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Abstract  

Stability and control characteristics analysis 

has long been the important research area of 

aircraft flight dynamics, which is the critical 

factor of control system design, performance 

evaluation and integrated design of aircraft. 

The linear perturbation equations describing 

aircraft longitudinal and lateral motion, which 

are derived from nonlinear dynamic equations 

based on the small perturbation theory, are 

characterized with matrices called stability and 

control derivatives in flight control theory. 

There are two main methods to obtain these 

derivatives, theoretic deduction and parameter 

identification, where the latter is a valuable 

complement for the former one. Offline and 

online parameter identification are utilized in 

engineering application with different emphasis. 

Offline methods are commonly used to obtain 

linear dynamic model of aircraft under specific 

operation conditions, with complicated 

aerodynamic shape or dynamic characteristics, 

where the model could be used to investigate the 

stability and control characteristics. Online 

methods are commonly used in fault detection 

or flight adaptive control, where the derivatives 

are estimated with Kalman filters. Aircraft 

longitudinal and lateral stability and control 

characteristics are discussed here with online 

and offline identification methods. Firstly, the 

small perturbation dynamic equations under 

rudder perturbation are deduced, and the 

expressions of all stability and control 

derivatives are given. Secondly, the Unscented 

Kalman filter (UKF) method and maximum 

likelihood estimation (MLE) method are verified 

with aerodynamic data of a small unmanned 

aerial vehicle ANCE, where UKF proves to be 

an adequate online estimation method by the 

consistent results and its asymptotic 

approximation to the theoretic values. We also 

compare the effects of random noises on the 

estimation accuracy and modes response 

eigenvalues for these two methods. The results 

show that UKF has better noise-resistance than 

MLE, and that UKF prevails in longitudinal 

derivatives estimation and modes response 

analysis while maintaining equal performance 

in lateral direction. 

1  Introduction  

Stability and control characteristics analysis has 

long been the important research area of aircraft 

flight dynamics, which is essential for aircraft 

control system design, flight quality evaluation 

and integrated design. Since the invention of the 

first airplane, people have gradually realized the 

importance of stability and control analysis 

which needs to resolve the six degree dynamic 

equations of aircraft. Then the small 

perturbation theory analysis method along the 

aircraft trimmed flight was proposed in the early 

20th century because of the limited ability of 

solving nonlinear equations. The research 

process of stability and control analysis can be 

enormously simplified by linearizing the six 

degree dynamic equations in the case of a small 

perturbation [1]. The matrix elements of the 

linearized dynamic equations are called stability 

and control derivatives, which are usually used 

to analyze the stability and control 

characteristics of aircraft. There are many 

applications of the small perturbation theory in 

the development process of some new airplanes, 

such as the unmanned airplane for ecological 
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conservation ANCE [2], [3]and the cargo transport 

airplane FAR23 [4]. They used computational 

fluid dynamics and wind tunnel tests to obtain 

the airplane’s aerodynamic derivatives, and then 

the stability and control derivatives can be 

deduced by these. Based on these derivatives 

the response modes and flight qualities of the 

airplane can be analyzed and the integrated 

design can be developed. 

