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Abstract

The theoretical basis for applying piston
theory to a slender wing-body combination is
considered and a numerical example is given
with comparison to experimental data and other
prediction methods.

1 Introduction

Piston theory [1] has long been used to predict
surface pressures on wings and on panels in
supersonic flows. Classical piston theory (CPT)
is defined by modelling perturbations relative
to the freestream flow. It has been extended
to account for upstream influence in the case
of airfoils and flat panels [2], and to account
for curvature in the case of shells with no
crossflow [3]. CPT has also been used to
add nonlinear thickness effects to otherwise
linear panel methods [4] and to estimate the
effective airfoil shape in hypersonic flows due to
the boundary layer displacement thickness [5].
Local piston theory [6] (LPT) is defined by
modelling perturbations relative to an existing
mean steady-state solution. LPT applied relative
to Euler solutions has seen increased use due
to its associated reduction of computational
cost relative to full unsteady Euler solution,
and has recently seen increased application to
vehicles [7] rather than to isolated surfaces. The
accuracy of the Euler-based LPT results has
seen to be lower [7] when applied to vehicles
with aerodynamically interfering components
than when applied to isolated surfaces. This,
along with the recent application of LPT relative
to Navier-Stokes solutions [8], has motivated

the present investigation into the basis for the
application of piston theory to interference flows.

2 Theoretical basis

Piston theory is a special case of the unsteady
analogy, which relates the steady (or unsteady)
flow in N dimensions to the unsteady flow in
N − 1 dimensions – in particular, at hypersonic
speeds, this is known as the hypersonic
equivalence principle. Various milestones in
the reduction of the order of the equations
for slender bodies have been achieved, with
notable contributions due to Ilyushin [9] at low
incidences and due to Sychev [10] at high
incidences. A summary of the various similitudes
and their relation to each other is given in [11].
It has been found [12] that in certain cases,
the similitudes (such as Sychev’s [10]) correlate
well with experimental data well outside of the
limiting assumptions imposed in their theoretical
derivation.

Piston theory may be derived from the Euler
equations when the ratios of certain lengths
or gradients and velocities in the flow become
small parameters and the associated terms are
discarded. In particular, piston theory requires
that gradients in two orthogonal directions be
neglected, as illustrated in Fig. 1, where as
the unsteady analogy and other related methods
typically only require gradients along the body
axis to be neglected. A mathematical treatment
of these considerations and the conditions under
which they break down is given in [13]; here,
the ideas will be illustrated by considering only
one component of the momentum equation and
considering typical crossflow-plane flowfields.
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slender body /
slender wing theory

strip theory

Fig. 1 : Planes normal to which gradients are
neglected in piston theory.

Consider the third component of
the momentum equation, with terms
nondimensionalized with respect to reference
values such that the terms and their derivatives
are O(1). The velocities ui are referenced to
values Ui, coordinates ξi are nondimensionalized
with respect to lengths Li, and the dimensionless
pressure p and density ρ have reference values
pR and ρR respectively:(
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The bracketed terms are dimensionless
parameters of the local flow problem; for
given magnitudes of these parameters, the order
of magnitude of perturbations to ui may be
considered and a truncation up to a certain
order of smallness may be made, potentially
removing a variable ui from the equation. The
various methods that result from the unsteady
analogy differ in the particulars of the order of
the various dimensionless parameters and the
order of the perturbations. Piston theory, as a
point-function relation between pressure and
velocity, requires the gradients in the ξ1 and
ξ2-directions to be neglected. This effectively
precludes its application in regions where the

crossflow velocity or acceleration tangential to
the surface is of the order of the piston velocity –
this may occur in various regions in the flowfield
as illustrated in Fig. 2, typically where significant
surface curvature exists: the wing-body junction,
the wing-tips, and potentially on the body surface
in crossflow.

M∞ sinα

Nose shock

Regions of large
flow gradients due to
wing-body geometry

Wing vortex

Fig. 2 : Typical flow in the crossflow plane at
small incidence.

