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Abstract  

This paper describes a procedure to obtain 

solutions of a minimum-time formation which 

has different start times for fixed-wing aircraft. 

Generally, this problem is formulated as an 

optimal control problem by treating all the 

aircraft as one group. However, it is solved by 

each aircraft with small communication because 

this method is based on optimal solutions of 

single aircraft. Numerical results show that the 

solutions by the general formulation correspond 

to those by this method. 

1  Introduction 

Formation flight has many advantages. For 

example, the time for search can be shortened 

and the continuity of a task can be brought 

against some troubles. The configuration 

depends on the given mission. Thus formation 

problem has an important role. In a mission, the 

aircraft has to shape the configuration as soon as 

possible, so the minimum-time formation 

problem is treated in this paper. 

This problem is formulated as non-linear 

optimal control problem. Some researchers 

focus on optimal formation problem of aircraft 

[1-7] and also treat minimum-time formation 

problem [1-5]. Almost all of them treat the 

aircraft as one group i.e. one system. Robin et al 

[7] proposed a decentralized algorithm, however 

minimum-time problem dose not be treated.  

 Moreover, most researches do not deal 

with start time differences formation but 

simultaneous formation. On the other hand, in 

observation or other missions, the aircraft may 

pass through a given point at some interval and 

then shape the formation. In other words the 

minimum-time formation, which has start time 

differences, is considered. The aircraft which 

passes ahead has longer time. That is to say 

there are different control sections of the aircraft. 

To deal with this matter, the control sections are 

changed to [0, 1] by normalized time, and then 

all aircraft can be treated as on system as well as 

simultaneous formation problem. However, this 

general formulation means centralized control. 

The calculation costs increase rapidly with 

increasing the number of aircraft. When the loss 

of a part of the central function is considered, a 

part of the function needs to be deconcentrated.  

 In this paper, fixed-wing aircraft are 

considered. At the end of the formation, the 

relative distances between two aircraft about the 

final direction of forward movement are 

specified and the other states of aircraft are 

specified. This is a kind of problem with a free 

terminal constraint [1]. 

 Thus, this paper introduces a method 

using optimal solutions of single aircraft for 

minimum-time formation with start time 

differences for fixed-wing aircraft. The problem 

can be solved by each aircraft with small 

communication. Numerical results show that the 

solutions by the general formulation correspond 

to those by this method. 

 The outline of this paper is as follows. In 

Section 2, the problem formulation is shown.  

Then, some numerical results are shown and 

analysis of the solutions is given in Section 3. 

The method is introduced in Section 4. In 

Section 5, verifications of this method are made. 

Finally, conclusions are given in Section 6. 
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2  Problem Formulation 

2.1 Equations of Motion  

The dimensionless point-mass equations of 

motion for the single aircraft are written as 

follows. 

where ,M  and  corresponds to Mach number, 

flight path angle and azimuth angle respectively. 

,    and   are dimensionless x, y and 

reference height h. The definitions of states are 

shown in Fig. 1. ,Sw
0D

C  and K are reciprocal 

of dimensionless wing, zero-lift drag coefficient 

and efficiency factor. Tw, CL and   are thrust to 

weight ratio, lift coefficient and bank angle. 

There are limits placed on these control 

variables and they are expressed as  

 

2.2 General Formulation as Optimal Control 

Problem 

The criterion is given by 

where 
f

 is dimensionless terminal time. Then, 

eq. (10) is minimized. 

 Now, the states and inputs variable is 

expressed as  

and Eqs. (1)-(6) are rewritten by 

where i = 1, 2, …, N. 

 To the beginning, the minimum-time 

simultaneous formation is formulated as an 

optimal control problem. The ‘simultaneous 

formation’ means that each aircraft starts a 

formation at the same time. In other word, the 

control sections of each aircraft are the same, i.e. 

it is [0, 
f

 ]. The dynamics of each aircraft are 

treated as one large system. Denoting the states 

as x = [x1, …, xN]
T
 and the inputs as u = [u1, …, 

uN]
T
, the dynamics are rewritten by 

 Secondly, the minimum-time formation 

with start time differences is formulated. The 

control sections are [ ,
DLi

  
f

 ], i.e. they are 

different for each aircraft. To deal with this, 

normalized time is applied [8]. The new 

independent variable 
DLif
 ~  is applied, 

and then Eq. (14) can be rewritten by 
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Fig. 1 Definitions of states 
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and the control sections are [0, 1]. Thus, 

dynamics can be treated as one system as well 

as simultaneous problem. 