Parameter identification becomes more and 

more important as it shows some advantages in 

obtaining the stability and control derivatives 

besides the theory method. There are two kinds 

of parameter identification methods, i.e. the 

offline and online identification, are commonly 

used in aircraft engineering applications with 

different emphasis. The offline methods can be 

used to obtain the linear dynamic model of 

some aircrafts with complicated aerodynamic 

shape or special dynamic characteristics under 

specific operation conditions, where the stability 

and maneuverability can be investigated by the 

linear model. For example, the linearized 

dynamic models of a three-lifting-surface 

aircraft Ecolifger [5], the rotary-wing aircrafts 

AF25B [6] and VPM M16 [7], are all identified 

and established by offline methods. The online 

methods are very useful in flight adaptive 

control and fault detection, where the aircraft 

stability and control derivatives are estimated by 

online identification methods such as Kalman 

filters. As it is very convenient in computer 

recursive calculation, Kalman filters become 

very popular in both online and offline aircraft 

parameter estimations. For example, F-111 used 

the Kalman filter to estimate the stability and 

control derivatives online in its control system 

design [8]; Kim designed an innovative 

differential vortex-lattice method tightly 

coupled with extended Kalman filters [9] and 

utilized it in the online fault detection of 

impaired aircraft by giving the approximate 

location and extent of damages. Meanwhile, the 

online methods are also utilized in some strong-

nonlinear time-varying aerodynamic parameter 

estimation problems. Vitale utilized UKF 

algorithm to identify the aerodynamic models in 

the reentry transonic flow regime of FTB1 (first 

Flying Test Bed) from the flight data of a 

dropped transonic flight test mission. In the end 

he concluded that UKF algorithm has the 

advantage in good performance of convergence, 

reduction of uncertainty of the priori 

aerodynamic model, and capability of extracting 

the information from a limited flight data [10]; 

Yu also utilized an augment strong tracking 

extended Kalman filter [11] (ASTEKF) as the 

online identification tool to estimate the 

transonic aerodynamic parameters of a reentry 

body. 

The Maximum Likelihood estimation [12]-

[14] (MLE) becomes the widely used method in 

the area of aircraft dynamic system parameter 

offline identification as soon as it was proposed 

by Fisher because of its asymptotic unbiased 

characteristics. Mehra [15] used the output error 

and equation error methods with Maximum 

Likelihood criterion to identify the stability and 

control derivatives separately from the lateral 

and longitudinal flight test data of HL-10 and 

M2/F3, the comparison of identification results 

show that the MLE method is more accuracy 

than the equation error method with the absence 

of both process and measurement noises. 

Kalman filter is a minimum variance estimation 

method based on the Gaussian distribution 

hypothesis, as well as a numerical 

approximation to the recursive Bayesian 

estimation problem. In early 1970s, Jazwinski 

and Gelb expanded the application of Kalman 

filter in parameter estimation by extending the 

unknown parameters to the system state 

variables, which is known as the extended 

Kalman filter (EKF). In EKF algorithm, the 

system should be linearized to first order space 

model by Taylor series expansion. Ignoring the 

2nd and higher order terms in the linearization 

process will lead to bias estimation and increase 

the possibility of divergence when the system 

has strongly nonlinear characteristics or 

inaccurate noise statistical properties. Therefore, 

the unscented Kalman filter (UKF) is proposed 

to remedy the flaw of EKF algorithm 

application in strongly nonlinear systems. The 

UKF algorithm is based on the deterministic 

sampling approach, which uses the mean and 

covariance of a minimal set of deterministically 

chosen sample points to represent the statistical 

properties of the state random variables. The 

UKF algorithm propagated the statistical 
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properties through the true nonlinear system, so 

it is equivalent to a second order EKF in 

accuracy [16]. Brunke and Campbell compared 

the performance of EKF and the sigma point 

filter (SPF), and UKF can generally be regarded 

as one approach of the latter. The conclusion 

was drawn that EKF diverges quickly but the 

SPF is more accurate and more amenable than 

the EKF for real-time estimation applications 
[17]. Chowdhary and Jategaonkar compared the 

performance of EKF and UKF algorithms for 

aerodynamic state/parameter estimation of a 

fixed wing aircraft (HFB-320) and a rotary wing 

UAV (ARTIS) from real flight data. The results 

indicate that the UKF is superior in terms of 

time to convergence and relative reliability of 

the estimation than the EKF, however it is 

computationally more expensive [18]. Li Meng 

estimated the longitudinal stability and control 

derivatives and dimensionless coefficients of an 

oceanographic UAV based the UKF, the results 

indicate that the UKF algorithm provide 

excellent performances and the responses match 

well [19]. Thereby we prefer the UKF in the 

applications of estimating aircraft stability and 

control derivatives because of the poor 

performance of EKF in convergence and 

stability. 