3 Application

The application of classical piston theory to a
body with a monoplane wing is illustrated in this
section. The geometry considered is described
in Fig. 3, corresponding to the model geometry
of a series of experimental work by Fellows &
Carter [14]. The results presented in [14] are
limited to the normal-force coefficient for the
various model components across the spectrum
of angle-of-attack (α) and freestream Mach
number (M∞); the pressure distribution at a given
combination of M∞ and α for all the components
was not given. A systematic comparison to
experiment of the pressure distribution predicted
by piston theory was thus not possible. However,
for the portion of the wing-body combination aft
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of the wing root, a comparison of the normal-
coefficients could be made for the combination
(CN), the interference of the wing on the
body (CNB(W )

), and for the wing including the
interference from the body (CNB(W )

). The values
are related by:

CN =CNB +CNB(W )
+CNW (B) (2)

where CNB is the normal-force coefficient of the
isolated body. The additional terms are related
to the normal-force coefficient of the isolated
wing (CNW ) through carry-over factors KB(W ) and
KW (B):

CNB(W )
= KB(W )CNW , CNW (B) = KW (B)CNW (3)

It is important to note that in the following
sections, CN and CNB(W )

refer to the portion of the
body aft of the root of the wing, and not to the
entire body. The results from applying classical
piston theory to the geometry are compared to
those obtained from a public-domain version of
the NASA-AMES WingBody panel code, as well
as to experiment and approximate methods to
model interference.
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3

Common: LW = 14.384”, Lc = 0.75”, t = 0.202”
L = 19.5”, D = 1.5”, LN = 3D

Wing 8: ΛLE = 85.5◦, sW = 1.125”

Fig. 3 : Geometry definition.

3.1 Reference Data and Methods

The experimental values of the normal-force
coefficient were obtained in [14] by integration
of the pressure distribution over the surfaces of
the various model components – this allowed for
the experimental CNW (B) to be obtained directly;
the value of CNB(W )

was deduced from the
measured value of CNB +CNB(W )

and from tests
of the isolated body (CNB). These results, along
with values from various prediction methods,
are shown in Figs. 5–10. The normal-force
coefficient of the isolated wing (CNW ) was also
determined by experiment.

Fellows & Carter [14] applied the carry-over
factors KB(W ) and KW (B) to the experimentally-
measured CNW to obtain predictions for the
normal-force coefficient of the portion of the
wing-body combination subject to interference.
The values used for the carry-over factors
were taken from slender body theory [15]
(SBT), upwash theory [15] (UT), and the P-N-
K method [15] (PNK), and are summarized in
Table 1 and Table 2.

Table 1: Wing-on-body carry-over factor, KB(W )

Method M∞ = 2.0 M∞ = 2.8
Wing 1 SBT 0.278 0.278

PNK 0.246 0.232
Wing 8 SBT 0.611 0.611

PNK 0.581 0.565

Table 2: Body-on-wing carry-over factor, KW (B)

Method Wing 1 Wing 8
SBT 1.162 1.349
UT 1.300 1.522

3.2 Piston Theory

Classical piston theory was used to obtain
predictions for the isolated body (CNB) and the
isolated wing (CNW ); no attempt was made to
model the interference, i.e., CNB(W )

= 0 and
CNW (B) = CNW . For reference, the normal-force
coefficient of the nose alone was also computed
for comparison to experiment; the results are
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shown in Fig. 5 and Fig. 6. The coordinate
system used in defining the downwash equations
is shown in Fig. 4. The pressure coefficient as

x̂

r̂

θ̂

V∞α

θ = 0

Fig. 4 : Coordinate system.

modelled by classical piston theory is given by:

CP =
2

M∞

(
c1ŵ+ c2M∞ŵ2 + c3M2

∞ŵ3) (4)

in which ŵ is the downwash nondimensionalized
with respect to the freestream velocity, and
for which the coefficients c1, c2, and c3 are
dependent on the pressure equation used. In
the case of expansion, the limiting value of CP
corresponds to that at vacuum. The general
expressions for the coefficients are given in [16];
for the present case the coefficients are listed in
Table 3, and are seen to be close to those due to
Lighthill [17].