 Boundary conditions are set as follows. 

The initial states specified and the conditions 

are given by 

where ,
0i

M  ,
0i

  
i0

 , ,
0i

x  
i

y
0

 and 
i

h
0

are states 

at beginning of the formation. g and a are 

acceleration of gravity and speed of sound 

respectively. As with terminal states, the states 

expect x axis are specified As for x, the relative 

distances between two aircraft are specified, 

because fixed-wing aircraft has the trust along 

the direction movement but does not have active 

force along the backward direction. The 

terminal conditions are given by 

 where ,
f

M  ,
f

  
f

 ,  
fi

y  and 
fi

h are states at 

end of the formation. 
j

Rx
1

 is relative distance 

of terminal x between 1
st
 aircraft and jth aircraft. 

For simplicity, the constraints about relative 

distances among aircraft during the formation 

are not considered. The parameters in this paper 

are summarized in Table 1. This formulation 

means centralized control.   

 
Table 1 Parameters of aircraft 

Parameter Value Parameter Value 

min
Tw  0 max

Tw  0.5 

minL
C  0 maxL

C  1.0 

min
  -180 [deg] 

max
  180 [deg] 

Sw 8.302 
0D

C  0.020 

K 0.20   

 

3  Analysis of Results  

3.1 Numerical Results 

Some numerical results of two aircraft from the 

general formulation are shown in this Section.  

 Firstly, Initial and terminal conditions 

are shown in Table 2 and 3 respectively 

( gaT
DLjDLj

/ ).  

The numerical results are shown in Fig. 2 to 3. 

The red and blue lines are histories of 1
st
 aircraft 

and 2
nd

 aircraft respectively. Fig.2 shows the 

optimal trajectories. For convenience of 

showing, we assumed that 2nd aircraft fly at a 

constant speed (at the initial M) for TDL2. Fig.3 

shows inputs. As we can see, both Tw are bang-

bang (maximum in this case) inputs.  

 
Table 2 Initial Conditions 

j M 
γ 

[deg] 

ψ 

[deg] 

x 

[ft] 

y 

[ft] 

h 

[ft] 

TDLj 

[s] 

1 0.7 0 90 0 0 0 0 

2 0.7 0 90 0 0 0 2 

 
Table 3 Terminal Conditions 

j Mf 
γf 

[deg] 

ψf 

[deg] 

y 

[ft] 

h 

[ft] 

Rx1j 

[ft] 

1 0.7 0 0 0 0 - 

2 0.7 0 0 1000√3 0 2000 

iDLii
MM

0
)(   (16) 

iDLii 0
)(    (17) 

iDLii 0
)(    (18) 

)(/)(
0

2

0 iiDLii
agx    (19) 

)(/)(
0

2

0 iiDLii
agy    (20) 

)(/)(
0

2

0 iiDLii
agh    (21) 

ffi
MM )(  (22) 

ffi
 )(  (23) 

ffi
 )(  (24) 

2

11
/)()( agRx

jfjf
   (25) 

)(/)( 2

fiiffi
agy    (26) 

)(/)( 2

fififi
agh    (27) 



Hiroshi FUKUMOTO & Seiya UENO 

4 

 Secondly, the terminal conditions are 

given in Table 4. The numerical results are 

shown in Fig. 4 to 5. Fig. 4 and Fig. 5 show 

optimal trajectories and inputs. As we can see, 

Tw about 1
st
 aircraft is bang-bang (maximum) 

input. By contrast, Tw about 2
nd

 aircraft is NOT 

bang-bang input. 

 
Table 4 Terminal Conditions 

j Mf 
γf 

[deg] 

ψf 

[deg] 

y 

[ft] 

h 

[ft] 

Rx1j 

[ft] 

1 0.7 0 0 0 0 - 

2 0.7 0 0 2000√3 0 2000 

 

3.2 Characteristics of Solutions 

The solutions for minimum-time formation with 

start time differences can be divided by two 

features. It is the first one that the optimal 

solution depends on two aircraft’s movement 

because relative distances of x about terminal 

conditions aforementioned in section 2.2 are 

specified. If all terminal x is specified, the 

solution depends on just only one aircraft. 

