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Abstract— In the coming years, usage of Unmanned
Aerial Vehicles (UAVs) is expected to grow tremendously.
Maintaining security of UAVs under cyber attacks is an
important yet challenging task, as these attacks are often
erratic and difficult to predict. Secure estimation problems
study how to estimate the states of a dynamical system
from a set of noisy and maliciously corrupted sensor
measurements. The fewer assumptions that an estimator
makes about the attacker, the larger the set of attacks it
can protect the system against. In this paper, we focus on
sensor attacks on UAVs and attempt to design a secure
estimator for linear time-invariant systems based on as
few assumptions about the attackers as possible. We pro-
pose a computationally efficient estimator that protects the
system against arbitrary and unbounded attacks, where
the set of attacked sensors can also change over time.
In addition, we propose to combine our secure estimator
with a Kalman Filter for improved practical performance
and demonstrate its effectiveness through simulations of
two scenarios where an UAV is under adversarial cyber
attack.

I. INTRODUCTION

The already widespread use of Unmanned
Aerial Vehicles (UAVs) is expected to continue
to grow at a tremendous rate over the next
few years [1]. Civilian applications of UAVs,
such as cargo delivery [2], [3], infrastructure
surveillance [4], and agricultural applications
[5], can provide great benefits to society.

However, UAVs may be vulnerable to a va-
riety of cyber attacks. For example, to manage
the increased UAV traffic, each UAV may pe-
riodically send its position measurements wire-
lessly to a remote traffic management center.

Similarly, two UAVs may exchange position
and velocity information in a collaborative colli-
sion avoidance procedure. These communication
links could be subject to Man-In-The-Middle
(MITM) attacks in which a malicious agent
spoofs the information being sent and/or re-
ceived. Successful attacks can lead to collisions
of vehicles, economic loss and bodily damage.
Therefore, maintaining the security of UAVs
under such cyber attacks is an important but also
challenging task, as attacks are often erratic and
difficult to model.

Secure estimation problems study how to es-
timate the states of a dynamical system from a
set of noisy and maliciously corrupted sensor
measurements. In designing such estimators, it
is desirable to make as few assumptions about
the attackers as possible. This is because it is
very difficult, if not impossible, to predict the
behavior of attackers, and when an attack signal
violates the assumptions of a secure estimator,
then this estimator would fail to detect the
attack.

Researchers have studied various approaches
to securing general cyber-physical systems, each
based on a different set of assumptions about
the attacker. For example, the authors in [6],
[7] assume that the attack signal would fol-
low certain probabilistic distributions and then
design filters for detection of such attacks. In
[8], [9], [10], [11], [12], the authors use the
game theory framework, where the controller
and attacker are players with competing goals in
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a game. Attackers are assumed to adopt specific
strategies that maximize a certain cost and the
controller or estimator is designed to minimize
such a cost. More recently, Fawzi et al. proposed
in [13] a secure estimation method for arbitrary
attacks, with a limiting assumption that the set
of attacked sensors do not change with time.

In this paper, we focus on sensor attacks on
UAVs and attempt to design a secure estimator
for linear time-invariant (LTI) systems based
on as few assumptions about the attackers as
possible. First, we do not assume that the attack
signals follow any stochastic distributions, and
thus our proposed estimator works for arbitrary
and unbounded attacks. Second, we allow the
set of attacked sensors to change over time. The
only assumption we make is that the number of
attacked sensors is sparse.

We formulate this secure estimation prob-
lem into the classical error correction problem,
from which we propose an l

1

-optimization based
estimator that is computationally efficient. In
addition, we prove the maximum number of
sensor attacks that can be corrected with our
estimator and propose a practical method for
estimator design that guarantees accurate decod-
ing. Finally, to improve the estimator’s practical
performance, we propose to combine our se-
cure estimator with a Kalman Filter (KF), and
demonstrate its effectiveness using two examples
of UAVs under adversarial cyber attacks.

II. CLASSICAL ERROR CORRECTION: A
REVIEW

A. Compressed Sensing

Sparse solutions x 2 Rn, are sought to the
following problem:

min

x

kxk
0

subject to b = Ax (1)

where b 2 Rm are the measurements, and
A 2 Rm⇥n

(m ⌧ n) is a sensing matrix.
kxk

0

denotes the number of nonzero elements
of x. The following lemma provides a sufficient
condition for a unique solution to (1).