The offline and online parameter 

estimation methods for the aircraft stability and 

maneuverability characteristics analysis are 

discussed in this paper. The aircraft 6DOF 

dynamic model is linearized by the small 

perturbation theory, and the expressions of the 

stability and control derivatives by the 

aerodynamic derivatives are given. Then we use 

MLE and UKF as the offline and online 

estimation methods. A small unmanned aerial 

vehicle ANCE is taken as a numerical example 

to validate the two algorithms. Based on the 

noiseless simulation data, the results indicate 

that the stability and control derivatives 

obtained from the two identification methods 

are similar and close to the analysis values by 

the small perturbation theory. So we can 

consider MLE and UKF as effective methods of 

estimating the aircraft stability and control 

derivatives. Then further Monte Carlo 

simulations are carried out to evaluate the 

performance of UKF and MLE under random 

noises. 

2  Aircraft Linearized Dynamic Models 

The 6DOF aircraft dynamic model can be 

simplified into linear space model by the small 

perturbation theory, the linear space model can 

be written as:  

 
 

 

x Ax Bu

y Cx Du
  (1) 

Where A, B represent the matrices of stability 

and control derivatives, x is the state vector, u is 

the input vector, y is the output vector, C, D are 

generally known matrices, and determined by 

the relationship of the output vector between the 

state vector and the input vector. 

The six degree aircraft dynamic model can 

be linearized into longitudinal and lateral space 

models, where the state vector of the 

longitudinal model can be written as x=[∆V, ∆α, 

∆q, ∆ϑ]T, which separately represents the 

increments of velocity, angle of attack, pitch 

angular rate and pitch angle, the input of the 

longitudinal model is the elevator deflection ∆δe, 

the matrices Az, Bz are expressed in Eq(2); the 

state vector of the lateral model is noted as 

x=[∆𝛽, ∆p, ∆r, ∆𝛾]T, which separately 

represents the increments of sideslip angle, roll 

angular rate, pitch angular rate and roll angle, 

the input vector of the lateral model includes the 

rudder and the aileron deflections, which is 

noted as u=[∆δr, ∆δa]
T, the matrices Ah, Bh are 

expressed in Eq(3). In the standard term of 

straight flight, the mathematics relationship of 

the dimensional stability and control derivatives 

and the aerodynamic derivatives is expressed in 

Tab. 1 and Tab. 2. 

 

0

0

0

0 0 1 0 0

u e

u q e

z z

u q e

X X X X

Z Z Z Z

M M M M

  

 

 

   
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   
   
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A B   (2) 

Tab. 1  Dimensional longitudinal stability and 

control derivatives 
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  1

0 02u Du DX C C u qS m    

 G DX C C qS m        .. 
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A B  

 (3) 

Tab. 2  Dimensional lateral stability and control 

derivatives 

0YY C qS mu            0p YpY C qS mu  

0 1r YrY C qS mu         0 0Y g u   

l xL C qSl I              p lp xL C qSl I  

r lr xL C qSl I             n zN C qSl I   

p np zN C qSl I            r nr zN C qSl I  

0r Y rY C qS mu          0a Y aY C qS mu   

r l r xL C qSl I            a l a xL C qSl I   

r n r zN C qSl I          a n a zN C qSl I   

3  Identification methods 

3.1 Maximum Likelihood method 

The Maximum Likelihood estimation 

combining with the modified Newton-Raphson 

iteration can be used as the offline parameter 

estimation method for aircraft stability and 

control derivatives. The ML criterion is written 

as [15]:  

 
1

1

( ) [ ( ) ( ) ln | | ]
N

T

i

J i i



 θ ν R ν R   (4) 

Where (i) is the output error vector, it can be 

expressed as: 

ˆ( ) ( ) ( )mi i i ν y y  

ˆ( )iy is the simulation output vector from the 

dynamic model, ( )
m

iy is the measured output 

vector, R is the covariance matrix of the 

observation noise, the unknown parameter 

vector θ usually consists of the aircraft stability 

and control derivatives and the initial state 

values of the dynamic system.  

