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Abstract  
This paper focuses on the optimal motion 

planning problem for cooperative aerial 
manipulation. We use the rapidly exploring 
random trees star (RRT*) algorithm that finds 
feasible paths quickly and optimizes them. For 
local planning within RRT*, we developed a 
trajectory planner using Bezier-curve which 
utilizes the differential flatness property of the 
aerial manipulator. Time-parameterization is 
performed to represent the curve as a function of 
time. 

1 Introduction  
Recently, aerial robots have been popular 

research platforms since they can perform tasks 
on sites which are difficult to access. Attached 
with camera, cable or gripper, the aerial platform 
can be used in many applications such as 
exploring, filming the sites or transporting an 
object [1-3]. Meanwhile, some researchers have 
investigated the aerial manipulation problem by 
mounting a multi-DOF robotic arm on aerial 
robots [4-5], which enables more complex 
manipulation at high altitudes. However, 
mounted with a multi-DOF robotic arm, the 
aerial robots should endure heavier weight, solve 
the more complex dynamics, and avoid the 
postures which might cause the platform to drop 
down.  

One of the solutions for those problems is 
finding an efficient and safe motion trajectories 
using an optimal motion planner. In this paper, 
we solve the optimal motion planning problem 
for aerial manipulators that carry an object 
cooperatively. Among the various kinds of aerial 
platforms, we consider multi-copters which can 

perform the works in narrow and complex 
environments.  

There are many optimal motion planners but 
only a few compute the solutions for high 
dimensional problems within practical time. The 
rapidly exploring random tree star (RRT*) is one 
of the powerful sampling-based optimal motion 
planners which can find feasible paths quickly 
and optimize them [6]. However, RRT* also has 
a heavy computation issue for non-holonomic 
systems. In fact, our target platform is non-
holonomic, which necessitates an efficient local 
planner. 

Here, we developed a local planner quickly 
generating motion between sampled nodes 
within RRT*. The proposed local planner is 
generated under the consideration of the non-
holonomic and differentially flat system. Since 
most curve fitting methods compute the path with 
the non-dimensional path parameter, we suggest 
the additional time-parameterization which can 
allocate the velocity profile in each desired point 
and compute the time.  

The remainder of the paper is structured as 
follows: In section 2, we describe problem 
settings including the dynamic model of an aerial 
manipulator and kinematics for cooperative 
missions. RRT* and the proposed local planner 
are presented in section 3, and simulation results 
are discussed in section 4. The potential future 
work and concluding comments are included in 
section 5.  

2 Problem Settings 
In this section we described the dynamics and 

kinematics of aerial manipulators which carry an 
object cooperatively.  
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2.1 Dynamics of single aerial manipulator  
Each aerial manipulator is considered as a 

combined system of 2-DOF robotic arm with 
gripper and hexa-copter. Then, the general 
configuration space of single aerial manipulator 
is represented as 𝐪𝐪𝑖𝑖 = [𝐩𝐩𝑖𝑖⊤,𝚽𝚽𝑖𝑖

⊤,𝛈𝛈𝑖𝑖⊤]⊤ for i=1, 2,   
where 𝐩𝐩𝑖𝑖 = �𝑥𝑥𝑏𝑏,𝑖𝑖,𝑦𝑦𝑏𝑏,𝑖𝑖, 𝑥𝑥𝑏𝑏,𝑖𝑖�

⊤
 indicates the 

position of center of body in the Euclidian space. 
Bold alphabets represent vector quantities. The 
symbols 𝚽𝚽𝑖𝑖 = [𝜙𝜙𝑖𝑖, 𝜃𝜃𝑖𝑖 ,𝜓𝜓𝑖𝑖]⊤and 𝛈𝛈𝑖𝑖 = �𝜂𝜂𝑖𝑖,1, 𝜂𝜂𝑖𝑖,2�

⊤
 

denote vectors of Euler angles and joint angles of 
i-th aerial manipulator, respectively. The joint 
axis of robotic arm is set as shown in Fig. 1. In 
order to derive the dynamics of the system, the 
Lagrange-D’Alembert equation is used. The 
equations of motion can be represented as, 

𝑴𝑴(𝐪𝐪𝒊𝒊)𝐪𝐪𝒊𝒊̈ + 𝑪𝑪(𝐪𝐪𝒊𝒊,𝐪𝐪𝒊𝒊̇ )𝐪𝐪𝒊𝒊̇ + 𝑮𝑮(𝐪𝐪𝒊𝒊) = 𝛕𝛕𝒊𝒊 (1)  

where 𝛕𝛕𝑖𝑖 denotes a vector of generalized forces. 
𝑀𝑀(𝐪𝐪𝑖𝑖) ∈ ℝ8×8  Indicates the inertia matrix 
and 𝐶𝐶(𝐪𝐪𝑖𝑖,𝐪𝐪𝚤𝚤̇ ) ∈ ℝ8×8 , 𝐺𝐺(𝐪𝐪𝒊𝒊) ∈ ℝ8  is Coriolis 
and gravitational matrices. The more detailed 
equations of motion can be found in [7].  

The actuators for hexacopter and robotic arm 
in practical sense are considered as thrust  T , 
torques of Euler angles 𝝉𝝉Φ = �𝜏𝜏𝜙𝜙, 𝜏𝜏𝜃𝜃, 𝜏𝜏𝜓𝜓�

⊤
, and 

joint angle 𝝉𝝉𝛈𝛈 = �𝜏𝜏𝜂𝜂1 , 𝜏𝜏𝜂𝜂2�
⊤

. From the 

generalized force 𝛕𝛕𝑖𝑖, the actual inputs are derived 
based on the kinematic relationships as, 

⎣
⎢
⎢
⎢
⎢
⎡

T
𝜏𝜏𝜙𝜙𝑖𝑖
𝜏𝜏𝜃𝜃𝑖𝑖
𝜏𝜏𝜓𝜓𝑖𝑖
𝜏𝜏𝜂𝜂𝑖𝑖,1
𝜏𝜏𝜂𝜂𝑖𝑖,2⎦

⎥
⎥
⎥
⎥
⎤

= �
𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 0 0

0 𝑄𝑄−1 0
0 0 𝐼𝐼2×2

�

−1

𝛕𝛕𝒊𝒊 

 

(2) 

 

 

where, 

 𝑄𝑄 = �
1 0 −𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖
0 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑠𝑠𝑠𝑠𝜙𝜙𝑖𝑖
0 −𝑐𝑐𝑠𝑠𝑠𝑠𝜙𝜙𝑖𝑖 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑖𝑖

� 

2.2 Kinematics for cooperative task 
For cooperative manipulation, we assume that 

each aerial manipulator holds each end of a bar-
shaped object with the rigid grasping condition 
as shown in Fig. 1. From the grasping assumption, 
aerial manipulators and the object are considered 
as one system. Let 𝐪𝐪𝑜𝑜 = [𝐩𝐩𝑜𝑜⊤,𝚽𝚽𝑜𝑜

⊤]⊤  denote the 
configuration space of the object. The kinematic 
constraints from the grasping system are listed as 
below. The symbol 𝐩𝐩� = [𝐩𝐩⊤,𝟏𝟏]⊤  denotes a 
homogeneous representation of a point 𝐩𝐩. 

