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Abstract

The traditional optimal control pilot model

(OCM) is based on Kalman filter which cannot

reveal the pilot behavior in time varying

disturbance of unknown environment. To

overcome the omissions, a Modified Optimal

Control Pilot Model based on Adaptive State

Estimate (AOCM) is developed. The pilot

models are utilized to reproduce the flight test

by pilot-aircraft closed-loop simulation. In

frequency domain, the AOCM is testified by

magnitude and phase comparison. In time

domain, some unknown disturbance is led into

the simulation, the attitude tracking results

show that AOCM performs better than OCM.

Both the evaluations in frequency domain and

time domain show the merit of AOCM, and

reflect the pilot character of environment

adaption. AOCM and OCM are utilized in

Handling Qualities(HQ) prediction, in all the

four HQ test cases, with modified weighting

matrixes, AOCM gets more accurate HQ rating

prediction than OCM, it's identical to the flight

test pilot rating. The result shows the HQ

prediction is critical corresponded to the ratio

of Qy/R. Accurate HQ prediction is based on the

precisely Qy/R ratio chosen. And Qy/R ratio is

corresponded to the aircraft dynamics, as the

aircraft dynamics degrades the value of Qy/R

should increase. It denotes that the pilot will

pay more attention in flight observation while

he keeps the same attention in controlling as

before. Thus, the heavier mental workload

degrades the pilot rating. Yet this assumption is

still need to be testified.

1 Introduction

Handling qualities (HQ) evaluation plays

an important role in aircraft design [1-2]. The

current handling qualities assessment methods

can be divided into theoretical criteria and pilot

evaluation methods. The criteria, such as the

control anticipation parameter, Neal-Smith,

bandwidth (BW), and low-order equivalent

systems are used as guidelines [3], based on

previous experiences with already existing

aircraft. These criteria are very useful since they

correlate handling qualities to a limited number

of quantifiable parameters. However, the

handling quality level can be mispredicted: for

instance, due to deviations of the type of aircraft

on which the criterion was based, the limitations

of the applied human operator model, the

omission of the influence of the feel system, or

debatable assumptions such as a fixed BW or

fixed stability margins [4].

Pilot evaluation methods include the

Cooper-Harper rating (CHR),"Paper pilot",

Optimal Control Pilot model rating (OCM)[5],

pilot-in-the-loop testing method and the

handling qualities during tracking (HQDT)

method[6]. The first method evaluates the flying

qualities incorporating all aspects of a realistic

task, but it sometimes fails to reveal hidden

deficiencies due to the inability to evaluate the

full handling qualities envelope. The HQDT

method tries to evaluate the full handling

qualities envelope by prescribing a forced high-

gain and high-BW control technique, but pilots

regard this technique as highly unnatural [4].

The OCM method with Kalman filter fails to

reveal the procedure of inference and adaptation

in unknown disturbance. Thus, the OCM could
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not be used in real flight evaluation only if the

following conditions are fulfilled in the same

time [7].

1) The pilot should be perfect and fully

experienced and

2) The statistics characteristics of

disturbance should constant values and

3) The flight test must sustain as long time

as the pilot evaluate the character of the aircraft

and disturbance precisely.

However, the requirements above can

hardly be satisfied simultaneously, therefore

parts of the OCM rating do not coincide with

the pilot rating in flight test.

The method proposed in this article is an

adaptive optimal control evaluation method

(AOCM) capable of evaluating the handling

qualities in unknown environment. The new

method tries to overcome the omissions of the

OCM and is complementary of the theoretical

criteria method.

2 Adaptive Optimal Control Pilot Model

In AOCM, modified noise model and

adaptive state estimation method are added into

the original OCM. The process of optimal

control gains calculation and other parts that

same as OCM will not be reviewed, one can go

to the detail in Ref.[5]. This article will

introduce the modification of AOCM. The

merits of the modification are as follows:

1) Multi-variable Lyapunov formula solving

is avoided.

