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Abstract

As engine speed increase, centrifugal
stiffening causes a blade’s natural frequencies
to increase. Because the frequencies of bending
modes tend to increase at a faster rate than
those of torsion mode, the frequencies of
bending and torsion modes are disposed to
cross. Aimed at the configuration and operation
characteristics of the blades of the aero engine,
based on sheet bending theory, considering the
centrifugal load, the frequency and mode shape
of the blades are studied by the beam function
combination method. Considering the different
engine speed, aero elastic differential
integration method for differential equation are
researched. The theoretical foundation of the
frequency and mode shape research on
cantilever sheet are obtained. The new methods
of investigation on frequencies and mode shape
have been studied. The given frequency and
mode shape solutions are rather practical for
the blade fatigue detecting, what’s more, the
theoretical base of flutter designing for engine
blade are supplied.

1 Introduction

The blade is the key dynamic part in
aeroengine, whose employment circumstance
of high speed rotating and strong impact gas
flow is so severe, which bears centrifugal load,
air-actuated load, vibration load and so on.
Therefore, strength problem of blade is rather
predominant. Especially, thevibration
characteristic of blade affects the aero engine
characteristic directly. Resonance vibration can

induce rupture and failure of the blade, the
percent of accident , which lead by rupture and
failure of the blade mentioned above, is
30%-40% for accident of part in aero engine[1-4].
As well, blade flutter is significant factor
affecting reliability and life for aero engine.

As engine speed increase, centrifugal
stiffening causes a blade’s natural frequencies
to increase. Because the frequencies of bending
modes tend to increase at a faster rate than
those of torsion mode, the frequencies of
bending and torsion modes are disposed to
cross. Aimed at the demand of high ratio of
push-quality, the measure which is adopted
conclude increasing boost ratio of
compressor/blast fan and applying new-style
and lightweight material, in order to enhance
air-powered performance and to live weight
loss. In general, the measures mentioned above
can obviously lead the air-actuated load to
increase, and cause the stiffness descending ,
make the problem of self excitation vibration
for the blade (flutter) grow predominant
particularly. Consequently, fracture failure
because of resonance vibration for blade is one
of major accident in the aero engine
systemcommonly[5-7]. Therefore, researching
vibration characteristics for variable rotating
velocity blades is vital problem terribly during
the investigation, manufacture and employment
for the aero engine.

Aimed at the configuration and operation
characteristics of the blades of the aero engine,
based on sheet bending theory, considering the
centrifugal load, the frequency and mode shape
of the blades are studied by the beam function
combination method. Considering the different
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engine speed, aero elastic differential
integration method for differential equation are
researched. The theoretical foundation of the
frequency and mode shape research on
cantilever sheet are obtained. The new methods
of investigation on frequencies and mode shape
have been studied. The given frequency and
mode shape solutions are rather practical for
the blade fatigue detecting, what’s more, the
theoretical base of flutter designing for engine
blade are supplied.

2 Variation equation for blade vibration

According to assumption of plate theory[8], the
stress and strain are listed as follow:
1) strain component
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2) stress component
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3) Considering centrifugal force
The blade vibrated in rotating plane, the
bending plane is shown in fig.1, the expression
of centrifugal force 'N for unit area is given as
follow.
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where h and is unit area mass density and is

blade setting angle, 0r is disk radius.  is
rotating angular velocity of blade.

fig.1
4) Variation equation

Besides kinetic energy T and
deformation energy U ,the energy of blade
unit include potential energy, which lead by
centrifugal force. According to energy method
principle

T U U  (6)
In accordance with plate theory assumption,

specific energy is
1 ( )
2 x x y y xy xyW         (7)

Substituting Eq.(1)and Eq.(2) into Eq.(7),
the expression of deformation energyU is
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Kinetic energy
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Analogously, assuming

     , , , sinw x y t W x y ft   , the potential

energyU becomes
22

2

2

2 2

2

22

2

1 ''
2

''2 '
'

''

A

W N WU N
Eh y y y

WNW N W xN
y y y N W

dxdyx x

W N WN
x x x





   
     

 
                    

   
        



(10)
Free vibration variation equation is
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Substituting Eq.(8)- Eq.(10) into Eq.(11), range

of integration is 2ft  ，mode of vibration

variation equation becomes
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flexural rigidity and torsional stiffness is
expressed as
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3 Blade dynamic characteristics solution

Flexibility mode function is

     ,ij ij i jW x y A X x Y y （14）

where ( )mX x and ( )nY y are i order

and j order mode of vibration function[9], which

correspond to x direction and y direction
boundary condition for girder respectively, the
boundary condition are fixing one side and

making the other three sides free. ijA is

undetermined factor.
Substituting Eq.(14) into Eq.(12), after

variation operation, the linear algebra equations

which satisfy ijA are available
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In Eq.(15), frequency coefficient for plate

is 4 2
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Eq.(16c) are integral value concerned beam
function, which refer to literature[9].
Determinant of coefficient for Eq.(15) is
zero ,in order to make solution non-vanishing.

