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Abstract 
In this paper, the sensitivity and performance of 
an unsteady aerodynamic reduced-order 
modeling (ROM) approach robust to freestream 
parameter variations is analyzed. The 
considered ROM methodology is founded on 
system identification principles and neurofuzzy 
networks in order to obtain an efficient 
aerodynamic model from CFD-based input-
output data.  

In terms of a sensitivity analysis, the user-
defined parameters of the neurofuzzy model are 
varied systematically, while the ROM output for 
each set-up is compared with the full-order 
reference CFD solution. In this way, the 
influence of the ROM parameters is uncovered, 
while the focus is on a robustness and accuracy 
evaluation. Additionally, the number of 
freestream conditions incorporated within the 
training dataset is increased incrementally in 
order to study the dependence between the 
training information and the overall solution 
quality.  

The research is carried out based on the 
NLR 7301 airfoil in the subsonic and transonic 
flight regime. It is shown that good agreement is 
obtained between the ROM results and the 
respective full-order solution. Moreover, the 
ROM parameters exhibit a robust characteristic 
which is beneficial for practical applications. 

1  Introduction 
The industrial design and analysis of next 
generation aircraft is characterized by involved 
multidisciplinary computations in order to 
achieve efficiency goals such as the reduction of 

emissions and fuel consumption. Based on these 
requirements, the aspect ratio of the wing tends 
to be increased, whereas it is envisioned to 
concurrently decrease the structural weight. 
Considering those highly-flexible structures, the 
accurate prediction of aeroelastic phenomena 
that arise through the interaction of structural, 
inertial, and flow-induced forces will become of 
even higher importance in the future. Hence, 
efficient and precise methods are required to 
compute the motion-induced aerodynamic 
forces. In this regard, the aim of the research 
efforts is to use modern CFD methods for the 
unsteady aerodynamic computations. However, 
due to the vast number of parameters, i.e., 
various freestream conditions, geometry 
parameters, fuel levels, etc., the numerical effort 
of comprehensive multi-physics calculations is 
still not manageable using the available computer 
technology. 

A possible remedy is offered by the development 
and application of reduced-order models (see 
Lucia et al. [1] and Dowell and Hall [2] for 
instance). In this regard, computational-fluid-
dynamics-based training samples describing the 
input/output relationship of the underlying 
system are exploited by means of an 
identification. In the context of unsteady 
aerodynamic computations, the system input is 
regarded with the structural and/or the rigid body 
degrees of freedom, whereas the outputs are the 
motion-induced generalized aerodynamic forces 
or aerodynamic coefficients. Following this 
methodology, the unsteady aerodynamic forces 
can be predicted with high accuracy, while the 
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simulations are performed within seconds once 
the ROM has been generated.  

In the last years, a variety of linear and 
nonlinear ROM concepts have been developed to 
efficiently describe unsteady aerodynamic 
quantities. However, only a few approaches can 
be found in the literature that account for 
changing freestream conditions with a single 
ROM. Though, an efficient model that is valid 
across a range of inflow conditions is highly 
desirable for efficient simulation and control 
purposes. Thus, a brief description of the recently 
developed freestream-condition-adaptive ROM 
approaches is given below according to [3]. 

In 2010, a surrogate-based recurrence 
framework had been developed by Glaz et al. [4] 
in order to model the unsteady aerodynamic 
characteristics of rotor blades. Thereby, 
sinusoidal Mach number variations were taken 
into account, while a Kriging algorithm was used 
to train the ROM. Subsequently, Liu et al. [5] 
also employed a Kriging interpolation for the 
prediction of unsteady aerodynamic coefficients 
with respect to the NACA 64A010 airfoil 
undergoing a combined pitch and plunge motion 
at moderately changing freestream conditions. 
Recently, Winter and Breitsamter [3] developed 
a ROM based on neurofuzzy models which has 
been shown to yield good agreement for the 
generalized aerodynamic forces of the AGARD 
445.6 wing across multiple Mach regimes (0.5 ≤
𝑀𝑀𝑎𝑎∞ ≤ 1.2). Nonetheless, it is still unclear how 
sensitive the formerly mentioned ROM approach 
responds to changes in the training data or model 
parameter variations. 
 
