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Abstract 

This publication provides a method for 

understanding the propagation of uncertainties 

across multiple analysis tools. For each 

parameter the information about uncertainty 

and the effect on a following parameter will be 

analysed. This helps to understand which 

parameters have the most effect on the result 

and which parameters are driving the overall 

uncertainty. 

1  Introduction 

When analysing the potential of novel 

aircraft configurations on conceptual and 

preliminary design levels, the amount of time 

available dictates both the fidelity level and 

amount of analyses that can be conducted. The 

increase in computational power over the last 

decades has resulted in an increase in analysis 

capabilities for assessing aircraft concepts in the 

same amount available time. However, 

considerations based on analyses using methods 

representing high-fidelity physics-based 

analysis still find their application in detailed 

design phases only. 

The DLR project “Future Enhanced 

Aircraft Configurations (FrEACs)” is aimed at 

extending the early design phase to high fidelity 

physics based analysis with required uncertainty 

information.  To create a proper basis for 

making design decisions in early design phases 

using the limited available information on the 

aircraft physics, it is necessary to supplement 

that information by the uncertainty of the 

implemented analyses.  

The current paper investigates the analysis 

of aircraft configurations under consideration of 

propagated uncertainties in early design stages. 

In addition to investigating sensitivities of the 

physical properties of aircraft, the propagation 

of uncertainties between individual modules in 

analysis workflows allows for determination of 

the overall uncertainty of these properties. The 

base for making well-grounded design decisions 

in conceptual and preliminary design stages is 

thereby improved. 

In order to propagate uncertainties across 

multiple analysis tools, uncertainties first have 

to be determined at the individual tool level. In 

publication [1], this uncertainty determination is 

described for the disciplinary analysis modules 

within a low-fidelity physics based aerospace 

toolkit [2]. According to the analysis question at 

hand, workflows are built up by connecting 

these modules in the distributed integration 

environment RCE [3]. In this way, an analysis 

process is generated for the evaluation of target 

functions on an Overall Aircraft Design OAD 

level that keeps track of uncertainty data. The 

aircraft geometric parameters, analysis results 

and uncertainty data are exchanged using the 

Common Parametric Aircraft Configuration 

Scheme (CPACS) [4].  

2  Aircraft design system 

Today's conceptual and preliminary aircraft 

design is usually formulated in Multi-
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(MDAO) studies. In recent developments, these 

studies are often conducted in distributed and 

collaborative design environments rather than in 

monolithic codes. The design environments 

offer increased flexibility to choose the analysis 

method appropriate to the design task of 

interest. Furthermore, the design environments 

ease the introduction of further disciplinary 

expertise as the analysis modules are loosely 

coupled. Hence, disciplinary tools can be 

included without major implementation 

overhead.  

As shown in Figure 1, a distributed, 

collaborative design environment consists of 

three components. Disciplinary analysis 

models, from low-fidelity empirical models to 

high-fidelity full-scale numerical models, form 

the core of the design environment.  A common 

data exchange language that is based on a 

central data model approach. An integration 

framework that consists of an editor and visual 

environment for the creation, modification and 

control of analysis tool chains. [5]  

Figure 1: Three components of distributed, 

collaborative design environment  

Several design environments that bring 

together these components exist in literature. 

Among others, CEASIOM [6] and MDOPT [7] 

are indicated as outstanding examples. The 

present study is based on the aircraft design 

system currently under developed at DLR. 

Therefore, the central model approach uses the 

Common Parametric Aircraft Configuration 

Schema (CPACS) [8] as data exchange format. 

The Remote Component Environment (RCE) 

[9] is the integration framework of choice. The 

disciplinary analysis models applied are the 

empirics-based conceptual design tool 

VAMPzero [10] and physic-based for example 

vortex-lattice aerodynamic analysis module. 

Section 5 further elaborates on the 

characteristics of the used models. 

The introduction of uncertainties into the 

aircraft design system affects most of its 

components. First of all, the analysis models 

with inherent uncertainties need to explicitly 

provide uncertainty information in their output. 