𝐩𝐩�𝑐𝑐𝑖𝑖 = �̅�𝑔𝑜𝑜𝑐𝑐𝑖𝑖𝐩𝐩�𝑜𝑜 
𝐩𝐩�𝑒𝑒𝑖𝑖 = �̅�𝑔𝑙𝑙2,𝑖𝑖𝑒𝑒𝑖𝑖�̅�𝑔𝑙𝑙1,𝑖𝑖𝑙𝑙2,𝑖𝑖�̅�𝑔𝑏𝑏𝑖𝑖𝑙𝑙1,𝑖𝑖𝐩𝐩�𝑖𝑖 
𝐩𝐩�𝑒𝑒𝑖𝑖 = 𝐩𝐩�𝑐𝑐𝑖𝑖

 

(3)  

Here, Each of  𝐩𝐩𝑜𝑜 ,𝐩𝐩𝑖𝑖 ,𝐩𝐩𝑒𝑒𝑖𝑖 and 𝐩𝐩𝑐𝑐𝑖𝑖 indicates the 
position vector of the center of object, i-th 
hexacopter, gripper and both ends of object. 
�̅�𝑔𝑙𝑙2,𝑖𝑖𝑒𝑒𝑖𝑖 , �̅�𝑔𝑙𝑙1,𝑖𝑖𝑙𝑙2,𝑖𝑖 and �̅�𝑔𝑏𝑏𝑖𝑖𝑙𝑙1,𝑖𝑖 represent the matrices of 
homogeneous rigid transformation [8] which 
calculate the positions resulted from the joint 
angles and Euler angles of each aerial 
manipulator. �̅�𝑔𝑜𝑜𝑐𝑐𝑖𝑖  is the one that calculates the 
each tip position of the object. From the grasping 
assumption, the Euler angles of object and each 
aerial manipulators are equal. 

From the dynamics, we find that the roll and 
pitch angle 𝜙𝜙𝑖𝑖, 𝜃𝜃𝑖𝑖  can be represented by other 
state variables and their time derivatives. The 
systems which have this dynamic property are 
called the differentially flat system and the 
representing variables are called flat outputs. 
With Eqn. (3) and utilizing the flat outputs, the 
configuration space of cooperative aerial 

Fig. 1.  Configuration of the coordinates for the 
combined system consisting of a hexacopter and a 2-
DOF robotic arm. 𝒍𝒍𝟏𝟏, 𝒍𝒍𝟐𝟐 and 𝒍𝒍𝒃𝒃 are lengths of each 
links and body offset 
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manipulators is represented as  𝐪𝐪 =
�𝐩𝐩𝑜𝑜⊤,𝜓𝜓𝑜𝑜 , 𝜂𝜂1,1, 𝜂𝜂1,2, 𝜂𝜂2,2�

⊤
.  

3  Motion Planning 
Here, we briefly explain the RRT* algorithm 

and describe the proposed local planning 
processes using Bezier-curve within RRT*.  

3.1 RRT* 
RRT*, the outstanding variant of the rapidly 

exploring random trees (RRTs), keeps the 
property of quickly searching feasible paths from 
the original RRTs, and moreover, it achieves 
asymptotic optimality until the execution finishes. 
The below are the brief descriptions of the 
processes in RRT*. Let Z ∈ ℝ𝑛𝑛  be the 
configuration space and the region 
occupied/vacated by obstacles are denoted Zobs 
and Zfree ∈ Z/Zobs. The symbols 𝑉𝑉,𝐸𝐸 and J are 
the groups of nodes (or vertices), edges and 
performance indexes of each node, and  𝜈𝜈𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 is 
the initial configuration. By repeating random 
sampling 𝜈𝜈𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟  and finding the most efficient 
parent node to reach 𝜈𝜈𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟  from near groups with 
the maximum distance of 𝛾𝛾,  the nodes and edges 
form the tree. The additional rewiring process 
enhances the optimality of local paths by 
rearranging connections. Here, the local planner, 
which is required in the tree extension and 

rewiring processes, computes the control 
input  𝑢𝑢 ∈ 𝑈𝑈: {𝑢𝑢| �̇�𝜈 = 𝑓𝑓(𝜈𝜈,𝑢𝑢)} that leads the 
system from the start to final node.  