In the present research, the ROM formulated by 
Winter and Breitsamter [3] is employed for a 
comprehensive sensitivity analysis. For this 
purpose, the NLR 7301 supercritical airfoil 
undergoing a pitching motion is considered 
across subsonic and transonic freestream 
conditions. The error estimation is realized by a 
comparison between the ROM output caused by 
harmonic excitations and the corresponding full-
order CFD solution. In this regard, the influence 
of various ROM parameters is investigated 
systematically in order to obtain further insights 
about the robustness and accuracy of the method.  

Furthermore, several training data compositions 
with a varying number of freestream conditions 
is taken into account to obtain a ROM. In this 
way, the generalization capability of the model 
can be studied. Additionally, the question is 
addressed whether an increase in training 
information and trained flow conditions leads to 
a better overall simulation quality.  
 
The paper is structured as follows: In Sec. 2, the 
employed inviscid CFD solver is explained 
briefly, whereas the ROM approach based on the 
local linear model tree algorithm (LOLIMOT, 
[6]) is discussed in Sec. 3.  In Sec. 4, the NLR 
7301 test case is introduced followed by the 
results and discussion of the sensitivity analysis. 
Finally, a conclusion in Sec. 5 summarizes the 
most important outcomes. 

2  Computational Fluid Dynamics – Inviscid 
AER-Eu Solver  
In the present work, the inviscid CFD solver 
AER-Eu is used to provide the neurofuzzy-
network-based ROM with unsteady aerodynamic 
training data. Additionally, the AER-Eu solver 
developed at the Chair of Aerodynamics and 
Fluid Mechanics of the Technische Universität 
München (TUM-AER) is employed to compute 
the reference results required for error 
estimation. 

AER-Eu solves the Euler equations by 
employing a shock-capturing finite-volume 
method for structured multi-block grids [7]. The 
spatial discretization is realized by Roe’s flux-
difference splitting, while the monotonic 
upstream scheme for conservation laws 
(MUSCL) extrapolation is used to retain the total 
variation diminishing (TVD) property. The 
temporal integration is realized with the implicit 
dual-time-stepping scheme, whereas the 
embedded pseudo-time iterations are carried out 
using the lower-upper symmetric successive 
over-relaxation (LU-SSOR). Furthermore, a 
mesh deformation algorithm has been 
implemented. In this context, a user-defined time 
law can be prescribed to interpolate between a 
reference grid and various amplitude grids. For 
further information, refer to Refs. 7-10. 
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3  Aerodynamic Reduced-Order Model  
The aerodynamic ROM proposed in Winter and 
Breitsamter [3] utilizes the LOLIMOT algorithm 
developed by Nelles [6] to train the dynamic 
relationship between the structural excitation, the 
freestream parameters, and the corresponding 
unsteady aerodynamic loads. In order to support 
the following theoretical presentation, an 
overview of the ROM training and application 
process is depicted in Fig. 1, while the 
nomenclature is adapted to support the 
investigations of this work. The basic concept for 
the aerodynamic ROM is the external dynamics 
approach (or recurrence framework method). 
Thereby, it is assumed that the output of the 
considered system can be approximated by 
means of current and previous excitation inputs 
as well as previous system responses [11]. 
Considering for example the aerodynamic lift 
coefficient 𝐶𝐶𝐿𝐿 as the system output and the angle 
of incidence 𝛼𝛼 in combination with the 
freestream Mach number 𝑀𝑀𝑎𝑎∞ as the system 
input, the modeling framework can be written as: 

𝐶̂𝐶𝐿𝐿(𝑘𝑘)

= 𝒩𝒩��

𝛼𝛼(𝑘𝑘)
𝛼𝛼(𝑘𝑘 − 1)

⋮
𝛼𝛼(𝑘𝑘 −𝑚𝑚)

� ,𝑀𝑀𝑎𝑎∞,�

𝐶𝐶𝐿𝐿(𝑘𝑘 − 1)
𝐶𝐶𝐿𝐿(𝑘𝑘 − 2)

⋮
𝐶𝐶𝐿𝐿(𝑘𝑘 − 𝑛𝑛)

�� 

𝐶̂𝐶𝐿𝐿(𝑘𝑘) = 𝒩𝒩(𝒖𝒖),                          𝒖𝒖 ∈ ℝ𝑝𝑝  

(1) 