Moreover, the optimally condition [9] is

 

considered about two aircraft. Another optimal 

condition is obtained by dividing optimal 

condition in this problem by the terminal adjoint 

about x. The obtained optimal condition is from 

an optimal control problem such that the relative 

terminal distance of x is maximized. That is to 

say, one aircraft has the optimal solution such 

that terminal x is minimized and the other 

aircraft has the optimal solution such that 

terminal x is maximized at the minimum-time 

for the formation. The second one is that the 

solution depends on single aircraft; the time for 

formation is as same as the minimum-time 

derived by solving an optimal control problem 

such that terminal x is not specified of one 

aircraft. We call the one or two aircraft ‘time- 

controlling aircraft’.  

 From referred to above, the solutions for 

the minimum-time formation can be derived by 

the optimal solution of single aircraft as well as 

minimum-time simultaneous formation. We 

want to decide which aircraft is time-controlling 

aircraft in advance. However it is difficult, 

especially as for the case that time-controlling 

aircraft is two.  

Fig. 2 Trajectories by general formulation 

(Table 2 and 3) 

Fig. 3 Inputs by general formulation (Table 2 and 3) 

Fig. 4 Trajectories by general formulation 

 (Table 2 and 4) 

Fig. 5 Inputs by general formulation (Table 2 and 4) 
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4 A Method Using Single Aircraft’s Solution 

As we aforementioned, the characteristics of the 

optimal solutions are equivalent to those of the 

simultaneous problem. It indicates that the 

method [10] proposed by the authors can be 

brought in. The method is modified in order to 

treat the start time difference formation. 

 The method can roughly be 

charactariscis as following 4 steps. The outline 

of this method is shown in Fig. 6. 

Step 1: Select candidate of minimum-time 

  Solve the minimum-time to reach each 

given terminal condition expect terminal x about 

each aircraft. It means that following optimal 

control problem is solved. Take jth aircraft for 

example. The criterion is expressed as 

 and the boundary conditions are expressed as 

 and then J is minimized.  

  Moreover, choose the maximum value 

0
  in the values of minimum-time (where kth 

aircraft has the value) and then the terminal x X0 

can be also driven. 

Step 2: Derive reachable limits and check 

reachability (at
0

 ) 

  Derive minimum terminal x and 

maximum terminal x at
0

 .  It means that 

following optimal control problem is solved. 

For example, jth aircraft’s terminal x Xjmin and 

Xjmax are derived. The criterion is expressed as 

and initial conditions are expressed as eq. (29) 

and then terminal conditions are expressed as 

and then J is minimized and maximized. Xjmin 

and Xjmax mean the limits that jth aircraft can 

reach at 
0

 . 

  Moreover, check whether following 

equation is satisfied or not. 

  If eq. (33) is satisfied in respect of all 

aircraft, the time for formation is 
0

  and we 

finish this method. The optimal solution 

depends on that of kth aircraft. That is to say, 

kth aircraft is the time-controlling aircraft. If eq. 

(33) is NOT satisfied in terms of any aircraft, go 

to next step.  

Step 3: Derive reachable limits and check 

reachability (at  
01

) 

  Derive minimum terminal x Xjmin and 

maximum terminal x Xjmax at
1
  as well as those 

of previous step. Next, check whether following 

equation is satisfied or not. 

where 
1

X  is maximum terminal value of 1
st
 

aircraft. If eq. (34) is satisfied in respect of all 

aircraft, the time for formation is shorter than 
1
 . 

If eq. (34) is NOT satisfied in respect of all 

aircraft, 
1

X and 
j

Rx
1

in eq. (34) are converted to 

those of 2
nd

 aircraft (i.e. 
21

XX  and

jj
RxRx

22
 ). Then check whether eq. (34) is 

satisfied or not.  If eq. (34) is satisfied, go to 

step 4. If eq. (34) is NOT satisfied in respect of 

all aircraft, 
2

X is changed to that of another 

aircraft.  If all aircraft cannot arrive with respect 

to all )...,,1( NiX
i

 , the time for formation is 

longer than 
1
 , 

10
  and repeat step 3.  

Step 4: Detect time for formation 

  Narrow the range of  . The bisection 

method is used in this paper.  

  After Step 4, the time-controlling 

aircraft can be detective and their states and 

controls are also derived. Each aircraft’s states 

and controls except the time-controlling aircraft 

can be derived by solving an optimal control 

problem. Of cause, the problem is an optimal 

control problem of single aircraft. Moreover, if 

all 
DLi

  are set 0, the minimum-time 

simultaneous formation problem can be solved.  

f
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5 Verifications 

Firstly, the results of two aircraft are shown. 