3.2 Local planner  

3.2.1 General form or Bezier RRT* 
When we neglect the dynamic model in RRT*, 

the local planner is replaced by a simple straight 
line connecting the nodes. However, as the 
manipulator-mounted hexarotor can easily lose 
safety in some constrained configuration, we 
should consider the local planner which obeys 
the dynamic properties and constraints. In 
addition, as described before, the local planner 
for RRT* is used in rewiring and extend 
processes. In both processes, the local planner 
should compute the paths one or more times in 
order to pick collision-free and shorter path, as 
shown Algorithm 1 and 2. Hence, the local 
planner should compute the path fast enough to 
avoid the slow completeness of RRT*. Here, we 
propose the local planning using the Bezier curve 
with time-parameterization. By using the Bezier 
curve, we can develop a deterministic path 
generator with non-dimensional parameters. The 
basic form of 𝑠𝑠𝑏𝑏-order of Bezier curve is written 
as, 

𝐁𝐁(𝜉𝜉) = ��𝑠𝑠𝑏𝑏𝑠𝑠 � (1 − 𝜉𝜉)𝑛𝑛𝑏𝑏−𝑖𝑖𝜉𝜉𝑖𝑖𝐏𝐏𝑖𝑖

𝑛𝑛𝑏𝑏

𝑖𝑖=0

 (4)  

where 𝜉𝜉 ∈ [0, 1] indicates a parameter that does 
not have any dimension. Each of 𝐏𝐏0  and 𝐏𝐏𝑛𝑛𝑏𝑏 
denotes start and end states where 𝐏𝐏𝒊𝒊  for 𝑠𝑠 =
1,2, … ,𝑠𝑠𝑏𝑏 − 1 is the i-th control point.  
In order to connect the states that have 
continuous velocity and acceleration, we derived 
the follow equations of 𝐏𝐏𝒊𝒊 for 𝑠𝑠 = 0,1,2, … ,𝑠𝑠𝑏𝑏. 

Fig. 2. The general form of local planning with 
Bezier-curve  
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𝐏𝐏0 = 𝐪𝐪𝐬𝐬  

𝐏𝐏1 = 𝐏𝐏0 +
�̇�𝐪𝐬𝐬
𝑠𝑠𝑏𝑏�̇�𝜉𝑠𝑠

 

𝐏𝐏2 = 𝐏𝐏0 +
2�̇�𝐪𝐬𝐬
𝑠𝑠𝑏𝑏�̇�𝜉𝑠𝑠

+
�̈�𝐪𝐬𝐬

𝑠𝑠𝑏𝑏(𝑠𝑠𝑏𝑏 − 1)�̇�𝜉𝑠𝑠2

−
�̇�𝐪𝐬𝐬

𝑠𝑠𝑏𝑏(𝑠𝑠𝑏𝑏 − 1)�̇�𝜉𝑠𝑠3
 �̈�𝜉𝑠𝑠  

𝐏𝐏𝑛𝑛𝑏𝑏 = 𝐪𝐪𝐟𝐟                                     

𝐏𝐏𝑛𝑛𝑏𝑏−1 = 𝐏𝐏𝑛𝑛𝑏𝑏 −
�̇�𝐪𝐟𝐟
𝑠𝑠�̇�𝜉𝑓𝑓

  

𝐏𝐏𝑛𝑛𝑏𝑏−2 = 𝐏𝐏𝑛𝑛𝑏𝑏 −
2�̇�𝐪𝐟𝐟
𝑠𝑠𝑏𝑏�̇�𝜉𝑓𝑓

+
�̈�𝐪𝐟𝐟

𝑠𝑠𝑏𝑏(𝑠𝑠𝑏𝑏 − 1)�̇�𝜉𝑓𝑓2

+
�̇�𝐪𝐟𝐟

𝑠𝑠𝑏𝑏(𝑠𝑠𝑏𝑏 − 1)�̇�𝜉𝑓𝑓3
 �̈�𝜉𝑓𝑓 

(5)   

Then we obtain the local planner with design 
parameters  �̇�𝜉𝑠𝑠, �̈�𝜉𝑠𝑠, �̇�𝜉𝑓𝑓  and �̈�𝜉𝑓𝑓 . The control points 
are located with regard to the velocity and 
acceleration as shown in Fig. 2. 