2) In physical scene, the pilot does not need

to evaluate the disturbance based on the

unknown future. The new noise models reflect

the pilot’s behavior and thinking process in real

flight.

3) With adaptive state estimation, the AOCM

can be used in time varying disturbance, this

characteristic is especially important when

describe the pilot’s behavior in real flight with

unknown disturbance.

2.1 Modification of observation noise model

In OCM, the variance of observation is

solved by Lyapunov equation, in this article, 2

iy
σ

is a statistic value based on the recent

observation history, it is a time varying value.

The AOCM observation variance based on

recent history is

2
.1 .2 .var([ , , , ])

pyi i i i ty y yσ = ⋯ (1)

The subscripts 1 to tp represent the recent

sample time points. And the single axis

covariance of the observation noise can be

acquired as
2

i i

i

i

y y

y

y

V
f

πρ σ
= (2)

In this equation
iy

ρ is the nominal full-

attention observation signal-to-noise ratio,
iy

f is

the fraction of total attention spent on the ith

observation channel, and 2

iy
σ is the variance of

the ith observation variable. Single-axis manual

tracking control tasks have shown that, on the

average, 0.01
iy

ρ = , which corresponds to

normalized observation noise of -20dB [5].

Supposed that the noise of different observation

axes are independent, then the intensity of the

noise can be acquired as

diag( )
iy yV=V (3)

2.2 Modification of control noise model

In the traditional OCM the variance 2
uiσ is

solved by the Lyapunov Equation. And the

covariance of Vu is calculated by iteration of

desired signal to noise ratio. Furthermore, when

the noise intensity is achieved, it will be treated

as a constant value in the following application

in OCM. In this article, the variance of control
2
uiσ is calculated based on the recent control

history, same as the observation variance; it is a

time varying value
2

.1 .2 .var([ , , , ])
pui ci ci ci tu u uσ = ⋯ (4)

the subscripts 1 to tp represent the recent

sample time points, i is the ith control channel.

Supposed all the control channel are

independent, one can obtain the current motor

noise intensity by

( )
iu udiag=V V (5)

Analyses of single-axis manual tracking

control task experiments have shown that the

typical value of ρu is 0.003, which corresponds

to the normalized control noise ratio of -25 dB
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[5]. In this article, in the multi-axis problem we

suppose that the control noise ratio is in

proportion to the number of control channels.

2.3 Adaptive state estimation

In AOCM, Adaptive Kalman filter[8] is

added into the model, the time varying noise

estimator is

1
ˆˆ ˆ( ) ( 1) ( 1) ( ) ( )kk k d k k k−= − + −q q Q D ε (6)

1
ˆ ˆ ˆ( ) ( 1) ( 1) ( )[ ( ) ( )

ˆˆ( ) ( | 1) ( ) ( 1)] ( ) ( 1)
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T T
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k k k k k k k

−= − + − −
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H P H R D Q
(7)

1
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k

k dis
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d k k k k k

−

−
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 + − − − 

r r
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−

= − −

+ −

× − +

R R

I H K ε ε

I H K H P H

(9)

where d is the gradually forgetting

coefficient

1 (1 ) / (1 )k
kd b b− = − − (10)

b is the forgetting factor, 0<b<1. ( )kD is the

recursion operator

1

( ) ( )[ ( ) ( | 1) ( )

( 1)]

T T T
disk k k k k k

k −

= −

+ −

D E H H P H

R
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And the adaptive Kalman filter is
ˆ ˆ( | 1) ( 1) ( 1| 1)

ˆ( 1) ( 1)dis dis

k k k k k

k k
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+ − + −
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(12)
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( | ) [ ( ) ( )] ( | 1)nk k k k k k= − −P I K H P (16)

ˆ ˆ( | ) ( | 1) ( ) ( )k k k k k k= − +X X K ε (17)

Through equation (6) to equation (17),

φ , disB , H , disD , disE are the coefficient matrixes

of the discrete state equation, X̂ is the

estimation of the state vector, Y is the

observation vector, u is the pilot control output,

P is the prediction error covariance, q̂ is the

mean disturbance estimation, Q̂ is the

disturbance intensity estimation, r̂ is the mean

estimation of observation noise, R̂ is the

intensity estimation of observation noise,

ε denotes the innovation process, and K is the

filter gain.