The modified Newton-Raphson method 

consists in updating estimation parameters from 

iteration i to i+1 as: 

 

1

1
2

i i i

i

k l k

J J





  

    
     

     

θ θ θ

θ
θ θ θ

  (5) 

Where the Jacobian and Hessian matrices of the 

ML criterion are expressed as: 
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

y
ν R
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R

θ θ θ θ

  (6) 

The modified Newton-Raphson iteration 

has superiority over other methods by its quick 

convergence and high computational efficiency, 

but the shortcoming is also obvious that the 

iteration initial values must be strictly chosen 

and the iteration can be easily divergent. 

3.2 Unscented Kalman filter 

The Unscented Kalman filter is a recursive 

minimum mean-square-error (MMSE) estimator 

based on the optimal Gaussian approximate [16], 

[18]. Unlike the EKF, the UKF uses the true 

nonlinear models and a minimal set of 

deterministically chosen sample points to 

represent the state distribution. In the UKF, the 

augmented state random variable is given by the 

system state vector, the unknown parameter 

vector, the process and measurement noise 

vectors:  

  
1

Ta
k k k k k L
x x θ w v  (7) 

Where the superscript ‘a’ denotes the 

augmented state vector, the process and 

measurement noises are assumed to be white 

Gaussian noises with zero means and 

covariance matrices Rw and Rv respectively. The 

system is extended to L dimensional space. 
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Then the relative state covariance matrix is 

written as: 

 

0 0 0

0 0 0

0 0 0

0 0 0

x

a

w

v L L





 
 
 
 
 
 

P
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R

R

 (8) 

The unscented transformation (UT) is a 

method to constitute a set of sigma points to 

approximate the statistics of a random variable 

which undergoes a nonlinear transformation. 

Based on the UT the scaled unscented 

transformation (SUT) uses a scaling parameter 

to control the sigma points without causing the 

covariance to become non-positive semidefinite. 

A set of SUT sigma points are noted 

as  , ; 0, , 2i i i L S χ , where ϖi is the weight 

associated with the ith sigma point, superscript 

‘m’ and ‘c’ denote weights for the computation 

of mean and covariance respectively, χi is the ith 

sigma points, it can be expressed as: 

 

  
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 (9) 

Where α, β are constants, κ, λ are scaling 

parameters, λ is expressed in Eq (10), usually 

choose κ≥0 to guarantee positive semi-

definiteness of the covariance matrix, the value 

of κ is not critically limited, a good default 

choice is κ=0; Choose 0≤α≤1, α controls the 
size of the sigma point distribution and 
should choose a small number to make the 
sampling points spread in small area; β is a 
non-negative weighting term which can be 
used to represent the higher order moments 
of the distribution, the optimum value is β=2 
for the Gaussian distribution. 
  2 L L      (10) 

The standard UKF algorithm consisting of 

a prediction and an update step is summarized 

as follows: 

1) Initialization. The initial values of the 

augmented state vector and its 

covariance given by prior knowledge 

are written as: 

 

  
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   

 
  
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 (11) 

2) Calculate 2L+1 sigma points by the SUT: 

 ˆ ˆˆ ˆ ˆ ˆa a a a a a
k k k k k k    

  
χ x x P x P   (12) 

Where parameter γ is expressed as: 

L    (13) 

3) Predict the (k+1)th state vector and its 

covariance by the kth step: 
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



χ χ u χ

x χ

P χ x χ x

 (14) 

Where fd(∙) is the system state function with the 

process noise, χx
 corresponds to the state vector 

and the unknown parameters, χw and χv 

correspond to the process and measurement 

noise respectively. 

4) Update the prediction by the 

measurement values. The output vector 

and its covariance can be calculated by 

the predicted state vector: 
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 (15) 

Where gd(∙) is the extended observation function 

with measurement noise. The gain matrix is 

calculated by the covariance matrices in Eq(16). 