Table 3: Piston theory pressure coefficients

M∞ = 2.0 M∞ = 2.8
c1 1.155 1.071
c2 0.733 0.642
c3, ŵ > 0 0.254 0.181
c3, ŵ≤ 0 0.234 0.185

The dimensionless downwash ŵ is defined as:

ŵ≡−V̂∞ · n̂ (5)

where V̂∞ is the unit vector of the freestream
velocity and n̂ is the unit normal vector of
the body or wing surface. The dimensionless
downwash may be split into a component (ŵa)
associated with surface gradients relative to the
component of V∞ directed along the axis of the
body (x̂-direction) and into a component (ŵc)
associated with surface gradients relative to the
component of V∞ lying in the crossflow plane:

ŵ = ŵa + ŵc (6)

The unit normal vector of the surface for the body
is given as:

n̂ =−sinφ x̂+ cosφsinφ r̂+ cosφcosθθ̂̂θ̂θ (7)

In this formulation, the following relations hold:

Body: ŵa = cosαsinφ (8)
ŵc =−sinαcosφcosθ (9)

Wing: ŵa ≈ 0 (10)

ŵc ≈
{
−sinα, upper
+sinα, lower (11)

The normal-force coefficient is then obtained by
integrating the pressure over the surface:

CNB =− 1
SW

2π∫
0

L∫
L−LW

CPRcosφcosθ dθdx (12)

CNW =− 1
SW

∫∫
wing

CPR dS (13)

In each case, the normal-force coefficient is
referenced to the wing area (SW ) of the wing
considered. The results obtained using 1st-
order and 3rd-order piston theory with no
interference modelling are shown in Figs. 5–
10. It is noted that classical piston theory
with the downwash equation as defined here
produces a lifting pressure-distribution around
the cylindrical portion of the body for all α 6= 0.

4 Discussion

For a discussion on the results of slender body
theory (SBT), the P-N-K method (PNK), and of
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upwash theory (UT) and their correlation to the
experimental results, the reader is referred to the
report of Fellows & Carter [14]; here, it is only
remarked that the departure of these results from
the experimental data highlights the fact that the
interference is not linear with α. The correlation
of the WingBody panel code and of piston theory
to the experimental results is discussed here, with
reference to Figs. 5–10.

4.1 WingBody Code

Firstly, it is noted that all the results from the
WingBody code are linear with α, as is expected
for the linearized potential flow code. Fairly
good correlation with experiment is obtained for
α < 5◦ for all the coefficients in the case of
Wing 1; thereafter, the nonlinear force of the
body leads to significant differences, as seen in
Fig. 5. In the case of the smaller-span Wing
8, very poor agreement is obtained for the wing
normal-force at both Mach numbers, as seen in
Fig. 8, with a significant over prediction in the
normal-force slope at α = 0◦. Considering the
good agreement of the SBT prediction of CNW (B)

at low α, which is obtained from the experimental
CNW , and considering the significantly better
agreement of the WingBody results for Wing
1, it is suggested that the large difference may
be attributed to either numerical issues in the
code arising from poorly conditioned panels over
the majority of the highly swept (85.5◦) wing.
Similar overprediction in the body normal-force
is obtained, as seen in Fig. 6. The results from
the WingBody panel code suggest that a simple
linear potential-flow method may be suitable to
predict the interference and overall loads for α <
5◦ in the Mach range considered, provided that
the leading-edge sweep is not extreme (ΛLE <
80◦). Improved prediction is expected from
codes in which the vortex sheet from the wing
leading-edge is modelled. The WingBody code
provides a significantly better prediction of the
body normal-force slope at α = 0◦ compared to
piston theory in both cases and Mach numbers.
This is not surprising, as the downwash equation,
Eq. (5), is a poor representation of the flow for the
low-subsonic crossflow Mach number M∞ sinα.

4.2 Piston Theory

The aforementioned issue of the downwash
equation for the body in piston theory at low-
subsonic crossflow Mach numbers is evident in
the results for the body normal-force slope at
α = 0◦ in Fig. 5 and Fig. 6. Eq. (5) results
in a non-zero lifting pressure on the cylindrical
portion of the body for all α; this is inconsistent
with the concept of established flow over a
cylinder in the crossflow plane at low α, which
suggests that only the nose contributes to the
normal-force. Isolating the normal-force from
the nose alone in Fig. 5 and Fig. 6 shows that
good correlation with the nose normal-force from
experiment is obtained by 1st-order piston theory
for the available data range of 0◦ ≤ α ≤ 25◦,
with improved agreement at the higher Mach
number. Comparison of the slope of the nose-
alone normal-force in Fig. 6 from piston theory
to the experimental slope for the body in the
presence of the wing suggests that for α < 5◦ the
nose-alone prediction serves as an approximation
to the overall lift on the body for Wing 8.