All above are the modifications of AOCM,

by proper algorithm implementation, it will

reveal the pilot’s behavior in unknown

disturbance.

2.4 AOCM Algorithm Implementation

The algorithm implementation of AOCM is

almost the same as OCM’s. It is organized into

four main parts. The first part involves

augmentation of the plant and disturbance

dynamics with a Pade approximation of the

pilot's effective time delay. The second part is

the calculation of the pilot's control gains, where

iteration on the cost function control-rate

weighting is usually required to achieve the

desired value of pilot's neuromotor time

constant. The third part is the calculation of the

pilot's estimation gains. This requires the

calculation of observation and control noise

covariances by Eq.(1) to Eq.(5). The fourth part

is discrete conversion and adaptive state

estimation, then the pilot-aircraft closed-loop

simulation can carry on. The algorithm

implementation of AOCM is shown in Figure 1.

3 Model Evaluation

In this section, the experimental results is

based on the analysis of the closed-loop

performance of a pilot in a tracking task

presented in Ref.[9] and it is used as a

benchmark to determine the merits of the

AOCM in frequency domain. Besides, to show

the pilot’s behavior of environment adaption,

some unknown disturbance is added into the

simulation, once the result shows the AOCM

tracking error is smaller than OCM, then the

characteristic of environment adaption is

confirmed.
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Fig. 1 Computational flow for AOCM

3.1 Frequency domain characters

comparison

In evaluation examples, the dynamics model

and measurement data is derived in flight test in

reference [9]. The flight test was conducted by a

five-member team from the USAF Test Pilot

School in Calspan Corporation, Buffalo, New

York from Oct 8 to Oct 11, 1993. The Calspan

Variable-Stability Lear II was used as the

research vehicle for the test. The basic aircraft is

shown in figure 2.

Fig. 2 Two Plan View of Lear 25B

The aircraft dynamics parameter is shown in

Table 1.

Tabal 1 Aircraft Parameters

Dynamics Parameters Values

Longitudinal Dynamics
of Baseline Aircraft

0.04

2
e

20( 1.8)

( 8.4 36)

ss e

s s s

θ
δ

−+
=

+ +

Actuator Dynamics

2

2 2

70

2(.7)(70) 70s s+ +

Stick Dynamics

2

2 2

16

2(.7)(16) 16s s+ +
Stick Force Gradient 6lb/in

Stick Breakout force 0.75lb

Stick Force per g 7lb/g

Control gearing 8deg/in

3.1.1. Flight test simulation

The pitch axis dynamics of the aircraft is
2 0.04

es

70 5.5( 1.8)
8

[.7,70] [.7,6]

ss e

s

θ
δ

−+
= ⋅ ⋅ (18)

Tracking task is used in the flight test. The

tracking task forcing function is modeled by a

second order Butterworth filter

2

2

6.25 3.54 1

c

w s s

θ
=

+ +
(19)

w is the zero mean Gaussian white noise. To

get the standard form which used in AOCM,

turn the pitch axis function and task forcing

function into state space form as shown below

es

es

θ θ θ θ

θ θ θ

δ
θ δ

= +
 = +

x A x B

C x D

ɺ

(20)

c c c c

c c c c

w

wθ
= +

 = +

x A x B

C x D

ɺ

(21)

, , ,θ θ θ θA B C D are pitch dynamic matrixes,

esδ is the stick deflection, θ is the attitude

response, , , ,c c c cA B C D are the command

dynamic matrixes, cθ is the pitch command. And

the tracking error is

esc c c ce wθ θ θθ θ δ= − = + − +C x D C x D (22)

Simultaneous Eq. (20) to Eq.(22), the

dynamics augmented is given by
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[ ]
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c c c c
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y w
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θ
θ θ

δ

δ

        
= + +        

        


