of wing /deg. -2.49 -4.00 
Cruise angle of attack /deg. 0.82 1.03 
Wing weight/kg 2030.3 1311.1
Lift /ton 61345.8 54003.4 (>54 ton)
Lift-to-drag ratio 27.56 27.01（>27）
Max. equivalent stress/108pa 2.7327 2.7282
Max. deformation of wing /m 0.947 0.998（<1m）
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Figure 21. Comparison of deformations and skin thinness distributions 

of baseline and optimized wings for a transport aircraft  

4 Conclusions and Outlook  

This paper summarizes the development of a surrogate-
based optimization code called SurroOpt and its recent 
applications to aerodynamic and multidisciplinary design 
optimization of aircraft. The main ingredients including 
DoE, surrogate models, infill-sampling criteria and sub-
optimization, and termination conditions are introduced.   

SurroOpt were intensively tested for benchmark 
optimization test cases and has been successfully applied 
to aerodynamic design of airfoils, wings, propellers, 
helicopter rotors and wind turbines, as well as 
multidisciplinary design optimization of transport wings.  
Some conclusions about SurroOpt can be drawn as: 
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1) SurroOpt is suited for engineering designs driven by 
expensive numerical analysis. It is capable of finding 
global (or at least more global) optimum, and is 
much more efficient than genetic algorithms. 

2) For the test cases with number of design variables in 
the range from 2 to 52, SurroOpt usually gives good 
design within 300 expensive numerical simulations.    

3) There are a number of infill-sampling criteria and 
hybrid sub-optimizations in SurroOpt. Combined or 
parallel infill-sampling are also available for 
improving the optimization efficiency. Practices 
suggest that using the combination of MSP and EI 
can generally give good and robust convergence.   

4) SurroOpt has the functionality of Pareto front multi-
objective optimization. A TNK test case shows that 
it is much efficient than NSGAII w.r.t. to number of 
expensive function evaluations.   

5) SurroOpt has a good capability of constraint 
handling. For all the test cases, the constraints are 
strictly satisfied. A new functionality of handling 
equality constraint was developed and successful 
applied in MDO architectures of IDF and SAND. 
In the future, we will continue to improve the 

optimization efficiency and quality of SurroOpt, and 
adapt it to more computer architectures. More 
functionalities or innovative algorithms will be integrated 
and special attentions will be paid to gradient-enhanced 
and variable-fidelity surrogate models, towards efficient 
global optimization with larger number of design 
variables (>100) and many constraints. Robust design 
under uncertainties and MDO applications will be 
important concerns for future development. 
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