
                       

1 

 

 
Abstract  
A new nonlinear control algorithm is proposed 
for multi-copter type vertical takeoff vehicles.  
The algorithm uses linear controllers for the 
position control in the outer loop.  The inner loop 
attitude control is carried out using quaternion 
representation.  The necessary thrust vector 
requirements of the position control are 
converted to inner loop as attitude control 
commands.  The inner loop uses a Lyapunov 
function based attitude controller utilizing the to-
go quaternion calculated from thrust vector 
commands.  The yaw commands are also added 
to the to-go quaternion to realize the attitude 
control in one step.   

1 Introduction  
VTOL aircraft has been attracting attention 

for many decades.  Quadrotors or as sometimes 
called multi-copters, are uninhabited air vehicles 
mainly employed for rapid reconnaissance, aerial 
photography etc.  Although they are not 
aerodynamically efficient as helicopters, they are 
cheaper than helicopters, and may be made more 
reliable with additional propellers and individual 
motor controllers. 

The control of multi-copters on the other 
hand poses some difficulties due to the 
nonlinearities in the equations of motion.  They 
are more maneuverable than aircraft, and steady 
flight conditions or trim conditions, are quite 
numerous.  Consequently, linear controllers, 
although extensively used, may offer limited 
flight performance.   

Use of quaternions for the attitude control of 
quadrotors have been addressed in the literature.  
For example, Tayebi [2] uses a Lyapunov 
function containing body angular velocities and 

quaternions, similar to Reference [3]. However, 
the attitude commands calculated from position 
control algorithm in terms of additional roll, 
pitch, yaw commands needs to be converted to a 
quaternion command for the attitude control 
system. Other example of quaternion utilization 
may also be given ([4][5][6]).  However, all of 
them fall short in properly bridging the gap 
between the position control and obtaining the 
quaternion for attitude control.  This manuscript 
addresses this issue.   

In this manuscript a new flight control 
algorithm is proposed.  It is a two loop algorithm, 
where the outer loop controls the position, and 
the inner loop controls the attitude. In the inner 
loop, it uses quaternion based attitude 
parametrization.  The thrust vector commands of 
the outer loop is converted into attitude 
commands, to be realized by the nonlinear inner 
loop control. 

In the following, the problem formulation 
and the control algorithms are given.  It is 
followed by simulation results and discussion.  
Finally conclusions are given. 

2 Formulation of the Problem 

2.1 Multi-copter Equations of Motion  
The translational equations of motion 

may be written with respect to the navigation 
frame, such as local vertical and local horizontal 
frame (i.e., North, East, Down, NED frame).  
Assuming that the NED frame is an inertial 
frame, the equations of motion may be written as, 
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where, iV  , is the inertial velocity, iCF  control 
force, iD , is the drag force associated with the 
i’th axis.  Drag force may be taken proportional 
to the velocity vector [1], 
 ( , , )T

d X Y Zk V V VD   (2) 
The total angular momentum of the multi-

copter, written in the body fixed frame is, 
  H Jω h  (3) 
where, J is the inertia tensor, ω  is the angular 
velocity of the vehicle with respect to the inertial 
frame, and h , is the residual angular momentum 
of the rotors.  Since the rotors are arranged to be 
counter rotating, the residual angular momentum 
of the rotors should normally be small.  Taking 
the derivative of Eq. (3), the following equations 
of motion are obtained.   
   1

d
      ω J h ω Jω h Τ Τ  (4) 

where,  
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In Eq. (4), Τ , is the control torque, while dΤ  is 
the disturbance torque, acting on the multi-
copter.  Since the multi-copter rotors are along 
the z-body axis direction, assuming that all the 
rotors are identical, the residual angular 
momentum of the rotors may approximately be 
written as, 
 res resJ h k  (6) 

2.2 Defining the To-Go Quaternion 
A quaternion, q, with vector ( q ), and 

scalar ( 4q ), parts may be written as, 4( )q q q
.  Similarly using quaternion multiplication and 
defining the desired attitude, d , current attitude, 
q, the to-go quaternion, t , may be written as, 
 
 d qt  (7) 
Using the inverse or conjugate quaternion, the 
following may also be written: 
 1t q d  (8) 
Applying the quaternion multiplication rules, 
the to-go quaternion becomes, 