 
1 1

1
1 k kk xy yy 


 K P P  (16) 

The system state vector and covariance are 

updated by the gain matrix in Eq(17). 

 
 
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ˆ

ˆ
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k k k k k

T
k k k yy k
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   

  

 

x x K z y

P P K P K
 (17) 

If the noises are accumulated white noise, 

then the augmented state vector (in Eq(7)) can 

get rid of the process and measurement noise, 
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hence the augmented state vector is given by 
T

a T T
k k k

 
 

x x θ , the covariance matrices of 

process and measurement noise Rw and Rv can 

be simply added to the right sides of 1kP   and 

1kyyP


, which are expressed in Eq(18) and Eq(19). 

Then the reduced size of system dimension can 

increase the computational efficiency. 

  
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1 , 1 1 , 1 1
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L Tc x x
k i i k k i k k w

i
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

      
   P χ x χ x R  (18) 

  
1

2

, 1 1 , 1 1

0
k

L
Tc

yy i i k k i k k v

i


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

         P Y y Y y R  (19) 

Comparing with the EKF algorithm, the 

UKF algorithm has second order accuracy, and 

also does not require the function differentiable, 

that means the Jacobian matrix does not need in 

the algorithm. 

4  Application to Unmanned Aerial Vehicle 

4.1 Unmanned Aerial Vehicle 

The Unmanned Airplane for Ecological 

Conservation (ANCE) [2], [3] is used as an 

example to validate the two identification 

method. ANCE is a statically stable twin-boom 

airplane with a maximum take-off mass of 

182.055kg, and a rectangular wing of 5.187m of 

span, and 3.133m2 of surface area, for an aspect 

ratio of 8.57. The airplane has a cruise speed of 

47.659m/s at 2438m above sea level for a wing 

Reynolds number of 1.413×106. The rolling, 

pitching and yawing moments of inertia of the 

airplane are 150, 400, 400kg×m2 respectively. 

The longitudinal and lateral aerodynamic 

derivatives of the airplane are calculated by 

Computational Fluid Dynamics method in Ref 

[3]. We can use this UAV as an example to 

validate the above two identification algorithms. 

4.2 Identification methods validation 

Simulation data from aircraft six DOF model 

without noises are used to validate MLE and 

UFK methods. The small disturbances are 

separately applied to motivate the longitudinal 

and lateral dynamic characteristics of UAV in 

its straight flight state, and then the derivatives 

are estimated from the simulation data by two 

identification methods. The results are verified 

with the theoretic values which are calculated 

from Tab. 1 and Tab. 2. Tab. 3 and Tab. 4 gives 

the comparison for MLE and UKF respectively, 

where MLE and UKF show good consistency 

with the theoretic values. For all the 

longitudinal derivatives except the zero-

theoretic control derivative Xδe, relative errors 

are small; while the worst cases of MLE and 

UKF respectively is Xu and Mu, the absolute 

values of relative error are 0.76% and 0.45%, 

this is probably due to the strongly nonlinearity 

of the velocity dependent terms in the dynamic 

models. For lateral derivatives, the theoretic 

value of Yp is very close to zero, so the relative 

errors are ignored here as they are too much 

higher than others for both methods; while the 

worst cases of MLE and UKF is Yδa, as its 

absolute value of relative error is all 7.14% for 

both MLE and UKF, this is probably due to the 

dimension of theoretic value is 10-3, which 

indicates the effects of aileron deflection on the 

lateral force is small, so the accuracy is 

relatively poor. From the estimation results, we 

can find that UKF shows better or equivalent 

performance than MLE. And nearly 41% of 

longitudinal derivatives are estimated with 

accuracy to 10-2, and nearly 43% of lateral 

derivatives are estimated with accuracy to 10-3, 

where the reason could be that the nonlinearity 

of the longitudinal motion is stronger than of the 

lateral motion. 