Available frequency equation e is

    4Det 0 C I (17)

Generally, Eq. （ 14） and Eq. （ 16 ） are
expressions for mode shape and natural
frequency of blade.

4 Aeroelastic differential equation of blade
considering centrifugal force

The cantilever plate shown in fig.2:length

a , width b , depth h ,plate density  . x

direction air flow act on upper face, velocity

U ,mach number M ,air density  , 'N is

centrifugal force acting in the middle of plate.

fig.2
Substituting dimensionless parameter:

/x x a ， /y y b ， /a b  ， / h  ，

/u u h ， / h  ，
2' /N N a D ，

4/t D ha  ，
32 /qa D  ，

/a hM   

on the effect of aerodynamic load, the
cantilever plate equilibrium equation is
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the boundary condition for cantilever plate are
listed as below:
fixed boundary
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Differential quadrature method （ DQM ） is
weighted approximation of some function,
Adopting DQM, mixing partial derivative of
Eq.(18)and Eq.(19) are written to matrix
formulations.

Substituting  expi j ijw i  into linear part

of Eq.(18)and Eq.(19), systematic eigenvalue
equation are received,  is plural,

R Ii    ,real part R is systematic damp,

imaginary part I is systematic frequency,

based on Lyapunov indirect method,

when 0R  , system is stable; when 0R  ,

system is unstable; while 0R  ,systematic

flutter generate， and corresponding dynamic
pressure is systematic flutter critical dynamic
pressure. On condition that given centrifugal
force N and  ,when dimensionless dynamic

pressure c  , systematic eigenvalue is

zero, c is desired flutter boundary.

5 Vibration frequency numerical study for
blade considering centrifugal force

One side of blade is fixed, the other three sides
are free. blade parameters are supposed as
follow: the length 0.8ma  , the depth

0.006mh  , modulus of
elasticity 111.4 10 PaE   material

density 3 38.8 10 kg/m   ,installing angle

30   , the blade is fixed on the disk, whose

radius is 0 0.5mr  . Ignoring the blade mass,

when aspect ratio are 2:1 and 4:1,the campbell
diagrams are obtained respectively, which are
shown in Fig.3.
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(a) the curves of frequency for aspect ratio=2:1

(b) the curves of frequency for aspect ratio=4:1

Fig.3 Campbell diagram
The diagram describe that :with plate thickness
and length kept constant, coupling between
1order and 3 order vibration mode exist,
coupling between 2 order and 3 order vibration
mode appear, while coupling between 1order
and 2 order vibration mode is nonexistent; the
intersection point correspond to rotating speed
and frequency higher respectively than those
corresponding to intersection point.

6 Conclusion

Based on beam function combination
method, the expression of frequency and mode
shape for blade considering centrifugal force
are received. The phenomena of frequency
veering for blade is exampled by analyzing
aspect ratio influence on blade frequency.
Considering centrifugal force and
aerodynamic force cooperation , aero elastic
differential integration method for

three-dimensional differential equation are
received. The theoretical base of flutter
designing for engine blade are supplied. The
main conclusions are listed as follow:
1) The dynamic character of the cantilever
sheet is studied by the beam function
combination method. Founded on sheet
bending theory , the analytical solutions of
frequency and mode shape are deduced in
variable rotating speed state .
2) Considering geometry large deformation
nonlinearity, based on plate theory and linear
elastic relation of stress and strain , the
differential quadrature method was applied to
deal with the three-dimensional aeroelastic
dynamic equation using piston theory. The
theory foundation of analyzing the influence of
system's parameters on flutter boundary are
applied.
3)The simulation result indicate that the single
bending mode shape or the single torsion mode
shape, which will never couple with the other
mode shape, leads to mode coupling;
considering the blades of the same thickness
and length, the vector and frequency subjected
to the lager aspect ratio blades are bigger than
those subjected to the smaller aspect ratio
blades.
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