Lemma 1: ([14]) If the sparsest solution to
(1) has kxk

0

= q and m � 2q and all subsets of
2q columns of A are full rank, then the solution
is unique.

Proof: Suppose the solution is not unique.
Therefore, there exists x

1

6= x

2

such that Ax
1

=

b and Ax

2

= b where kx
1

k
0

= kx
2

k
0

= q.
Then, A(x

1

� x

2

) = 0 and x

1

� x

2

6= 0.
Since kx

1

� x

2

k
0

 2q and all 2q columns of
A are full rank (i.e., linearly independent), it is
impossible to have x

1

� x

2

6= 0 that satisfies
A(x

1

�x

2

) = 0. This contradicts the assumption.

B. The Error Correction Problem [14]
Consider the classical error correction prob-

lem: y = Cx + e where C 2 Rl⇥n is a coding
matrix (l > n) and assumed to be full rank.
We wish to recover the input vector x 2 Rn

from corrupted measurements y. Here, e is an
arbitrary and unknown sparse error vector. To
reconstruct x, note that it is obviously sufficient
to reconstruct the vector e since knowledge of
Cx + e together with e gives Cx, and conse-
quently x since C has full rank [14]. In [14], the
authors construct a matrix F which annihilates
C on the left, i.e., FCx = 0 for all x. Then,
they apply F to the output y and obtain

ỹ = F (Cx+ e) = Fe. (2)

Thus, the decoding problem can be reduced to
that of reconstructing a sparse vector e from the
observations ỹ = Fe. Therefore, by Lemma 1, if
all subsets of 2q columns of F are full rank, then
we can reconstruct any e such that kek

0

 q.

III. SECURE ESTIMATION

A. Problem Formulation
Consider the LTI system as follows:

x(k + 1) = A

o

x(k) + Bu(k)

y(k) = Cx(k) + e(k),

(3)

where x(k) 2 Rn, y(k) 2 Rp and u(k) 2 Rm

are the states, measurements and control inputs
at time step k. e(k) 2 Rp represents the attack
signal at time k. Our goal is to reconstruct the
initial state x(0) of the plant from the corrupted
observations y(k)’s where k = 0, ..., T � 1.

The attack vector e(k) is such that if the ith
sensor is attacked at time k, then e

i

(k), the ith
element of e(k) is nonzero, otherwise e

i

(k) = 0.
We assume that the attack signal can be arbitrary
and unbounded. In addition, we assume that the
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set of attacked sensors can change over time.
As illustrated by the following example, if 2
sensors are attacked at each time step, we can
have sensors 1 and 3 attacked at time step 0,
sensors 2 and 3 attacked at time 1, and so on:

⇥
e(0) | e(1) | ...

⇤
=

2

664

⇤ 0 ⇤ · · ·
0 ⇤ 0 · · ·
⇤ ⇤ 0 · · ·
0 0 ⇤ · · ·

3

775 ,

where ⇤ denotes a nonzero component (i.e., an
attack or corruption).

Furthermore, assume that a local control loop
implements secure state feedback and is not
subject to attack: u(k) = Gx(k). In the case of
UAVs, this corresponds to using measurements
from onboard, hardwired sensors such as Inertial
Measurement Units (IMU) for autopilot and
trajectory following. The resulting closed loop
system is:

x(k + 1) = Ax(k)

y(k) = Cx(k) + e(k),

(4)

where the closed loop system matrix A = A

o

+

BG.
Finally, we define the number of correctable

attacks/errors as follows:
Definition 1: When the set of attacked sen-

sors/nodes can change over time, q errors
are correctable after T steps by the estima-
tor/decoder D : (Rp

)

T ! Rn if for any x(0) 2
Rn and any sequence of vectors e(0), ..., e(T�1)

in Rp such that |supp(e(k))|  q, we have
D(y(0), ..., y(T � 1)) = x(0) where y(k) =

CA

k

x(0) + e(k) for k = 0, ..., T � 1.

B. Methodology

Let E

q,T

denote the set of error vectors⇥
e(0); ... ; e(T � 1)

⇤
2 Rp·T where each e(k)

satisfies ke(k)k
0

 q  p.