Fig. 1 and Fig. 2 show the time history of 

estimation in longitudinal and lateral motion by 

UKF respectively. The initial values of 12 

longitudinal derivatives and 16 lateral 

derivatives in estimation are set to zero. The 

UKF estimation results of all derivatives can 

constringe to theoretic values within 1 second, 

which shows the capability of application of 

UKF in the UAV stability and control 

derivatives online estimation. 

Tab. 3  Comparison of UAV longitudinal 

derivatives results  

Longitudinal 

derivatives 
Theory 

MLE UKF 

Identification 
Relative 

error 
Identification 

Relative 

error 

Xu 
-

0.0263 
-0.0265 -0.76% -0.0264 -0.38% 

Xα 5.871 5.8866 0.27% 5.8737 0.046% 
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Xϑ -9.81 -9.8191 -0.09% -9.8098 0.002% 

Zu 
-

0.0066 
-0.0066 0 -0.0066 0 

Zα 
-

2.6023 
-2.5989 0.13% -2.6010 0.05% 

Zq 0.9811 0.981 -0.01% 0.9811 0 

Mu 
-

0.0221 
-0.0221 0 -0.0220 0.45% 

Mα -22.84 -22.8031 0.16% -22.8103 0.13% 

Mq 
-

1.2105 
-1.2105 0 -1.2109 -0.03% 

Xδe 0.0 -6.64e-4 - -1.0381e-4 - 

Zδe -0.301 -0.3012 -0.07% -0.3011 -0.03% 

Mδe 
-

16.710 
-16.7058 0.03% -16.7071 0.02% 

 

Tab. 4  Comparison of UAV lateral derivatives 

results  

Lateral 

derivatives 
Theory 

MLE UKF 

Identification 
Relative 

error 
Identification 

Relative 

error 

Yβ -0.1562 -0.1563 -0.06% -0.1563 -0.06% 

Yp -1.3e-4 -1.961e-4 - -1.4921e-4 - 

Yr -0.9891 -0.989 0.01% -0.9891 0 

Yγ 0.2058 0.2061 0.15% 0.2058 0 

Lβ 
-

19.7095 
-19.7086 0.005% -19.7082 0.007% 

Lp -8.791 -8.7907 0.003% -8.7906 0.005% 

Lr 1.6459 1.6459 0 1.6459 0 

Nβ 10.1593 10.1598 0.005% 10.1591 -0.002% 

Np -0.0936 -0.0931 0.53% -0.0937 -0.11% 

Nr -1.5386 -1.5385 0.007% -1.5386 0 

Yδr -0.1342 -0.1346 -0.3% -0.1342 0 

Yδa -0.0014 -0.0013 7.14% -0.0015 -7.14% 

Lδr -2.4368 -2.437 
-

0.008% 
-2.4369 

-
0.0041% 

Lδa 
-

61.6369 
-61.6354 0.002% -61.6345 0.004% 

Nδr 15.6959 15.6955 
-

0.003% 
15.6958 -0.001% 

Nδa 0.9138 0.9143 0.05% 0.9138 0 

 

  

Fig. 1  Time history of UAV longitudinal 

derivatives by UKF 

  

Fig. 2  Time history of UAV lateral derivatives by 

UKF 

4.3 Analysis of random measurement noises 

We directly apply additive white noises on the 

longitudinal and lateral noiseless simulation 

data, where standard deviations of the noises are 

proportional to the maximum ranges of 

corresponding state variables. For velocities the 

ratio is 2%, angles 1%, and angular velocities 

0.1%. 5000 sets of white noises are generated to 

analyze the effect on stability and control 

derivative estimation accuracy. 