Hence, the central model needs to provide a 

means to describe and store this uncertainty 

information in a structured manner. The 

integration framework needs to be extended to 

propagate information on uncertainties in a 

design process consisting of several analysis 

models. Given the fact, that significant 

computational cost may arise from this 

uncertainty propagation, it may be beneficial to 

extend the design environment with surrogate 

modeling techniques. 

3  Uncertainties in the design process 

Complex natural processes can be 

approximated using explicit rules in model 

representations and applied to describe future 

events. By observing the real processes, 

conceptual models can be generated which 

mostly reflect a simplification of events 

occurring in reality. Before simulating future 

events using conceptual models, a computer 

model representation is created and again 

compared to or validated with reality. The 

approximations contained in the computer 

models typically result from incomplete 

knowledge, errors in modelling or by deliberate 

reduction of complexity. As a consequence, the 

representation power of the models is subject to 

uncertainties. 

Types of uncertainties 

In literature there are different ways to 

define uncertainty. In the present study, aleatory 

and epistemic uncertainties are discerned. 

Uncertainties due to random numbers or chaotic 

processes are referred as aleatory. Designers 

have by definition no significant influence on 

this kind of uncertainties; therefore these cannot 

be avoided or reduced. Uncertainties caused by 

the ignorance of matter are referred as 
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epistemic. By additional information, these 

uncertainties can be reduced. 

Sources of uncertainty 

There are various sources of uncertainty; in 

this study there are two sources relevant: 

Uncertainties through physical model 

assumptions: A physical model bases on data 

and logic derived from observation of real 

processes. By neglecting physical effects, e.g., 

not incorporating transonic effects in an 

aerodynamic simulation, uncertainties are 

introduced in the model. Model simplification 

might be required due to the complex nature of 

the physics to be represented, e.g., weather, not 

knowing or understanding reality well enough 

or since simple model representations often 

require less computational power and represent 

reality sufficiently enough. The description of 

uncertainties can be defined either within the 

model or subsequently be imprint on the output 

parameters of a model.  

Uncertainties occurring in the input 

parameters of the design study: Input 

parameters or assumed constants within analysis 

models can be fraught with uncertainty. Input 

parameters can be subject to a dependent 

uncertainty, e.g., function, or constant.  In the 

course of the present study a distinction is made 

between time-dependent and time-independent 

input parameters. For time-dependent 

parameters, the uncertainty is a function of the 

prediction time point, e.g.: the oil price in 2030 

or 2050. These parameters and their 

corresponding uncertainty band can be derived 

from future scenarios. Time independent 

parameters are those that do not change over 

time, such as slightly differing material 

properties of certain composite materials due to 

uncertainties in the production process. 

Regardless of the source of uncertainties, 

the information on the uncertainty may either be 

integrated intrusively or non-intrusively. By 

integrating uncertainties within the model, an 

intrusive approach is chosen. If the information 

is subsequently imprinted to the models analysis 

results then a non-intrusive approach is used. 

Uncertainty analysis using probability 

distribution functions 

Uncertainties can be described differently 

depending on the source causing the 

uncertainty. In literature numerous theories and 

methods are described, see for example [11], 

[12], [13], [14]. 

In the present study, uncertainties are 

described by probability theory and inductive 

statistics. In inductive statistics, the properties 

of a population are derived from the data of a 

sample. Through the application of probability 

theory, uncertainties can be handled using 

probability distribution functions. Expressed as 

a probability function or random function, the 

specific parameters of the uncertainty function 

are set dependent on the source causing the 

uncertainty.  

Quantification of uncertainties 

In order to propagate uncertainties across 

multiple analysis tools, uncertainties have to be 

determined at the individual tool level. This 

uncertainty determination is described in [5] of 

the disciplinary analysis modules within the 

low-fidelity physics based aerospace toolkit. 