  = + −   

x A 0 x 0B

x 0 A x B0

x
C C D D

x

ɺ

ɺ

(23)

By the calculation, c =D 0 , that Eq. (23) gets

the standard form which can be used in AOCM.
= + +


= +

x Ax Bδ Ew

y Cx Dδ

ɺ
(24)

Suppose that the pilot puts the same attention

into state observation and aircraft control, then

the Pilot-Aircraft system performance index is

{ }2 2 2
es esJ E e fδ δ∞= + + ɺ (25)

Thus, the weighting matrix 1, 1y uQ r= = , set

other pilot model input parameters as table 2.

Table 2 Pilot Model Input Parameters

Parameter Value

Effective time delay τ 0.25s

Neuromotor lag, τn 0.08s

Observation noise ratio,ρy 20dB

Motor noise ratio,ρu 25dB

Objective function observation weights, Qy 1

Objective function control weights, ru 1

Then, make pilot-aircraft close-loop

simulation as the flight test in AOCM procedure;

it results the pilot gain and other calculation

which are shown in table 3, the aircraft response

and stick deflection are shown in figure 3 and

figure 4. In figure 4, OCM results a bigger

tracking error than AOCM, this shows the merit

of AOCM.

Table 3 Pilot Model Calculation Results

Paramter
Pilot

model
Value

f AOCM 0.0113

pI AOCM
[0.2656,0.2649,0.2346,0.4243,0.7640,0.6130,2.040,-

0.0959,-0.1625,0.5853,80.073]

f OCM 0.0113

pI OCM
[0.2656,0.2649,0.2346,0.4243,0.7640,0.6130,2.040,-

0.0959,-0.1625,0.5853,80.073]

FFiltergain OCM

[-0.0601;0.3304;0.154;-.033;2.377;6.4969;0.6934;-

1.95×10-16;4.97×10-16;-1.8301×10-6;1.441×10-

7;1.214×10-5]

Vu OCM 6.077×10-5

Vy OCM 0.0014
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Fig. 3 Stick deflection comparison of AOCM and OCM
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Fig. 4 Pitch angle tracking of AOCM and OCM

3.1.2. Frequency domain character comparison

Utilized AOCM and OCM to simulate the

pilot control, we got series discrete points of

stick deflection esδ and pitch responseθ as shown

in figure 3 and figure 4. Make a frequency

transforming in matlab toolbox, we got the

frequency response shown in figure 5 and figure

6. The results can show AOCM fit the

measurements in main trends. As the flight test

is a kind of stochastic test affected by pilot and

atmosphere disturbance, so the simulation

frequency data and the measurement are not

fitted in every points.
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Fig. 5 Magnitude comparison of measurement in flight test

and simulations of AOCM and OCM
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Fig. 6 Phase comparison of measurement in flight test and

simulations of AOCM and OCM

In addition, in figure 5 and figure 6, AOCM

fits the measurements better than OCM

especially in phase comparison; this shows the

merit of AOCM. Based on the measurements

comparison, AOCM can reflect the pilot’s

behavior more practical.

3.2 Time domain characters comparison

In time domain evaluation, we set an

unknown time varying disturbance in tracking

task, once the OCM results a bigger tracking

error, then also shows the merits of AOCM. The

unknown disturbance is set as

0.1unknownw t w w= ⋅ ⋅ + (26)

Replace the white noise w with unknown

disturbance wunknown, after the pilot-aircraft

close-loop simulation; the results of the pitch

command and aircraft response in control of

AOCM and OCM are shown in figure 7. It is

obvious that AOCM gets the smaller tracking

error, it performs better than OCM, the merit of

AOCM is clear to see, and also proves that

AOCM can reflect pilot’s characteristic of

environment adaption.
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Fig.7 Tracking error comparison in unknown disturbance