Y ,

2

664

y(0)

y(1)

...
y(T � 1)

3

775 =

2

664

Cx(0) + e(0)

CAx(0) + e(1)

...
CA

T�1

x(0) + e(T � 1)

3

775

=

2

664

C

CA

...
CA

T�1

3

775 x(0) + E

q,T

, �x(0) + E

q,T

(5)

where Y 2 Rp·T is a collection of corrupted
measurements over T time steps and � 2 Rp·T⇥n

represents an observability-like matrix of the
system. Here, we need to assume that rank(�) =
n; otherwise, the system is unobservable and we
cannot determine x(0) even if there is no attack
(i.e., E

q,T

= 0).
Inspired by the error correction techniques

proposed in [14] and [15], we first determine
the error vector E

q,T

, and then solve for x(0).
Consider the QR decomposition of � 2 Rp·T⇥n,

� =

⇥
Q

1

Q

2

⇤ 
R

1

0

�
= Q

1

R

1

(6)

where
⇥
Q

1

Q

2

⇤
2 Rp·T⇥p·T is orthogonal, Q

1

2
Rp·T⇥n

, Q

2

2 Rp·T⇥(p·T�n), and R

1

2 Rn⇥n is a
rank-n upper triangular matrix. Pre-multiplying
(5) by

⇥
Q

1

Q

2

⇤> gives:

Q

>
1

Q

>
2

�
Y =


R

1

0

�
x(0) +


Q

>
1

Q

>
2

�
E

q,T

. (7)

We can compute E

q,T

by using the second block
row:

˜

Y , Q

>
2

Y = Q

>
2

E

q,T

(8)

where Q

>
2

2 R(p·T�n)⇥p·T . From Lemma 1, (8)
has a unique, s-sparse solution (where s  q ·
T ) if all subsets of 2s columns (at most 2q · T
columns) of Q

>
2

are full rank. Clearly, this is a
reasonable assumption if (p · T � n) � 2q · T .
Therefore, we consider solving the following l

1

-
minimization problem:

ˆ

E

q,T

= argmin

E

kEk
l1

s.t. ˜

Y = Q

>
2

E (9)

Now, given the vector ˆ

E

q,T

, we can compute
x(0) from the first block row of (7) as follows:

x(0) = R

�1

1

Q

>
1

(Y � ˆ

E

q,T

) (10)

The following lemma provides the conditions
under which the solution to (10) exists and is
unique.

Lemma 2: x(0) is the unique solution if
|supp(�z)| > 2s = 2(q ·T ) for all z 2 Rn\{0}.

Proof: We first prove the claim C1: if
|supp(�z)| > 2s = 2(q · T ) for all z 2
Rn\{0} then all subsets of 2s columns of Q

>
2

are full rank. Then by Lemma 1 and noting that
by definition the null space of Q

>
2

equals the
column space of �, we have x(0) is the unique
solution.
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Proof of C1 by contradiction: Suppose there
exist 2s columns of Q

>
2

that are linearly de-
pendent. Then, there exists E

0

6= 0 such that
Q

>
2

E

0

= 0 where |supp(E
0

)|  2s. Since the
null space of Q>

2

equals the column space of �,
there exists z such that E

0

= �z (i.e., E
0

is in
the column space of �). Then, |supp(�z)| =

|supp(E
0

)|  2s (contradiction).
The sufficient condition, provided in Lemma

2, for the existence of a unique solution to (10)
is hard to check as it requires satisfiability of the
condition for all z 2 Rn\{0}. In the following
Theorem, we prove an equivalent, yet simple-to-
check, sufficient condition that only needs to be
verified for the eigenvectors of A.

Theorem 1: Let A 2 Rn⇥n

, C 2 Rp⇥n.
Assume that C is full rank, (A,C) is observable
and A has n distinct positive eigenvalues such
that 0 < �

1

< �

2

< · · · < �

n

. Define:
• s

i

, |supp(Cv

i

)|, where v

i

is an eigenvec-
tor of A,

• S , {s
1

, s

2

, · · · , s
n

},
• For every m 2 {2, . . . , n}, let S

m

be any
subset of S with m elements, define TSm ,
(m�2)·p+minSm

maxSm�2q

. Then T

m

is such that T
m

>

TSm for all subsets S
m

, i.e. all subsets of m
elements from the set S .