4  Propagation of uncertainties in the design 

process 

Due to the dependence of input parameters 

of one module on the output parameters of a 

preceding module, uncertainties are propagated 

within analysis workflows (see Figure 2). The 

way in which uncertainties are propagated 

depends on the analysis method that underlies 

the specific analysis model (the sensitivity of a 

modules’ output parameter is to its input 

parameters).  

Each model consists of one or more input 

and output variables and may have different 

characteristics. The model can be deterministic 

or stochastic. It can be for example, a 

mathematical model or a table of data or various 

other shapes. 
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Figure 2: Propagation of Uncertainties 

The input parameters can be controllable or 

uncontrollable (See Figure 3). The controllable 

parameters are set either from outside or they 

are deterministic output parameters from 

previous models. The uncontrollable parameters 

are those which are present as a stochastic 

variable. They can have different nature as 

described above.  

To analyse the influence of uncontrollable 

and controllable parameters on the output 

parameters of a model, these parameters can be 

varied and the model used repeatedly. 

Stochastic input parameters also generally lead 

to stochastic output parameters and can be 

evaluated statistically. These in their turn, can 

be embedded in the multi-disciplinary design 

and evaluated. 

Figure 3: Influence of uncontrollable and 

controllable parameters on the output 

parameters of a model 

Determining the sensitivities of input and 

output parameters proves to be a reasonable 

method to provide information on how a 

parameter and its uncertainty behave and 

influences other parameters. The propagation 

behaviour of a variable can be shown by 

varying parameter values (within a fixed range), 

using Monte-Carlo simulations. When using 

very complex and time-consuming models, it is 

attractive to use surrogate modelling, e.g., 

response surfaces, to reduce overall analysis 

time. After the overall analysis is completed, the 

sum of all uncertainties of each individual 

model provides the overall system uncertainty 

(on overall output parameters). 

In the propagation of uncertainties should here 

be pointed out three main features, which serve 

as the basis of this: 

 The effect of an input parameter to an

output parameter,

 the uncertainty of input parameter itself

 as well as confidence in its uncertainty

(uncertainty of higher order by confidence

intervals).

These features are schematically shown in the 

Figure 4. All three affect the probability to make 

mistakes due to an interpretation of output 

parameters. If the effect of an input parameter is 

strong, uncertainty high and confidence in the 

uncertainty low, the uncertainty of the output 

parameter increase and thus the probability to 

make mistakes in interpretation. 

Figure 4: Features of the uncertain input 

parameters on one specific output parameter  
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Description of the uncertainty component 

For the analysis of propagated uncertainties 

in MDO systems, an uncertainty analysis 

component is developed in the integration 

framework RCE. This component allows the 

inclusion of uncertainties and provides a GUI to 

analyse, control, and observe its propagation 

behaviour. The component can handle both 

stochastic and deterministic models as well as 

intrusive and non-intrusive uncertainties. The 

uncertainties can be analysed using different 

approaches, in order to adjust the balance of 

time and quality of the performed analysis. The 

uncertainty component itself cconsists of four 

parts: the processing of input parameters, 

sampling, storage of results, and the evaluation 

of results to propagate these among subsequent 

analysis modules. The derived uncertainty data 

is exchanged as extra information in addition to 

the aircraft geometrical parameters and analysis 

results, using the CPACS data exchange format.  

This component can be integrated into any 

tool chain built in RCE, provided that applied 

modules include uncertainty information. It can 

be applied to control inputs and outputs of 

individual system modules, groups of modules 

and of the overall design system. In Figure 5, 

this process is shown for a single module. Here, 

a CPACS data set is loaded and thereafter 

controlled by the uncertainty component. The 

analysis module gets the data and sends the 

result back to the uncertainty component. After 

completion of the uncertainty sampling, the 

results are passed to a potential following 

analysis module. This analysis structure can be 

used multiple times in subsequent analyses, 

such that concatenation of uncertainty 

information, and thereby the propagation of this 

information is realized. 