 

In Eq. (1), 𝑘𝑘 denotes the current discrete-time 
increment, i.e., 𝜏𝜏(𝑘𝑘 + 1) = 𝜏𝜏(𝑘𝑘) + ∆𝜏𝜏, while the 
predicted lift coefficient is characterized by 𝐶̂𝐶𝐿𝐿. It 
should be noted that the same methodology also 
applies for other output quantities as well. 
Moreover, 𝑚𝑚 and 𝑛𝑛 are introduced in Eq. (1) as 
the maximum dynamic delay-orders for the angle 
of attack and the lift coefficient, respectively. 
Since these parameters have to be determined a 
priori by the user, they are considered within the 
sensitivity and robustness investigation.  

When combining Eq. (1) with a nonlinear 
approximator in terms of the unknown function 
𝒩𝒩, the nonlinear auto-regressive with exogenous 
input (NARX, [6]) model architecture is 
obtained. In this context, the neurofuzzy model 
from the domain of artificial neural networks is 
employed to approximate 𝒩𝒩 based on a given 
training example. The basic concept of local 
linear neurofuzzy models consists in the 
superposition and blending of various local linear 
models (LLMs) which are valid in certain 
regimes of the model input space. Moreover, the 
input space assignment for the LLMs is achieved 
via fuzzy validity functions.   

According to Nelles [6], the basis 
function formulation for a neurofuzzy model 
with 𝑀𝑀 LLMs can be expressed as: 

𝐶̂𝐶𝐿𝐿 = ��𝑤𝑤𝑗𝑗0 + 𝑤𝑤𝑗𝑗1𝑢𝑢1 + ⋯
𝑀𝑀

𝑗𝑗=1
+ 𝑤𝑤𝑗𝑗𝑗𝑗𝑢𝑢𝑝𝑝�𝛹𝛹𝑗𝑗(𝒖𝒖) 

(2) 

   

Fig. 1. Overview of the aerodynamic ROM approach considered for the sensitivity analysis. 
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In Eq. (2), the coefficients 𝑤𝑤𝑗𝑗𝑗𝑗 represent the linear 
model weights, whereas 𝑢𝑢𝑙𝑙 characterizes the 𝑙𝑙th 
element of the network input vector 𝒖𝒖. Besides, 
𝛹𝛹𝑗𝑗  refers to the fuzzy validity function of the 𝑗𝑗th 
LLM. Each validity function is composed of 
normalized Gaussians evaluated with the 
Euclidean distance between the network input 
vector and the center of the respective LLM [3]. 
Thereby, the constant 𝑘𝑘𝜎𝜎 has to be defined by the 
user in order to determine the range of influence 
for the local linear models (see also Nelles [6]). 
If 𝑘𝑘𝜎𝜎 is chosen too small, the influence of the 
LLMs is limited to the vicinity of their center. In 
contrast, if 𝑘𝑘𝜎𝜎 is chosen too large, each LLM 
affects adjacent local linear models 
disproportionately high. Both effects are 
undesirable. For this reason, the parameter 𝑘𝑘𝜎𝜎 is 
investigated in further detail in Sec. 4.4.  

For the determination of the various 
unknowns occurring in Eq. (2), a training dataset 
must be provided.  Therefore, an unsteady 
forced-motion CFD computation has to be 
performed yielding the correlated time series of 
the system’s inputs and outputs. Here, different 
inflow conditions are considered by means of 
several freestream Mach numbers 𝑀𝑀𝑎𝑎∞. Hence, 
the CFD-based data has to be generated at 𝑁𝑁𝑀𝑀𝑀𝑀 
different supporting points (see Fig. 1). As the 
parameter 𝑁𝑁𝑀𝑀𝑀𝑀 as well as the distribution of the 
training Mach numbers 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 have a crucial 
influence on the ROM performance, the 
sensitivity with respect to the selection of 
training conditions is also a subject of this paper.  

Subsequent to the preprocessing steps 
shown in Fig. 1, the data provided by the AER-
Eu solver can be utilized to train the neurofuzzy 
model using the LOLIMOT algorithm. Since a 
detailed review of the LOLIMOT training 
procedure is beyond the scope of this work, the 
reader is referred to Nelles [6] and Winter and 
Breitsamter [3] for a thorough discussion. 