Choose T such that T � max{T
2

, · · · , T
n

}.
Then, the following are equivalent:

(i) 8v
i

2 Rn where Av

i

= �

i

v

i

,

|supp(Cv

i

)| > 2q

(ii) 8v
i

2 Rn where Av

i

= �

i

v

i

,

|supp(�v
i

)| > 2q · T
(iii) 8z 2 Rn\{0}, |supp(�z)| > 2q · T

Proof: Interested readers are referred to the
proof for Theorem 1 in our archived paper [16].

Theorem 1 states that if the feedback system and
the secure estimator are designed such that all
the conditions in the theorem are satisfied, then
our proposed secure estimator can guarantee
accurate correction of q errors by checking the
following very simple condition:

8v
i

2 Rn where Av

i

= �

i

v

i

, |supp(Cv

i

)| > 2q.

C. Number of Correctable Errors

Given that the set of attacked nodes
can change over time and e(k) satisfies
|supp(e(k))|  q for all k, we prove in Proposi-
tion 1 (see below) that the maximum number of
correctable errors (as defined in Definition 1) by
our decoder is dp/2�1e, where p is the number
of measurements.

Proposition 1: Let A

0

2 Rn⇥n, B 2 Rn⇥m

and C 2 Rp⇥n and assume that the pair (A
0

,
B) is controllable, C is full rank and each row
of C is not identically zero. Then there exists a
finite set F ⇢ R

+

such that for any choice of
n numbers �

1

, · · · ,�
n

2 R
+

\F such that 0 <

�

1

< · · · < �

n

, there exists G 2 Rm⇥n such
that:

• The eigenvalues of the closed-loop matrix
A (= A

0

+BG) are �

1

, · · · ,�
n

.
• If the pair (A,C) is observable, then the

number of correctable errors for the pair
(A,C) is maximal after T = max{n, T ⇤}
time steps and is equal to dp/2� 1e, where
T

⇤ is the value of T from Theorem 1.
Proof: The proof for Proposition 4 in [13]

shows that if the chosen poles �

1

, · · · ,�
n

are
distinct, positive and do not fall in some finite
set F , then there is a choice of G such that
the eigenvalues of A (= A

0

+ B) are exactly
�

1

, · · · ,�
n

, and the corresponding eigenvectors
v

i

are such that |supp(Cv

i

)| = p. Thus, by
Theorem 1, the number of correctable errors for
(A,C) is dp/2� 1e.

In addition, recall that E
q,T

consists of the er-
ror vectors e(0), · · · , e(T �1) stacked vertically
and our proofs for the existence of a unique
solution to (10) are independent of how the
individual error (nonzero) terms are distributed
in the vector E

q,T

. Thus, we can remove the
assumption: |supp(e(k))|  q for all k, and
allow e(k) to appear in an arbitrary fashion, e.g.
|supp(e(0))| = 2q and |supp(e(1))| = 0, as
long as

P
T�1

k=0

|supp(e(k))|  q · T , then our
q-error-correcting decoder can still recover the
true states. In other words, our proposed secure
estimator can protect the system against more
general attacks where the number of attacked
sensors is not necessarily less than or equal to q

at every time step.
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IV. COMBINATION OF SECURE ESTIMATION
AND KALMAN FILTER

Consider the state estimation problem for the
following LTI system under attack:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + e(k) + v(k),

(11)

where x, y, u and e are as defined in (3); and
v is a zero mean independent and identically
distributed (i.i.d.) Gaussian measurement noise.

A KF can be used to estimate the states
by modeling the attack signal as noise. More
specifically, define a new measurement noise
v̄(k) = e(k) + v(k) to give a new measurement
equation y(k) = Cx(k) + v̄(k). A KF can then
estimate the states from the inputs u(k) and the
corrupted measurements y(k) [17]. One caveat
with this method is that KFs assume zero mean
and i.i.d. white Gaussian measurement noise,
however, attack signals are usually erratic and
may be poorly modeled by Gaussian processes
[17], i.e., e(k) and consequently, v̄(k) may not
be Gaussian. Take Global Positioning System
(GPS) spoofing attacks for example, attack sig-
nals are often structured to resemble normal GPS
signals or can be genuine GPS signals captured
elsewhere. When the system is subjected to
attacks that are poorly modeled by Gaussian
processes, it is reasonable to expect KFs to fail
to recover the true states.