Tab. 5 shows the confidence statistics of 

longitudinal and lateral derivative estimation 

results. When relative errors in ± 10% are 

regarded as close enough to the theoretic values, 

and then confidence statistics probabilities are 

the ratios of the estimations that achieve ±10% 

relative error to the total number of tests. The 

confidence statistics in Tab 5 means to reveal 

different effect on estimating accuracy of 

random noises. The longitudinal results show 

that UKF for Xϑ, Zα, Zq, Mα, Mq, and Mδe, the 

confidence probabilities are 100%, and for Xα 
and Zδe are 95%; while for MLE, only the 

confidence probabilities of estimation of Zq and 

Mδe are higher than 90%. These results show 

that UKF is proved to be reliable and prevails 

over MLE in longitudinal derivatives estimation, 

which reveal filtering mechanism in UKF 

provides capability of noise-resistance. For 

derivatives related to velocities, Xu, Zu and Mu, 

where Xδe is not included due to its zero nominal 

value, the confidence probabilities are relatively 

low. These can be traced to the higher level of 

noise standard deviation relative to velocities in 

the simulation set-up. For lateral derivatives, 

because the weaker noise applied, the 

differences of two methods in estimation 

confidence probabilities are not significant. 
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Both MLE and UKF show good performance in 

all 5 derivatives related to rolling motion, 3 

derivatives related to yaw motion (Nβ, Nr, and 

Nδr), and derivative related to lateral motion (Yr); 

while for derivatives with very small nominal 

values (Yp, Np, and Yδa), both the two methods 

show weak performance. 

Tab. 5  Confidence of UAV longitudinal and 

lateral derivatives estimation 

Longitudinal 
derivatives 

Confidence Lateral 
derivatives 

Confidence 

MLE % UKF % MLE % UKF % 

Xu 10.3 31.04 Yβ 52.76 10.86 

Xα 46.14 99.84 Yp 0.16 0 

Xϑ 67.9 100 Yr 100 100 

Zu 13.12 14.46 Yγ 30.5 19.56 

Zα 89.24 100 Lβ 100 100 

Zq 92.52 100 Lp 100 100 

Mu 6.2 8.12 Lr 100 100 

Mα 57.4 100 Nβ 100 100 

Mq 52 100 Np 35.54 0 

Xδe 0.02 0.04 Nr 100 100 

Zδe 31.46 97.84 Yδr 32.58 38.6 

Mδe 98.4 100 Yδa 0.18 0 

   Lδr 99.9 98.04 

   Lδa 100 100 

   Nδr 100 100 

   Nδa 86.38 14.4 

The errors in estimated longitudinal and 

lateral derivatives due to the random noises will 

cause dispersion in the response eigenvalues. 

Fig. 3 and Fig. 4 show the distribution of 

longitudinal and lateral eigenvalues with and 

without noises for five response modes, where 

horizontal axes denote the real part of the 

eigenvalues, vertical axes denote imaginary part, 

and where markers ‘■’ and ‘ ●’ represent MLE 

results for noise-free cases and noise cases 

respectively, and ‘● ’ and ‘+’ represent UKF 

results. Fig. 3 reveals that for phugoid mode and 

short period mode, MLE results suffered 

stronger dispersion than UKF results, and that 

MLE result for phugoid mode, the stability of 

the motion are affected, where a pair of 

imaginary roots with negative real part becomes 

real roots or even positive real roots. For UKF 

results, the eigenvalues maintain a pair of 

imaginary roots, only in 2.3% out of 5000 

simulations appears false positive real part of 

the eigenvalues, in which the dynamics of the 

system will exhibit oscillation & divergent 

characteristics. For short period mode, both 

methods show good consistency in eigenvalues 

with negative real part, which guarantees the 

stability or asymptotic stability of the system. 

The minor portion of MLE estimation results, 

i.e. 5%, appears eigenvalues with zero 

imaginary part, which will cause the 

corresponding motion mode to vanish in 

periodicity. Fig. 4 shows that, for three lateral 

modes, noises applied here have limited effect 

on the dispersion and characteristics of 

eigenvalues by both methods, which mean the 

lateral response modes analysis is reliable based 

on the parameter estimation methods.  