4  Sensitivity Analysis  
In this section, the ROM approach is applied to 
the NLR 7301 airfoil undergoing a pitching 
motion in order to investigate the method’s 
sensitivity, robustness, and accuracy. Therefore, 
various aerodynamic ROMs are considered, 

which represent different parameter set-ups and 
training data configurations. After the efficient 
models have been calibrated, they are utilized to 
produce the aerodynamic response, i.e., the lift 
(𝐶𝐶𝐿𝐿) and pitching moment (𝐶𝐶𝑀𝑀𝑦𝑦) coefficient time 
series, induced by harmonic pitching oscillations 
at several reduced frequencies. Analogously to 
the common practice within the aeroelastic 
community, the time domain unsteady 
aerodynamic data resulting from the harmonic 
excitations are transferred into the frequency 
domain via Fourier analysis for both the ROM 
and the CFD reference data. The error estimation 
is then performed in terms of a comparison 
between the ROM output and the corresponding 
full-order CFD solution. 

4.1 Test Case Description: NLR 7301 Airfoil 
The well-known NLR 7301 supercritical airfoil 
[12, 13] is governed by a distinct nonlinear 
aerodynamic behavior in the transonic flight 
regime due to the presence of a strong shock on 
the airfoil’s suction side, which can be proven by 
the steady pressure coefficient distribution in Fig. 
2. The airfoil is characterized by a chord length 
of 𝑐𝑐 = 0.3 𝑚𝑚, which serves also as the reference 
length for the reduced frequency calculation 
given in Eq. (3). 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 =
𝜔𝜔 ∙ 𝑐𝑐
𝑈𝑈∞

 (3) 

 
Fig. 2. Structured reference grid and computed steady-state 
pressure coefficient distribution of the NLR 7301 airfoil at 
𝑀𝑀𝑎𝑎∞ = 0.75 and 𝛼𝛼0 = 0° (AER-Eu). 
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The employed computational grid also shown in 
Fig. 2 is composed of 14,396 cells in a four-block 
C-H topology using ANSYS ICEM CFD. 
Moreover, a grid sensitivity study was carried out 
in [14] to ensure the independence of the solution 
from the grid resolution. Since the focus in this 
work is exclusively on an intermethod 
comparison, the considered Mach numbers are 
chosen independently from the experimental test 
conditions regarded in [12]. In the following, the 
freestream Mach number range of 0.5 ≤ 𝑀𝑀𝑎𝑎∞ ≤
0.9, resolved with ∆𝑀𝑀𝑎𝑎∞ = 0.05, is considered, 
while the steady angle of incidence is fixed at 
𝛼𝛼0 = 0°. The freestream conditions, therefore, 
range from the subsonic to the transonic flow 
regimes. In Fig. 3, the steady-state lift and 
pitching moment coefficients are plotted against 
𝑀𝑀𝑎𝑎∞ to emphasize their nonlinear characteristic 
with respect to the NLR 7301 test case. 
Therefore, the intended study can be considered 
as a challenging task for the freestream-
parameter-adaptive ROM. 

4.2 Training Data Generation 
Starting from the steady-state solutions, the 
unsteady AER-Eu-based flow computations have 
been carried out to obtain the transient responses 
of the aerodynamic system for the selected 
freestream conditions. Therefore, a maximum 
pitching angle amplitude of 𝛼𝛼1 = 0.01° is chosen 
to restrict the nonlinear dependencies to the 
variations in the freestream Mach number. 
Henceforth, dynamic linearity around the 

nonlinear reference states is assumed by 
considering only small amplitudes (see also [3]). 

In order to generate the ROM training 
data according to the workflow depicted in Fig. 
1, the so-called pulse signal suggested by Kaiser 
et al. [15] is employed in this work for the 
excitation of the pitching degree of freedom. In 
contrast to the amplitude-modulated pseudo-
random binary signal (APRBS), which has been 
originally used within the training procedure for 
generality [3], the pulse signal is well-suited for 
dynamically linear identification purposes.  

 
Fig. 4. Discrete-time series of the pulse signal [15] for the 
forced-motion excitation of the NLR 7301 pitching degree 
of freedom. 