On the other hand, our proposed secure es-
timator does not assume the attack signal to
follow any model, and therefore, it works for
arbitrary and unbounded attacks. The only as-
sumption is that the number of attacked sensors
is sparse, i.e., less than dp/2� 1e. As the set of
attacked sensors becomes less sparse, our secure
estimator occasionally fails to recover the true
states. Based on these observations, we propose
to combine our secure estimator with a KF to
improve its practical performance, as detailed in
Algorithm 1.

The intuition is that the secure estimator acts
as a pre-filter for the KF, so that ṽ(k) is close to
a zero mean i.i.d. Gaussian process even when
the true attack signal e(k) is not. At most time
steps k, the secure estimator perfectly recovers
e(k), i.e., ê(k) = ê(k), hence ṽ(k) = v(k) and
thus, is a zero mean Gaussian process. What

Algorithm 1 Combined secure estimator with
KF

1: Initialize the KF
2: for each k do

3: if k � T then

4: Estimate the attack signal at time k,
ê(k), using secure estimator

5: else

6: Set ê(k) = 0

7: end if

8: Form a new measurement equation:
ỹ(k) = Cx(k)+ ṽ(k), where ỹ(k) = y(k)�
ê(k) and ṽ(k) = e(k)� ê(k) + v(k)

9: Apply standard KF using u and ỹ

10: end for

happens when the secure estimator fails? (5)
shows that the estimated state at time k, x̂(k), is
independent from the estimated state at another
time step x̂(l) (l 6= k). As a result, when the
secure estimator fails, its estimation error, e(k)�
ê(k), appears to be quite random. Putting these
together: ṽ(k) = e(k)� ê(k) + v(k) is closer to
a zero mean i.i.d. white Gaussian process than
v̄(k) (i.e., the corresponding measurement noise
if a KF is applied directly to estimate the states),
which improves the KF’s performance. Finally,
the if statement in Algorithm 1 ensures that the
secure estimator always has access to T past
measurements.

Next, we demonstrate the effectiveness of our
proposed method through simulations of a UAV
under two types of adversarial attacks, which
also provides a realistic example illustrating the
behaviors described in this section.

V. NUMERICAL EXAMPLES

A. UAV Model

We consider a quadrotor with the following
dynamics:

x(k + 1) = A

0

x(k) + Bu(k) + g

y(k) = Cx(k) + e(k) + v(k),

(12)

where x = [p

x

, v

x

, ✓

x

,

˙

✓

x

, p

y

, v

y

, ✓

y

,

˙

✓

y

, p

z

, v

z

]

T

is the state vector. p
x

, p
y

and p

z

represent the
quadrotor’s position along the x, y and z axis,
respectively, and v

i

’s are their corresponding
5
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velocities. ✓
x

and ✓

y

are the pitch and roll an-
gles respectively, and ˙

✓

i

’s are their correspond-
ing angular velocities. The input vector u =

[✓

r,x

, ✓

r,y

, F ]

T , where ✓

r,i

is the reference pitch
or roll angle, and F is the commanded thrust in
the vertical direction. y = [p̃

x

, p̃

y

, p̃

z

]

T represents
corrupted position measurements under attack e

and measurement noise v. The constant vector
g represents gravitational effects and can be
dropped without loss of generality because we
can always subtract it out in u. Further details
about this model and its derivation can be found
in [18]. Finally, the matrix C depends on the
particular measurements taken in each example.

B. Decoder Design via Pole-Placement

We assume that the UAV uses the state feed-
back control law u(k) = Gx(k)

1, where G

is the feedback matrix which can be designed.
In this section, we show that we can design
G to achieve our desired trade-off between the
control performance and the secure estimation
performance.

If the open loop pair (A

0

, B) is control-
lable, then the closed loop poles can be placed
anywhere in the complex plane by appropriate
choice of G. First, we design a Linear Quadratic
Regulator (LQR) and evaluate its secure esti-
mation performance: we check the number of
errors that the resulting secure estimator can
correct by finding the maximum q for which
|supp(Cv

i

)| > q for all i. Figure 1 shows the
results for a matrix C 2 R5⇥10 (i.e., 5 measure-
ments). Observe that |supp(Cv

i

)| < p = 5 for
i = 1, 2, 9, 10 and furthermore, |supp(Cv

i

)| =
1 > 0 for i = 9 and 10, which means that
the resulting secure decoder can correct zero
errors! As shown in Figure 1, to improve the
secure estimation performance, we perturb the
closed-loop poles slightly until |supp(Cv

i

)| = p

for all i, i.e., we design a secure decoder that
can achieve the maximum number of correctable
errors within the limits of p (i.e., the number of
measurements). By keeping the perturbations on
the poles small, our final controller achieves both
good control and estimation performances.