 4 4
4 4 4 4

( )( )t q d
d q d q
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       

q d
q d q d q d  (9) 

Or in matrix vector form, 
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or, 
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Then, the derivative of the to-go may be written 
as, 
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Normally, the desired attitude is fixed and its 
derivative is zero.  The derivative of quaternion 
may be written as,  
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Similarly, using Eq. (12) and Eq. (13), the 
derivative of the to-go quaternion may be found 
as, 
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2.3 Control Algorithms 
If the drag forces are neglected, the translational equations given in Eq. (1), are linear, as well as uncoupled.  Thus, PID controllers may be used to calculate the desired control forces for position control.  However, in this manuscript a linear quadratic tracking controller is used.  The state vectors for each channel are taken as, 
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Then, for a horizontal channel, system and input 
and measurement matrices becomes, 
 

0 1
0 /fdk m
    A ,  0 , 1 01/ m

    B C   (16) 
 Then, the feedback law may be written as [7],  
 ( ) ( ) ( )t t t  zu Kx K z  (17) 
 
where, K  and zK  are the gains associated with 
the states and the reference input, z , of the infinite horizon linear quadratic tracking controller, and the quadratic performance index is given as,   

0
1 ( ) ( ) ( ) ( ) ( ) ( )2 { }J t t t t t t dt  T Te Q e u R u   (18) 

where, ( ) ( ) ( )t t t e z y , is the tracking error. 
2.4 Attitude Control 
 For attitude control, a nonlinear controller is needed.  Consider the following positive definite Lyapunov function, 
 1

4
1 2(1 )2

TV t  ω K Jω  (19) 
Here, it is assumed that a positive definite, 1K  
exists and 1K J  is also a positive definite 
symmetric matrix.  Then, the derivative of the 
Lyapunov function becomes: 
 1T TV  ω K ω ω t   (20) 
A decay rate selected as, 1TV  ω K Dω , where  1K D is again a positive definite matrix, 
guarantees that the Lyapunov function, V , keeps 
decreasing.  Substituting Eq. (4), to Eq. (20), the 
following control law may be obtained.  
       u h ω Jω h Kt Dω  (21) 
Note that in Eq. (21), the disturbance torque is 
neglected.  To realize the conditions on matrices 
K and D , one may choose them proportional to 
the inertia matrix (i.e., kK J and dD J ).   
 
 

2.5 Mechanization of the Attitude Control 
To carry out the control, it must be realized that the multi-copter has all its propellers generating the thrust, perpendicular to the multi-copter plane.  In the body fixed coordinates, the thrust vector direction is: 

 B  γ k  (22) 
The, thrust direction is realized by rolling and pitching the quadrotor platform.  The total force shall be equal to the total control force required, 

 2 2 2
C XC YC ZCF F F F    (23) 

In the navigation frame, assume that the desired thrust direction dictated by the position control system is given as, 
 2 2 2

XC YC ZCN
XC YC ZC

F F F
F F F
   

I J Kλ  (24) 
In the body fixed coordinates, using the transformation matrix from NED frame to body 
fixed frame, B

NC the trust vector direction may be 
written as, 
 B

B N Nλ C λ  (25) 
From these two unit vectors, the to-go 
quaternion may be found.  First, the axis of 
rotation may be calculated from the cross 
product,  
 B B B η γ λ  (26) 
The angle to be rotated may be found from the 
dot product of these two vectors, 
  1cos B B  γ λ  (27) 
Then, from the definition of quaternions, the to-
go quaternion may be found as follows:  
 
  

 4

sin / 2
cos / 2
B

s






s η  (28) 

2.6 Adding a Yaw Rotation 
To include a yaw control a sequence of rotations shall be defined.  Going from the inertial (navigation) frame to the body fixed frame the sequence is normally defined as yaw-pitch-roll.  In this case, we will use the opposite.  Hence roll-pitch-yaw sequence will be used, making the yaw as the last rotation.  While propagating the Euler equations in the navigation 
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computer, the current Euler angles ( , ,   ) are 
obtained.  The transformation matrix from the NED frame to the body fixed frame, may be written using these Euler angles as, 
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C
 (29) 

If an increment in the yaw angle (  ) is desired 
(i.e., d     ), the transformation will 
matrix then be, 
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Assuming that we have already completed the desired yaw rotation, the desired thrust vector direction in the body fixed coordinates may be found from, 
 B