In this context, a nondimensional time step size 
of ∆𝜏𝜏 = 0.1 and a pulse length of 100 time steps 
are utilized as shown in Fig. 4. For convenience, 
the same signal is used for the 𝑁𝑁𝑀𝑀𝑀𝑀 unsteady 
computations. As a result of the AER-Eu 
simulations, the ROM training data are obtained. 
 

 
Fig. 3. Development of the steady aerodynamic coefficients as a function of 𝑀𝑀𝑎𝑎∞ (NLR 7301, 𝛼𝛼0 = 0°).  
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4.3 Sensitivity to ROM Parameter Variations 
For the sensitivity study regarding the ROM 
parameters, only the training dataset composed 
of five freestream Mach numbers (𝑁𝑁𝑀𝑀𝑀𝑀 ≡ 5) is 
taken into account. According to Table 1, the 
trained freestream conditions marked with the 
letter ‘X’ can be read as 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 =
[0.5, 0.6, 0.7, 0.8, 0.9]. Thus, the pulse excitation 
signal and the respective aerodynamic response 
evaluated at five 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 are employed to train the 
ROM. Nevertheless, the application to harmonic 
pitching oscillations is always performed for all 
𝑁𝑁𝑀𝑀𝑀𝑀 = 9 cases (see Table 1) as well as the five 
reduced frequencies listed in Table 2. In order to 
achieve load periodicity, three oscillation cycles 
are computed with the ROM and the AER-Eu 
solver [3, 9]. For the latter method, each cycle is 
resolved with 100 time steps. In contrast, the 
ROM is applied with a constant time step size 
(∆𝜏𝜏 = 0.1) leading to a frequency-dependent 
cycle discretization. In the present work, the error 
between the ROM and the CFD reference is 
measured by the mean squared error (𝑀𝑀𝑀𝑀𝑀𝑀). For 
example, the 𝑀𝑀𝑀𝑀𝑀𝑀 with respect to the real part of 
the first harmonic lift coefficient (𝑅𝑅𝑅𝑅 𝐶𝐶𝐿𝐿1) is 
defined by 

𝑀𝑀𝑀𝑀𝐸𝐸(𝑅𝑅𝑅𝑅 𝐶𝐶𝐿𝐿1) 

=
1

9 ∙ 5
���𝑅𝑅𝑅𝑅 𝐶𝐶𝐿𝐿,𝑅𝑅𝑅𝑅𝑅𝑅

1 (𝑀𝑀𝑎𝑎∞,𝑖𝑖,𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗)
5

𝑗𝑗=1

9

𝑖𝑖=1

− 𝑅𝑅𝑅𝑅 𝐶𝐶𝐿𝐿,𝐶𝐶𝐶𝐶𝐶𝐶
1 (𝑀𝑀𝑎𝑎∞,𝑖𝑖,𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗)�

2 

(4) 

 
𝑀𝑀𝑎𝑎∞ 
------ 
𝑁𝑁𝑀𝑀𝑀𝑀 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 

2 X               X 

3 X       X       X 

4 X       X   X   X 

5 X   X   X   X   X 

6 X   X   X X X   X 

7 X   X   X X X X X 

8 X   X X X X X X X 

9 X X X X X X X X X 

Tab. 1: Overview of the training Mach number 
compositions considered for the ROM training. 

Hence, the error can be determined consistently 
for the frequency domain first harmonic lift and 
pitching moment coefficients at various model 
set-ups. Based on the previously described 
modus operandi, the sensitivity analysis has been 
conducted.  
 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 0.05 0.10 0.20 0.40 0.60 

ROM X X X X X 
AER-

Eu X X X X X 

Tab. 2: Overview of the reduced frequencies computed 
with the ROM and the AER-Eu solver. 

Firstly, the maximum input delay-order (𝑚𝑚) is 
varied in the range of 1 ≤ 𝑚𝑚 ≤ 18, whereas the 
maximum output delay-order is fixed at 𝑛𝑛 = 1. 
Moreover, 𝑘𝑘𝜎𝜎 is chosen to be 0.5. The result of 
this analysis is visualized in Fig. 5. The diagram 
indicates an optimal range for 𝑚𝑚 between 2 and 
9, where the lowest ROM-based error is 
observed. However, the error increases again if 
𝑚𝑚 is chosen too large (here, if 𝑚𝑚 > 9).    