1In the GPS spoofing example, direct uncorrupted state mea-
surements are not available. Therefore a KF is used to give
estimated states which are then used for state feedback control.

i
1 2 3 4 5 6 7 8 9 10

| s
up

p 
(C

 v
i) |

0

1

2

3

4

5

6

p
LQR
Pole-Placement

Fig. 1: |supp(Cvi)| for all eigenvectors vi of the closed-loop
matrix A for 2 feedback controllers: a LQR and a controller
designed by pole-placement. Black dashed line is at p = 5, i.e.,
the number of measurements.

Remote Control 
Center

Satellite

target
UAV

GPS 
signal

other
UAV

1

2

3

Fig. 2: Different communication channels that are subjected to
cyber attacks.

C. UAV under Adversarial Cyber Attack

1) MITM Attack in Communication: In this
section, we consider MITM attacks targeted at
Channels 1 and 2 in Figure 2, where a malicious
agent spoofs the information being sent and/or
received over these channels. The goal of the
remote control center or the other UAV is to
accurately estimate the true flight path of the
target UAV from compromised measurements.
Note that the attack does not affect the actual
path of the target UAV (as opposed to the GPS
spoofing example later in this section).

Assume that the attacker aims to deceive the
receiver that the target UAV is deviating in the
x-direction, therefore she spoofs the x-position
measurements by injecting a continuous and
increasing attack signal in p

x

. To make the esti-
mation task even harder for the receiver, at each
time step, the attacker injects a Gaussian noise
to an additional randomly selected measurement,
and the choice of this measurement changes over
time.

In this example, we first demonstrate the ef-
fectiveness of our proposed decoder design using
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Attack Est. (LQR)
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5

True Attack (LQR)
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Est. Error (LQR)
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1

2

3

4

5

Attack Est. (PP)

Time
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1

2

3

4

5

True Attack (PP)

Time
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1

2

3

4

5

Est. Error (PP)

Time
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1

2

3

4

5

Fig. 3: Estimated attack signal, true attack signal and esti-
mation error in the attack signal of the estimator (SE) with
2 different feedback controllers: LQR, controller designed via
pole-placement (PP); with 5 measurements. Left column shows
estimated attack signals. Middle column shows true attack signal.
Right column shows estimation error. Each row corresponds to
one type of measurement. Red pixels indicate positive values,
green pixels are negative values and black indicates zero.

the pole-placement method by comparing the
estimation performance of the decoder resulting
from (1) a LQR controller and (2) a controller
designed using pole-placement as described in
the previous section. We then implement the
latter controller, and compare the performance of
three different estimation schemes: (1) KF only
(KF), (2) secure estimator only (SE), and (3)
secure estimator combined with KF (KF+SE).

Throughout this example, y 2 R5 and the
measurements include the x, y and z positions
and two additional randomly selected states.
Figure 3 compares the accuracy of the estimated
attack signals by the LQ regulator (top) and
the one designed via pole-placement (bottom).
In each plot, one row corresponds to one sen-
sor, and the first 3 rows are the x, y and z

position measurements, respectively. The color
of the pixel indicates the value of the signal
or the estimation error. The middle plots show
the true attack signal and they highlights three
points: first, the attacked sensors change with
time; second, the number of attacked sensors at
each time step k is less or equal to 2; third,
only position measurements are corrupted. The
left plots show the estimated attacked signal by
each decoder. It is easy to see that the decoder
resulting from a feedback controller designed via
pole-placement estimates the attack signal much
more accurately. The right plots of this figure
highlight this observation by explicitly showing
the estimation error of the attack signal for each
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Fig. 4: Estimated UAV trajectory by three methods under MITM
attack: KF only (KF), secure estimator only (SE), secure es-
timator with KF (KF+SE). Solid blue lines are the true UAV
trajectories. They start from the blue triangle and end at the
blue square. Red dashed lines represent estimated trajectories
by each method, with 5 measurements.

measurement.
Figure 4 compares the estimated flight paths

by all three methods: KF, SE and KF+SE. The
UAV starts from the blue triangle and follows the
solid blue line to land at the blue square. The
estimated paths by each method are shown in red
dashed lines. Observe that the KF fails to filter
out the attack signal in the x-position measure-
ments as the attack is highly non-Gaussian, and
the estimated trajectory differs significantly from
the true one. On the other hand, SE correctly
estimates most portions of the trajectory and
the final position of the vehicle, nevertheless it
gives spontaneous errors. Finally the combined
method KF+SE perfectly recovers the true path
of the target UAV.