Figure 5: Integration of the uncertainty module 

Dependency of input to output parameters 

due to regression 

The information about which input 

parameter has what influence to output 

parameters is important for the traceability of 

the results. Input and output parameters are in 

this case almost random numbers. Using 

regression, the occurring dependencies can be 

detected. With this information, it becomes 

clear which parameters have major (linear) 

effects on the overall result and thereby drive 

the system uncertainty value. 

5  Application of the uncertainty 

propagation process within the analysis 

workflow 

Figure 6 shows the workflows for aircraft 

analysis, including UACs. This workflow  and a 

design study was discussed in [5] which include 

the follow analyses modules: 

 VAMPzero – initial model generator for

aircraft configurations

 LCGplus – generates the load cases

 Tornado – calculates aerodynamic forces and

moments

 AEE – calculates the primary wing structure

mass

 PESTsewi  – estimate the secondary wing

masses

 CMU – checks the consistency of the mass

breakdown

 TrimFlight – analyse the aircraft performance

The analysis modules are repeatedly called 

to investigate the sensitivities of output 

parameters to the variable input parameters 

under consideration. Thereby, the corresponding 

uncertainty band on its output parameters is 

determined.  

Based on this workflow, a new analysis 

workflow was constructed to analyse the 

propagation for the uncertainties and the 

sensitivities of the parameters more in detail. 

The constructed workflow is shown in Figure 7. 

For this, the same analysis tools in the same 

order was used.  
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To reduce the complexity, the analyses 

workflow is divided into groups. The 

initialization group includes VAMPzero and the 

structural analysis group includes the load 

generator (LCGplus), Tornado, AEE and 

PESTsevi. The mass analysis group consists of 

CMU and mission analysis group of TrimFlight.  

6  Example of exploring propagated 

uncertainties 

As an example demonstration, a reference 

configuration was analysed in [5] with the aid of 

the workflow shown in Figure 7. Selected 

reference configuration – named D150 – was 

applied as a use case.  

For this analysis, the configuration is used, 

which has been pointed out as optimal of a 

previews optimization in [5]. Thus, the analysis 

of the reproductions is at the optimum point, 

which is crucial to review the configuration. 

The reproductions of uncertainty may also 

change with a change of design parameters. 

However, this is here also neglected. 

Parameter uncertainty propagation 

quantification  

When uncertainties are propagated, the 

number of stochastic parameters can increase. In 

the current analysis, there are more than 300 

input parameters which exhibited a stochastic 

behaviour.  

If the dependencies of the parameters 

should be found by sensitivity analysis, the 

number of samples would be more than 1800 (if 

for example formula (1) is taken into account 

[15]). This would entail a high computational 

time.  

𝑁𝑠𝑖𝑚 ≈ 𝑘 ∙ (𝑁𝐸𝑃 + 1) ;   𝑘 = 6 …   10 (1)

To skip this problem, a parameter 

significance test (PSU) (Parameter signifier 

screening) is performed before each group 

analysis. Here, each input parameter is changed 

once and the effect on each output parameter is 

examined. All the input parameters which have 

none or only a slight effect on the output 

parameter can be excluded from further 

analyses. With the reduced number of input 

parameters the analysis can be done. 

Figure 6: Example of a workflow including 

uncertainty propagation components 
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Figure 7: Reconstructed workflow for detail uncertainty propagation analysis 

The number of samples is crucial for the 

correct conclusion of the dependencies. If the 

number of samples is too low, this can lead to 

false interpretations of reproduction. It can be 

detected parameters that have only a small 

effect, falsely have a large effect. Due to this, 

the formula (1) is used for estimate the number 

of required simulations. 

For example, 354 parameters come from 

the initialization part, which have an uncertainty 

(see Table 1). These are reduced by the PSU at 

39 input parameters in the structural part. This 

reduces the number of samples after the 

application of the formula (k = 6) of 2130 to 

594. 

The results of a propagation analysis are 

shown in the Figure 8. They include the 

disciplinary groups as modelled in the 

workflow, together with the most relevant in- 

and output parameters. 