 
Fig. 5. Evaluation of the mean squared error with respect 
to varying maximum input delay-orders (NLR 7301, 𝛼𝛼0 =
0°, 𝛼𝛼1 = 0.01°, 𝑛𝑛 = 1, 𝑘𝑘𝜎𝜎 = 0.5, 𝑁𝑁𝑀𝑀𝑀𝑀 = 5). 

Secondly, the maximum output delay-order (𝑛𝑛) 
is modified in the range of 1 ≤ 𝑛𝑛 ≤ 20, whereas 
the maximum input delay-order is fixed at 𝑚𝑚 =
5. The resulting error characteristics are plotted 
in Fig. 6. Based on these results, no clear trend 
can be discovered. The minimum error 
considering the real and imaginary parts of both 
aerodynamic coefficients is achieved at 𝑛𝑛 = 1.  
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Since it is difficult to derive general user 
guidelines based on the information from Figs. 5 
and 6, another sensitivity study has been 
performed. In the following, both maximum 
delay-orders, namely 𝑚𝑚 and 𝑛𝑛, are varied 
simultaneously, while the condition 𝑚𝑚 = 𝑛𝑛 
applies. Fig. 7 depicts the outcome of this 
analysis. In contrast to the previous 
considerations, a saturation is ascertained for 
larger maximum output delays, which is 
beneficial for practical purposes.   

 
Fig. 6. Evaluation of the mean squared error with respect 
to varying maximum output delay-orders (NLR 7301, 
𝛼𝛼0 = 0°, 𝛼𝛼1 = 0.01°, 𝑚𝑚 = 5, 𝑘𝑘𝜎𝜎 = 0.5, 𝑁𝑁𝑀𝑀𝑀𝑀 = 5). 

 

In Fig. 7, the solution accuracy remains nearly 
unchanged for 𝑚𝑚 and 𝑛𝑛 larger than ~10. Hence, 
the quality of the results is not improved with 
more considered delay-elements whereas the 
required computational effort for training and 
applying the ROM is increased. The important 
conclusion is, on the one hand, that relatively 
small maximum input and output delay-orders 
(in the range of 3 to 12) are sufficient for an 
adequate approximation of the system 
characteristics. On the other hand, if 𝑚𝑚 and 𝑛𝑛 are 
chosen too large, the accuracy is not negatively 
affected in contrast to the numerical cost.  

Furthermore, the influence of the 
neurofuzzy model parameter 𝑘𝑘𝜎𝜎 has been 
investigated (see Sec. 3). For this purpose, the 
training data characterized by 𝑁𝑁𝑀𝑀𝑀𝑀 = 5 (cf. 
Table 1) is used to train the model. Moreover, the 
maximum input and output delays, which have 
been analyzed beforehand, are set to  𝑚𝑚 = 𝑛𝑛 =
10. In Fig. 8, the resulting mean squared error is 

plotted over the factor 𝑘𝑘𝜎𝜎, while this model 
parameter has been varied in the range of 
0.2 ≤ 𝑘𝑘𝜎𝜎 ≤ 0.95. 

 
Fig. 7. Evaluation of the mean squared error with respect 
to simultaneously varying maximum delay-orders (NLR 
7301, 𝛼𝛼0 = 0°, 𝛼𝛼1 = 0.01°, 𝑚𝑚 = 𝑛𝑛, 𝑘𝑘𝜎𝜎 = 0.5, 𝑁𝑁𝑀𝑀𝑀𝑀 = 5). 

For 𝑘𝑘𝜎𝜎 < 0.2, no solution has been obtained 
because the influence regime of the LLMs 
becomes to small. As can be seen in Fig. 8, the 
optimal range for 𝑘𝑘𝜎𝜎 is between 0.2 and 0.5. 
Considering higher 𝑘𝑘𝜎𝜎, the error is abruptly 
increased, which applies especially for the real 
parts of the aerodynamic coefficients. 
Interestingly, the imaginary parts are almost not 
affected by this trend. Nonetheless, for practical 
purposes, the parameter 𝑘𝑘𝜎𝜎 should be selected in 
the range of 0.25 ≤ 𝑘𝑘𝜎𝜎 ≤ 0.5.   