2) GPS Spoofing: In this section, we focus
on adversarial attacks in the GPS navigation
system (Channel 3 in Figure 2). Consider the
scenario where a UAV uses a Linear Quadratic
Gaussian (LQG) controller to follow a desired
trajectory, x

r

(k). In other words, a KF uses cor-
rupted and noisy measurements y(k) to produce
a state estimate x̂(k), which is then used for
state feedback control: u(k) = G(x̂(k)�x

r

(k)),
where G is the feedback matrix. Note that in the
previous example (Section V-C .1), the feedback
controller had access to uncompromised state
measurements x(k), therefore the true trajectory
of the UAV is unaffected by attacks. In this ex-
ample, however, the UAV uses estimated states
x̂(k) for feedback control and path following.
Therefore, if the measurements are corrupted
and the state estimates are poor, then the UAV
may deviate away from its desired path. Hence,
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the goal of the UAV is to accurately follow
its planned trajectory in the presence of cyber
attacks.

Assume an attacker spoofs the GPS position
measurements in order to deviate the UAV from
its desired path. She injects a sinusoidal signal
into the x position measurement, as well as a
Gaussian noise to a randomly chosen position
measurement at each time step.

In this example, we explore the effect of the
number of sensor measurements on the secure
estimation performance of two schemes: (a) KF
only, (b) KF+SE. First, we assume that the UAV
only uses GPS for navigation, i.e., 3 positional
measurements. Figure 5 shows that KF com-
pletely fails to estimate the attack signal (KF,
n

y

= 3), consequently, the actual UAV trajectory
(red dashed line) deviates significantly from its
desired path (solid blue line). On the other hand,
the combined method KF+SE’s estimated attack
signals are significantly more accurate, therefore
the UAV can follow its planned path much
more closely (Figures 5, KF + SE, n

y

= 3).
Recall from Proposition 1 that the maximum
number of correctable errors for a system with
p measurements is dp/2 � 1e, which equals 1
in this case. However, at any time step k, there
are at most 2 attacked sensors, which exceeds
the above limit and explains the estimation error
of the combined method KF+SE. Despite this
small estimation error, KF+SE still outperforms
the KF.

Next, we show the effect of increasing the
number of measurements (n

y

, or equivalently p)
on the estimation performance and consequently,
the UAV’s path following performance. This can
be achieved through sensor fusion. For example,
autonomous UAVs often use IMUs in addition
to GPS for navigation, the former provides ad-
ditional measurements such as the UAV’s ve-
locities, pitch and roll angles. Figure 5 shows
that increasing the number of measurements has
no effect on the KF’s estimation accuracy and
hence, its path following ability. Even when 8
measurements are used the UAV equipped with a
KF still fails to follow the desired trajectory. On
the other hand, increasing the number of mea-
surements improves the estimation performance
of the secure estimator SE and consequently the
performance of the combined scheme KF+SE.
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Fig. 5: Desired and actual UAV trajectory in different cases: KF
and KF+SE, each using 3, 5 and 8 different measurements. Blue
solid lines are the desired trajectory. Red dash lines are the actual
UAV trajectory under adversarial attack.

Figure 5 shows that when 5 and 8 measurements
are used, the UAV can follow its original planned
path perfectly (KF + SE n

y

= 5 and KF + SE
n

y

= 8).

CONCLUSION

In this paper, we consider the estimation
problem for UAVs under adversarial cyber at-
tack and propose a secure estimation based KF
that is computationally efficient and makes no
assumptions about the attack signal model. We
demonstrate that our proposed secure estimator
outperforms standard KF, using numerical ex-
amples of UAVs under adversarial cyber attacks.
This is important not only for today’s aviation
system but also delivery systems with drones in
the near future.
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