Group 

Input 

Parameter Output 

Parameter before 

PSU 

after 

PSU 

Initialization - - 354 

Structure 354 39 104 

Masses 458 25 1 

Mission 459 8 2 

Table 1: Number of uncertain in and output 

parameters, before and after PSU 

For each parameter, the information of 

uncertainty and the effect on a following 

parameter is given. The path with the strongest 

effect on the selected overall result in this case, 

the mission fuel consumption) is highlighted. In 

this way, it can be displayed quickly and easily 

which are the main parameters and how they 

develop during the simulation. The number of 

parameters is limited in this illustration so that 
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the clarity is maintained. Each group creates a 

table in which the information of all input and 

output parameters are listed. Mission fuel 

consumption at the end of the evaluation in the 

mentioned representation has the largest effects, 

on aircraft empty weight (OEM) and maximum 

payload (payload). A standard deviation change 

in aircraft empty weight for example, causes a 

8.8% change in the fuel composition. The 

aircraft empty weight is most influenced by the 

fuselage mass. This here has a standard 

deviation of 19%. A change of the average mass 

to 19%, caused in the aircraft empty weight a 

change of 18%. 

Figure 8: Uncertainty propagation analysis of the example workflow 

Another illustration shows more closely, 

which input parameters affect with which 

sensitivity and uncertainty of a selected output 

parameter (see Figure 9). Sensitivity in this 

illustration means, a 10% change of the input 

parameter. It can be seen that the aircraft empty 

weight, the lift coefficient and the payload have 

the greatest effect on the mission fuel 

consumption. These factors may also be referred 

to as risk factors, because these affect the 

interpretation of the result the most. 

This information could then be used to 

reduce the uncertainty of the main influencing 

factors and thus uncertainty in the overall level. 

A first step could be that the uncertainty of the 

aircraft empty weight is reduced. This is 

strongly influenced by the fuselage mass. The 

uncertainty of these comes from the 
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initialization part rather from VAMPzero. The 

fuselage mass is determined by statistical 

formulas responsible for this particular 

uncertainty. By using a more trusting model, 

which determines the fuselage mass, the 

uncertainty could be reduced here. A reduction 

in the overall uncertainty can be achieved 

through the use of analysis modules with a 

higher accuracy, but only on the assumption that 

these results are more truthful. 

Figure 9: Sensitivity of selected input parameter 

on the mission fuel over standard derivation µ of 

each parameter 

7  Summary and conclusion 

This paper provides indicative results of 

the implementation and propagation of 

uncertainty considerations within aircraft design 

analyses.  An example was shown of the 

propagation analysis of an aircraft design 

process. It was shown how the relevant 

parameters are selected and visualised. This 

helps to understand the complexity of the 

workflow and how the uncertainties are 

propagated though the process. Additional 

understanding about which parameters have the 

most effect on the result and which parameters 

drive the overall uncertain is also acquired. 

With the assumption that the uncertainties 

are sufficiently covered to support design 

decisions, the inclusion of uncertainty data helps 

to make better founded decisions on the 

applicability of aircraft configurations to design 

requirements and missions. Especially when 

applied to the analysis of aircraft derivatives or 

even for unconventional aircraft configurations, 

the consideration of uncertainties becomes 

increasingly important. 

However, the integration of uncertainty 

cannot be interpreted as the final solution to 

cover all possible risks. Uncertainties underlie 

uncertainties of higher order too. A 

quantification of all occurring uncertainties 

seems to be near to impossible; nevertheless a 

plausible derivation of these makes sense and is 

useful for increasing the level of confidence in 

analysis result interpretation. 

The integration of more sources of 

uncertainty of different disciplines covering 

major physical effects is foreseen in future 

work. By performing optimization including 

these uncertainties within the target function, a 

robust optimisation framework will be 

established. The occurring workflow will be 

applied to less conventional aircraft, for which 

uncertainty information becomes increasingly 

important.  
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