B N Nλ D λ  (31) 
Then, the necessary rotation vector is again calculated using the Eq.  (24)-(28).  The, additional yaw angle to be rotated may be written as the following quaternion, 
  

 4

sin / 2
cos / 2y




 
 

y k  (32) 

Then, the total to-go quaternion is found as,  
 t sy  (33) 
2.7 Control Allocation 

If we assume that there are four rotors 
(i.e. quad-rotor configuration), then the relation 
between the thrust of each rotor and the control 
torque may be written as, 
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Where, iF , is the thrust of ith rotor, and iT  is the 
associated torque of the named rotor.  Assuming 
that, 2

i fi iF k  , and ii tiT k F , then the following 
may be written, 

22 2 4 41 1
21 1 3 32 2
24 1 4 2 4 3 4 43 3
21 2 3 4 4

0 0
0 0
f y f y

f x f x
f t f t f t f t

f f f fC

k l k lu
k l k lu = k k k k k k k ku
k k k kF
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Then the rotor angular velocities to be realized 
may be found from Eq. (35) by inversion.  Here 
a quadrotor is considered.  For multi-copters with 
more than four rotors, a proper control allocation 
algorithm, such as Moore-Penrose pseudo-
inverse may be used.   

3. Simulation Results and Discussion 
A nonlinear simulation for a quadrotor 

with properties given in Table 1 is used to carry 
out simulations.  Various command are given to 
the simulation.  The first command starts at 10 s 
and executed for 10 s commanding the quadrotor 
in the East direction, and increase its altitude by 
10 m.  The second maneuver is a heading 
maneuver initiated at 30 s.  In this case the 
heading is changed from by some 040 starting at 
30 s.  Finally, another horizontal maneuver 
towards North starting at 60 s is given. The 
results of the simulation are presented in Figures 
1-6.  Figure 1, shows the horizontal motion of the 
quadrotor. Translational motion of the quadrotor 
is presented in Figure 2.  Both figures indicate 
that the commands are very well followed by the 
feedback control system. Attitude histories are 
given in Figure 3.  The realization of the 
commanded heading angle may also be observed 
from this figure.  The total thrust presented in 
Figure 4 shows that it increases during the 
horizontal maneuver as expected since the 
propellers not only have to overcome the weight, 
but also create horizontal acceleration and 
overcome the drag force.  The amount the thrust 



 

5  

A NOVEL FLIGHT CONTORL ALGORITHM FOR MULTICOPTERS

requested is within the limits of propellers.  
Propeller speeds are presented in Figure 5 also 
show that these speeds are within the limits of the 
propellers. 

Conclusions 
A new feedback control algorithm is 

developed to control quadrotors.  The algorithm 
uses linear quadratic tracking controller in the 
outer loop, while it uses a nonlinear attitude 
controller in the inner loop.  The nonlinear 
attitude control uses the to-go quaternion 
obtained from the force commands of the outer 
loop.  The success of the controller is 
demonstrated through a simulation. 
 
Table 1.  Properties of the quadrotor used in the simulations [1]. 
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Appendix: Mechanization Using Quaternions 
Quaternions may also be used for the above 
mechanization as well.  If the current attitude is 
defined by q , then the desired attitude after the 
desired yaw rotation,  , may be written as, 
 1q qy  
The thrust direction in the body fixed coordinate 
frame may then be calculated using quaternion 
multiplication.  Then, Eq. (31) may be written 
as, 
 1

1 1g q fq   
where, 

4, 0N f f λ   
B λ g   

The yaw angle may be obtained from the 
current quaternion easily.  For the sequence 
described by Eq. (29),  
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

           
C

 
Since the same transformation matrix written 
using quaternions is, 
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               
C

(36) 
Then the, yaw angle may be found from, 
 2 2

2 321
11 1 2 3 4

1 2( )tan 2( )
q qc

c q q q q        
 

 
Figure 1 Motion of the quadrotor  in the 
horizontal farme 

 
Figure 2 Quadrotor positon history in the 

navigation frame 

 
Figure 3 Atittude history 

 
Figure 4 Total thrust history 
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Figure 5 Propeller speeds 

 
Figure 6 Angular velocities 
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