 
Fig. 8. Evaluation of the mean squared error with respect 
to a variation of the neurofuzzy model parameter 𝑘𝑘𝜎𝜎 (NLR 
7301, 𝛼𝛼0 = 0°, 𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑁𝑁𝑀𝑀𝑀𝑀 = 5). 
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4.4 Sensitivity to Training Data Variations 
Additionally, a sensitivity analysis with respect 
to the training data has been conducted. 
Therefore, the model parameters considered in 
the previous subsection are fixed to 𝑚𝑚 = 10, 𝑛𝑛 =
10, and 𝑘𝑘𝜎𝜎 = 0.5. In the following, the number 
of freestream conditions incorporated within the 
training dataset (𝑁𝑁𝑀𝑀𝑀𝑀) is varied (see Table 1), 
although the application is still performed for all 
freestream conditions, i.e., 𝑁𝑁𝑀𝑀𝑀𝑀 = 9. In this way, 
the generalization capability of the ROM with 
respect to 𝑀𝑀𝑎𝑎∞ can be studied.  
 

 
Fig. 9. Real (Re) part of the first harmonic of 𝐶𝐶𝐿𝐿 as a 
function of 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑀𝑀𝑎𝑎∞ (NLR 7301, 𝛼𝛼0 = 0°,  
𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 = 0.5, 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 =
[0.5, 0.9], ROM = Surface, AER-Eu = Lattice). 

 

 
Fig. 10. Real (Re) part of the first harmonic of 𝐶𝐶𝐿𝐿 as a 
function of 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑀𝑀𝑎𝑎∞ (NLR 7301, 𝛼𝛼0 = 0°,  
𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 = 0.5, 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 =
[0.5, 0.7, 0.9],  ROM = Surface, AER-Eu = Lattice). 

Figures 9-12 show the results of this 
investigation regarding the real part of the first 
harmonic of the lift coefficient, which is plotted 
against the reduced frequency and the freestream 
Mach number. Thereby, the ROM results are 
characterized by the surface plot, whereas the 
AER-Eu solution is represented by the lattice. 
 

 
Fig. 11. Real (Re) part of the first harmonic of 𝐶𝐶𝐿𝐿 as a 
function of 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑀𝑀𝑎𝑎∞ (NLR 7301, 𝛼𝛼0 = 0°,  
𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 = 0.5, 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 =
[0.5, 0.6, 0.7, 0.8, 0.9], ROM = Surface, AER-Eu = 
Lattice). 

 
Fig. 12. Real (Re) part of the first harmonic of 𝐶𝐶𝐿𝐿 as a 
function of 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑀𝑀𝑎𝑎∞ (NLR 7301, 𝛼𝛼0 = 0°,  
𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 = 0.5, 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 =
[0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9],  ROM = Surface, 
AER-Eu = Lattice). 

As can be demonstrated by Figs. 9-12, the ROM 
is able to reproduce the freestream conditions 
contained in the training dataset with a 
predominantly good to very good agreement. 
With an increasing level of training information, 
i.e., for larger 𝑁𝑁𝑀𝑀𝑀𝑀, the solution quality is 
improved continuously. In Fig. 12, aside from a 
very slight offset, a very good agreement is 
ascertained, which holds true for the reduced 
frequency as well as the freestream Mach 
number. However, as it has been already noted 
by Winter and Breitsamter [3], only the 
characteristics that have been trained by the 
ROM can be reproduced adequately. Hence, a 
finer Mach number resolution is typically 
required for the transonic flight regime. 
Nonetheless, it is demonstrated that a ROM 
trained with a sufficient number of freestream 
conditions can accurately reproduce the 
nonlinear characteristics of the unsteady 
aerodynamic loads. 
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The ROM-generated real and imaginary parts of 
the pitching moment coefficient depicted in Figs. 
13-15 show the same trend as discussed for the 
lift coefficient. Hence, a very good correlation is 
obtained between the ROM results and the 
reference solution (AER-Eu) regarding the 
trained freestream conditions. 
 

 
Fig. 13. Real (Re) part of the first harmonic of 𝐶𝐶𝑀𝑀𝑦𝑦 as a 
function of 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑀𝑀𝑎𝑎∞ (NLR 7301, 𝛼𝛼0 = 0°,  
𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 = 0.5, 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 =
[0.5, 0.9], ROM = Surface, AER-Eu = Lattice). 
 