 

Fig. 3  Noise effect on UAV longitudinal modes 

response eigenvalues 

 

Fig. 4  Noise effect on UAV lateral modes 

response eigenvalues 

Based on the Monte Carlo simulation 

results, the confidence statistics probabilities of 

the two methods for UAV longitudinal and 

lateral response mode eigenvalues estimation 

under random noises are shown in Tab. 6. Firstly, 

the criterion of reliable mode eigenvalues is to 

maintain response characteristics of the system, 

which mean the asymptotically convergent and 

periodical motion does not degenerate to non-

convergent or non-periodical motion. And the 

second criterion is to demand the mold of 



 

9  

ANALYSIS ON OFFLINE AND ONLINE IDENTIFICATION METHODS FOR 

AIRCRAFT STABILITY AND CONTROL DERIVATIVES  

eigenvalues within ±10% of their noise-free 

counterparts. Based on the statistics presented in 

Tab. 6, under the current random noises 

characteristics, UKF prevails MLE for most of 

the cases as phugoid mode and short-period 

mode, while for spiral mode, MLE results are 

slightly better than UKF results. For Dutch 

mode and roll mode, both methods achieve 

100% confidence, which prove the validity of 

the estimation methods on analyzing the two 

response modes. For phugoid mode and spiral 

mode, the estimation processes are heavily 

affected by noises applied, which produces low 

probability of reliable results. The reason could 

be the relatively small real parts for these two 

modes eigenvalues, where noises could cover 

the true characteristics of the UAV and make it 

difficult to estimate eigenvalues of the motion 

mode from contaminated data. 

Tab. 6  Confidence of UAV modes response 

analysis 

Modes response MLE % UKF % 

Longitudinal 
Phugoid 22.58 76.66 

Short-period 94.64 100 

Lateral 
Dutch 100 100 
Roll 100 100 

Spiral 30.56 20.5 

5  Conclusions 

In this paper, we tried to fulfill the stability and 

control characteristics analysis requirement in 

UAV development, and discussed the 

application of parameter estimation methods in 

aircraft stability and control derivatives 

estimation. We used MLE and UKF as offline 

and online estimation algorithms respectively, 

and applied them to an UAV example. Based on 

simulation data collected under three directional 

rudder deflections, we compared the online and 

offline results obtained by estimation with the 

theoretic results based on small perturbation 

theory, which proves the validity of the methods. 

Then we carried out Monte Carlo (5000 times) 

simulation with noises in longitudinal and 

lateral motion. By comparing the effect of 

noises on the estimation accuracy of two 

methods and on the UAV response mode 

eigenvalues, we achieved some conclusions: 

1) Longitudinal and lateral derivatives 

estimation with MLE and UKF show 

good consistency. Lateral derivatives 

agree with the theoretic results with 

higher accuracy due to the linearity of 

lateral motion. UKF exhibits responsive 

convergence performance, and proves 

to be an efficient online estimation 

method for UAV aerodynamic 

derivatives. 

2) From noisy data, UKF implements a 

dynamic process of filtering, while 

MLE is known as vulnerable to noises. 

The results show that UKF has better 

performance for high-noise cases and is 

equivalent to MLE in low-noise cases. 

3) For derivatives asymptotically 

approximate to zero, neither UKF nor 

MLE has good estimation accuracy.  

4) For mode response eigenvalues under 

noises, estimation results also show 

different confidence levels. The mode 

results of short-period, Dutch-roll and 

roll modes can be estimated with higher 

level of confidence; while confidence 

levels of phugoid and spiral modes 

results are relatively lower. Furthermore, 

noise data can affect the characteristics 

of estimation results, e.g., from 

periodical to non-periodical, or from 

stable to unstable. 

The research work in this paper is just a 

preliminary work about the MLE and UKF for 

estimating the stability and control derivatives 

of aircraft. The influence of the environment 

and measurement noises in actual flight data on 

the accuracy, stability and convergence of the 

algorithms is evaluated for MLE and UKF with 

Monte Carlo simulations. In next step, possible 

improvement of the MLE and the UKF 

algorithms needs to be investigated with more 

insight combining the flight data. 
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