Investigation of the results in Fig. 5 and Fig. 6
at high α shows that the impact-like downwash
equation, Eq. (9), becomes more appropriate
at higher crossflow Mach numbers, as M∞ sinα

approaches and exceeds unity and the Sychev-
regime is approached. The sudden change in
slope of the body normal-force noted for 1st-
order piston theory arises due to the leeside flow
reaching vacuum in the 1st-order model; it is
noted that this is delayed when the 3rd-order
model is used. It is noted that the normal-
force slope from 3rd-order piston theory and
from experiment both appear to asymptote to
a near-constant value for α > 15◦, with better
agreement at M∞ = 2. From Eq. (4) and Eq. (9)
it is seen that for the cylindrical portion of the
body, CNB ∝ c3M∞ sin3

α, which differs from the
Sychev similarity parameter of M∞ sinα; thus,
the correlation in slopes over the range of α

shown at M∞ = 2, as noted for both wing-body
combinations, may be a happy coincidence.
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Fig. 5 : Body normal-force coefficient in the presence of Wing-1: (a) M∞ = 2.0, (b) M∞ = 2.8.
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Fig. 6 : Body normal-force coefficient in the presence of Wing-8: (a) M∞ = 2.0, (b) M∞ = 2.8.
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Fig. 7 : Wing-1 normal-force coefficient in the presence of the body: (a) M∞ = 2.0, (b) M∞ = 2.8.
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Fig. 8 : Wing-8 normal-force coefficient in the presence of the body: (a) M∞ = 2.0, (b) M∞ = 2.8.
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Fig. 9 : Overall normal-force coefficient for the Wing-1-body configuration : (a) M∞ = 2.0, (b) M∞ = 2.8.
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Fig. 10 : Overall normal-force coefficient for the Wing-8-body configuration : (a) M∞ = 2.0, (b) M∞ =
2.8.
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Consideration of Figs. 9–10 shows that
piston theory consistently over-predicts the
wing normal-force slope, with degradation in
performance as α increases. The best agreement
is obtained at low incidence for the less-swept
Wing 1 at the higher Mach number of M∞ = 2.8:
this is expected, as this represents the closest
combination of parameters to the domain for
which piston theory is theoretically valid. Once
again, the rapid change in the normal-force slope
for 1st-order piston theory is due to vacuum being
reached in the 1st-order model. In considering
the results for CNW as predicted by piston theory,
it is noted that for the given geometries, thickness
effects are negligible and nonlinearities are due
to the proportionality CNW ∝ c3M∞ sin3

α. The
worse prediction of dCNW (B)/dα at α = 0◦ noted
for Wing 8 relative to Wing 1 is consistent with
the smaller portions of the flowfield in which both
spanwise and axial gradients may be neglected,
as assumed in piston theory.

The preceding comments regarding CNB +
CNB(W )

and CNW as predicted by piston theory are
reflected in the results for the overall normal-
force (CN) of the wing-body section, as shown in
Fig. 5 and Fig. 6. The prediction by 3rd-order
piston theory for the wing-alone and the nose-
alone is included to provide an estimate of the
improvement to dCN/dα at α = 0◦ that might
be achieved through more appropriate modelling
of the pressure on the cylindrical body at low-
subsonic crossflow Mach numbers.

5 Conclusions

The theoretical basis for applying piston theory
requires that velocity gradients in two orthogonal
directions (one being the axis for the unsteady
analogy) be negligible relative to gradients in a
third direction (the orientation of the cylinder).
Theoretical considerations for the validity of
these assumptions suggest that classical piston
theory may be applied for α ≈ 0◦ in regions
sufficiently far from the wing-body junction
and from the wing-tips and at sufficiently high
Mach numbers. Outside of these parameters,
the flowfield is 2D unsteady in the cross-
flow plane and interference must be accounted

for. Comparison of piston theory predictions to
experimental results for highly swept wing-body
combinations suggest that classical piston theory
may not be applied without modification; results
for the body at high-subsonic to supersonic
crossflow Mach numbers suggest preliminary
prediction of dCN/dα may be possible using
classical piston theory.
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