3.2.2 Time parameterization 
The time representation of parametric curve of 

𝜉𝜉 allows us to allocate the desired velocity value 
at  𝜉𝜉 . With velocity information 𝑣𝑣(𝜉𝜉) along the 
𝜉𝜉, the time can be computed from the equations 
listed below. Here, 𝑣𝑣(𝜉𝜉)  should have positive 
values.  

 

𝑑𝑑𝑐𝑐 = 𝑣𝑣(𝜉𝜉)𝑑𝑑𝑑𝑑 

      =
𝑑𝑑𝑐𝑐
𝑑𝑑𝜉𝜉

𝑑𝑑𝜉𝜉 

 

𝑑𝑑(𝜉𝜉) = �𝑑𝑑𝑑𝑑 

         = �
𝑑𝑑𝑐𝑐
𝑑𝑑𝜉𝜉

1
𝑣𝑣(𝜉𝜉)

 𝑑𝑑𝜉𝜉 

 

(6) 

 

 

 

In order to satisfy boundary conditions at start 
and final points, the conditions for 𝑣𝑣(𝜉𝜉)  are 
given as follows: 

Finally, with the design parameters in section 
3.2.1 and velocity  𝑣𝑣(𝜉𝜉) , the local planner 
computes the trajectories as a function of time. 

3.2.3 Local planning in extend process 
In order to reduce the sampling space, we 

separately design the local planner in the 
extension and rewire processes.  

For extension, it is possible to sample the 
positions only, because we just need to extend the 
nodes. Compared to sampling all the state 
variables with velocity and acceleration, it raises 
the possibility for picking adequate candidates of 
parent nodes.  

Here, 𝑠𝑠𝑏𝑏  is set to be five. We assume that 
accelerations at each point are zero. The design 
parameters for local planner in the extend process 
are �̇�𝜉𝑠𝑠, �̈�𝜉𝑠𝑠, �̈�𝜉𝑓𝑓 and ��̇�𝐪𝑓𝑓� . Since there is no bound 
of velocity at final points, we use ��̇�𝐪𝑓𝑓� and make 
the paths end at adequate velocity. For both 
extension and rewire processes, �̈�𝜉𝑠𝑠 and  �̈�𝜉𝑓𝑓 are set 
to be zero and  �̇�𝜉𝑠𝑠 = max��𝐪𝐪𝑓𝑓 − 𝐪𝐪𝑠𝑠�, 𝛾𝛾� / 𝛾𝛾. In 
order to calculate Eqn. (7), we should know the 
vector elements of �̇�𝐪𝑓𝑓 . �̇�𝐪𝑓𝑓  is obtained from the 
following equations. 

𝑣𝑣′(𝜉𝜉 = 0) =
𝐪𝐪�̈�𝑠⊤𝐪𝐪�̇�𝑠
‖𝐪𝐪�̇�𝑠‖�̇�𝜉𝑠𝑠

   

𝑣𝑣′(𝜉𝜉 = 1) =
𝐪𝐪�̈�𝑓⊤𝐪𝐪�̇�𝑓
�𝐪𝐪�̇�𝑓��̇�𝜉𝑓𝑓

 

(7)  

Fig. 3. The form of local planner in (a) extend and 
(b) rewire processes 
 

(b) 

(a) 
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P2 = 𝐪𝐪𝐬𝐬 +
�̇�𝐪𝐬𝐬
2�̇�𝜉𝑠𝑠

 

     = 𝐪𝐪𝐟𝐟 −
�̇�𝐪𝐟𝐟

2�̇�𝜉𝑓𝑓
 

�̇�𝐪𝐟𝐟
𝜉𝜉�̇�𝑓

= 𝟐𝟐�𝐪𝐪𝒇𝒇 − 𝐪𝐪𝒔𝒔� −
𝐪𝐪�̇�𝒔
𝜉𝜉�̇�𝑓

= 𝐪𝐪�̇�𝐞 

(8) 