When boundary conditions are given in Table 2 

and 3, the results from proposed method are 

shown in Fig. 7 to 8. Compare to those form 

general formulation shown in Fig. 2 and 3, the 

results are consistent.   

 When boundary conditions are given in 

Table 2 and 4, the results from proposed method 

are shown in Fig. 9 to 10. In this case, this 

method ends at step 2 in Section 4 i.e. the time-

controlling aircraft is one aircraft, which is 1
st
 

aircraft in this case. Compare to those by 

general formulation which are shown in Fig. 4 

and 5, it indicates that the results of 1
st
 aircraft 

are consistent. The results of 2
nd

 aircraft are 

different because optimal control problem such 

that Tw is minimized, is solved as for the 

proposed method. Of cause, the times for 

formation are consistent. 

 Secondly, the results of multi-aircraft are 

shown. Boundary conditions are given in Table 

5 and 6. The results by proposed method are 

shown in Fig. 11 and 12. Fig. 11 shows optimal 

trajectories and Fig. 12 shows histories of inputs 

about 4
th

 aircraft and 9
th

 aircraft, which are 

time-controlling aircraft in this case. Moreover 

Fig. 13 shows inputs from general formulation 

about 4
th

 aircraft and 9
th

 aircraft. As we can see, 

the inputs about time-controlling aircraft are 

consistent. The times for formation are 36.09 [s]. 

As shown previously, numerical results show 

that the solutions of minimum-time formation 

with start time differences can be derived by 

proposed method. 

 

Fig. 6 Outline of method 
Fig. 7 Trajectories by proposed method  

(Table 2 and 3) 

Fig. 8 Inputs by proposed method (Table 2 and 3) 

Fig. 9 Trajectories by proposed method  
(Table 2 and 4) 

Fig. 10 Inputs by proposed method (Table 2 and 4) 
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Table 5 Initial Conditions 

j M 
γ 

[deg] 

ψ 

[deg] 

x 

[ft] 

y 

[ft] 

h 

[ft] 

TDLj 

[s] 

1 0.7 0 90 0 0 0 0 

2 0.7 0 90 0 0 0 2 

3 0.7 0 90 0 0 0 4 

4 0.7 0 90 0 0 0 6 

5 0.7 0 90 0 0 0 8 

6 0.7 0 90 0 0 0 10 

7 0.7 0 90 0 0 0 12 

8 0.7 0 90 0 0 0 14 

9 0.7 0 90 0 0 0 16 

 
Table 6 Terminal Conditions 

j Mf 
γf 

[deg] 

ψf 

[deg] 

y 

[ft] 

h 

[ft] 

Rx1j 

[ft] 

1 0.7 0 0 0 0 - 

2 0.7 0 0 1000√3 0 1000 

3 0.7 0 0 2000√3 0 2000 

4 0.7 0 0 3000√3 0 3000 

5 0.7 0 0 4000√3 0 4000 

6 0.7 0 0 5000√3 0 5000 

7 0.7 0 0 6000√3 0 6000 

8 0.7 0 0 7000√3 0 7000 

9 0.7 0 0 8000√3 0 8000 

 

 

 

 

Fig. 11 Trajectories by proposed method  
(Table 5and 6) 

Fig. 12 Inputs about 4
th

 aircraft and 9
th

 aircraft  

by proposed method (Table 5 and 6) 

Fig. 13 Inputs about 4
th

 aircraft and 9
th

 aircraft  

by general formulation (Table 5 and 6) 

Fig. 14 A schema for formulation taking into relative 

distances of each aircraft 
 



Hiroshi FUKUMOTO & Seiya UENO 

8 

6 Conclusions and Future Works 

For minimum-time formation with start time 

differences, this paper introduced a method, 

based on optimal solutions of single aircraft. 

Numerical results showed the concordances. 

 This method is only applicable to the 

problems that do not take into account relative 

distances among aircraft during the formation. It 

is also said as for the general formulation that 

has different control sections. This problem can 

be formulated by a method which for two 

aircraft is shown in Fig. 14. The control section 

from 0 to its different start time is replicated, 

normalized time is used and then the problem 

can be formulated as two point boundary value 

problem by dealing with the motions as one 

motion. Thus we can treat the relative distances, 

which are expressed as inequality constraints. 

However there is also a disadvantage that the 

states and inputs are increased rapidly. The 

future works are improving the proposed 

method in order to treat the problem such that 

relative distances among aircraft during the 

formation are considered.  
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