 
Fig. 14. Real (Re) part of the first harmonic of 𝐶𝐶𝑀𝑀𝑦𝑦 as a 
function of 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑀𝑀𝑎𝑎∞ (NLR 7301, 𝛼𝛼0 = 0°,  
𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 = 0.5, 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 =
[0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9], ROM = Surface, 
AER-Eu = Lattice). 
 

 
Fig. 15. Imaginary (Im) part of the first harmonic of 𝐶𝐶𝑀𝑀𝑦𝑦 as 
a function of 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑀𝑀𝑎𝑎∞ (NLR 7301, 𝛼𝛼0 = 0°,  
𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 = 0.5, 𝑀𝑀𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 =
[0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9], ROM = Surface, 
AER-Eu = Lattice). 

In order to consider the ROM’s generalization 
behavior in more detail, the results at a reduced 
frequency of 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 = 0.4 are extracted and shown 
in Figs. 16 and 17. Similar to the prior 
observations, a better agreement is ascertained 
for the subsonic conditions than for the transonic 
flight regime if the number of considered training 
Mach numbers is low (𝑁𝑁𝑀𝑀𝑀𝑀 < 5). Nonetheless, 
the overall prediction quality of the ROM is good 
as the general trend can be reproduced even with 
a non-optimal model, i.e., a model trained by an 
insufficient number of freestream conditions. 
 

 
Fig. 16. Real (Re) and imaginary (Im) parts regarding 𝐶𝐶𝐿𝐿 
and 𝐶𝐶𝑀𝑀𝑦𝑦 as a function of the freestream Mach number 
(NLR 7301, 𝛼𝛼0 = 0°, 𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 =
0.5, 𝑁𝑁𝑀𝑀𝑀𝑀 = 4, 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 = 0.4). 

 

 
Fig. 17. Real (Re) and imaginary (Im) parts regarding 𝐶𝐶𝐿𝐿 
and 𝐶𝐶𝑀𝑀𝑦𝑦 as a function of the freestream Mach number 
(NLR 7301, 𝛼𝛼0 = 0°, 𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 =
0.5, 𝑁𝑁𝑀𝑀𝑀𝑀 = 6, 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 = 0.4). 

Finally, the mean squared error defined in Eq. (4) 
is also evaluated in terms of the training data 
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sensitivity analysis. The resulting diagram shows 
the development of the ROM error in terms of a 
variation of the number of considered freestream 
conditions 𝑁𝑁𝑀𝑀𝑀𝑀 (see also Table 1). 
 

 
Fig. 18. Evaluation of the mean squared error with respect 
to a variation of 𝑁𝑁𝑀𝑀𝑀𝑀 according to Table 1 (NLR 7301, 
𝛼𝛼0 = 0°, 𝛼𝛼1 = 0.01°, 𝑚𝑚 = 10, 𝑛𝑛 = 10, 𝑘𝑘𝜎𝜎 = 0.5). 

Figure 18 indicates that the incorporation of more 
training information leads to a better overall 
model-based prediction.  

5  Conclusions  
In the present paper an unsteady aerodynamic 
reduced-order modeling approach valid to 
freestream parameter variations has been 
recapitulated and, subsequently, applied to a 
numerical test case in order to investigate the 
sensitivity of the model. On the one hand, the 
model parameters, namely the maximum 
dynamic delay-orders and the constant 𝑘𝑘𝜎𝜎 of the 
neurofuzzy model, have been varied 
systematically. It was shown that an optimal 
range exists for the model parameters, enabling a 
robust application of the model for practical 
purposes. 

 On the other hand, several training data 
configurations with a varying number of 
freestream conditions was taken into account. It 
was demonstrated that a ROM trained with a 
sufficient number of freestream conditions can 
reproduce the associated unsteady air loads with 
high accuracy. Furthermore, it was shown that 
the incorporation of more training information 
leads to a better overall prediction quality. 

Besides, the numerical effort was reduced by a 
factor of 79.2 for the investigated test case, 
although the same parameter space was 
considered for the ROM and the CFD reference. 
It has to be emphasized that an established ROM 
can be employed for other reduced frequencies, 
excitation types, and freestream Mach numbers. 
Hence, the speed-up factor could be even higher 
for non-academic considerations.  
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