 
 

(9) 

 

Finally, �̇�𝐪𝐟𝐟 and  𝜉𝜉�̇�𝑓 are determined from the 
designed  ‖�̇�𝐪𝐟𝐟‖ . In Fig. 3(a), the curve for 
extension process and 𝐪𝐪�̇�𝐞 are shown. By setting 
𝑣𝑣(𝜉𝜉)  to satisfy Eqn. (7), the trajectories are 
generated as a function of time.  

3.2.4 Local planning in rewire process 
Unlike the extension process, the rewiring 

process should exactly connect the starting and 
final nodes to satisfy velocity and acceleration 
conditions at each end point. In order to satisfy 
the conditions above and avoid a large number of 
designing parameters, we set 𝑠𝑠𝑏𝑏 to six. Since we 
set the acceleration to zero at end points as 
described in 3.2.3, the accelerations for all the 
nodes are zero. By setting  �̇�𝜉𝑓𝑓 =  �̇�𝜉s for the 
rewiring process, the path is generated as shown 
in Fig. 3(b). 

4 Simulation Results 

4.1 Simulation Settings 
In the simulation scenario, two aerial 

manipulators transport a common object and put 
it inside the vertical gap between two obstacles 
as shown in Fig. 4. For local planning, design 
parameters are set as described in section 3.2.3 
and 3.2.4. The velocity 𝑣𝑣(𝜉𝜉) is designed to keep 
0.5~0.6 m/s with satisfying Eqn. (7) at each node. 
The performance index is set to travel time. In 
order to avoid configurations which cause large 
moments on the body and consume extra motor 
torques, we used weighting. Because the range of 
velocity is designed as 0.5 to 0.6 m/s, we can 
expect that the path for minimal travel time will 
be similar to the path for optimal travel length. 
The actuation limits are considered based on 
angular velocity criteria from general 
specifications of the platform. The lower and 
upper bounds for angular velocity of each i-th 

rotor, 𝜔𝜔𝑖𝑖 [rad/s] for i=1,2,…6,  are denoted as 
Eqn. (10). Each value of 𝜔𝜔𝑖𝑖 is obtained from Eqn. 
(11) where 𝑀𝑀o is the motor mapping matrix as 
listed on [7]. 
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4.2 Results and discussions 
In Fig. 4, the total trajectory in Euclidian space 

is shown. Red, blue and green lines indicate the 
body trajectories of object and manipulators. The 

Fig. 4. Optimized path.  

Fig. 5. Vertices and local paths for 𝑵𝑵 =30000  
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nodes and local paths are shown in Fig. 5. From 
the branch of paths, we can find that the planner 
connects the nodes smoothly. In Fig. 6, we found 
that, as the number of the sampling nodes 
increases, the performance index of the initial 
path keeps minimized. The time histories of state 
variables are listed in Fig. 7. 

5 Conclusions and Future work 
This paper presents a path planning approach 
using RRT* for a complex system performing 
cooperative tasks in 3D space. For our target 
system, a hexarotor with a multi-DOF robotic 
arm, we derived the compact sampling space 
with dynamic constraints and kinematics. For 
local planning within RRT*, a deterministic local 
planner was developed using the Bezier curve. 
With the time-parameterization method we 
developed, it is possible to allocate the velocity 
to non-dimensional parametric curve at desired 
position. This time-parameterization can be 
exploited other curve fitting methods. The 
simulation results show the local planner is 
suitable for the problem. However, even with the 
fast local planner, we faced the fact that this 
planner cannot be used as a real-time planner 
with satisfactory optimized results. Although the 
initial path is obtained quickly, the optimization 
may need more iterations generally. Therefore, 
one of the potential future works is a real-time 
planning strategy exploiting RRT*. 
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