4 Handling Qualities Prediction Based on

AOCM

4.1 Handling Qualities Prediction Flight Test

The flight test data from Ref.[9] are used To

evaluate the AOCM in handling qualities

prediction. The flight test aircraft pitch

dynamics is

D

2 2
es

4900 5.5( 1.8)
8

98 4900 ( 12 36)

ss
e

s s s s s

τθ
δ ξ

−+
= ⋅ ⋅

+ + + +
(27)

In this equation ξ is the short period damping,

Dτ is the time delay. Through Case1 to case4

four level of handling qualities prediction

subject formed with different values of

ξ and Dτ are shown in table 4.
Table 4 Case Definition Table

Case ξ Dτ
1 0.7 0.04

2 0.4 0.04

3 0.7 0.24

4 0.4 0.24

To make the handling qualities prediction in

tracking task, the pitch command forcing

function is modeled by Eq. (19). To avoid the

rating dispersion caused by pilot delay, the

flight data from pilot Darcy Granley was

especially extracted. Both the pilot information

and the flight test rating are shown in table 5. tp
is the pilot delay, PR is the pilot rating. In case 3,
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the pilot shows different ratings, which may

caused by unknown disturbance in airborne test.

Thus AOCM of this paper is specially fit to this

situation.
Table 5 Flight test information

case pilot tp Iteration (sortie) PR[9]

1 Darcy Granley 0.26 1(1) 2

1 Darcy Granley 0.26 3(5) 2

2 Darcy Granley 0.25 3(5) 2

3 Darcy Granley 0.26 3(5) 3

3 Darcy Granley 0.26 1(1) 4

4 Darcy Granley 0.31 1(1) 4

4.2 Pilot-aircraft close-loop simulation

Use the pilot input parameter of table 6 to

pilot-aircraft close-loop simulation, the four

cases tracking results are shown in figure 8.
Table 6 Pilot Model Input Parameters

parameter value

Neuromotor lag, τn 0.11s

Observation noise ratio, ρy -20dB

Motor noise ratio, ρu -25dB

Objective function observation weights, Qy 0.30

Objective function control weights, R 1

Noise statistic time th 5s

Forgeting factor b 0.995
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Fig. 8 Aircraft response of Lear 25B in HQ prediction

4.3 Handling Qualities Prediction

Each case was simulated one hundred times

and 150 seconds long each time, the statistic

rating parameters were calculated in table 7.
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Then, the handling qualities prediction can be

figured out by following equation

10 2 2
c w

5.5 3.7 log ( )
J

Rating
σ ω

= + ⋅ (28)

where J is the performance index, it denotes

the pilot physical workload and mental

workload, 2
cσ is the root mean square magnitude

of task error, 2
wω is the forcing function

bandwidth.
Table 7 Handling Qualities Prediction in AOCM

Case

Mean

value

of J

RMS

error of

J

2

cσ 2

wω
Mean

value

of

rating

RMS

of

rating

error

1 0.0235 2.73e-4 0.9646 0.16 2.1784 0.6268

2 0.0218 2.68e-4 0.9358 0.16 2.1340 0.7876

3 0.0821 0.0152 1.8856 0.16 2.8579 0.8372

4 0.1384 0.0572 2.9462 0.16 2.9571 0.6797
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Fig. 9 Rating Prediction in AOCM of Qy/R=0.3

In figure 9, it compares the flight test pilot

rating, AOCM rating and OCM rating. The

comparison shows that either the OCM or

AOCM does not fit the measurement precisely.

We suppose the reason is the weighting

matrixes are not chosen properly. Thus, the

weighting matrix effects are discussing below.

4.4 Discussion of weighting matrixes

In Ref.[10], the weighting matrixes Qy and R

are constant values, they are

1

1

([ , ])

([ , ])

y n

n

diag q q

diag r r

=


=

Q

R

⋯

⋯

(29)

The matrixes elements are corresponding to

the errors, are scaled to given approximate equal

weights to standard deviations, they are

calculated by

2

2

1

1

i

i

i y

i u

q

r

σ

σ

 =


=

(30)

But, in this article, we found that, C-H rating

is mainly corresponded to the value of Qy/R. In

table 8, we set different values but the same

ratio of Qy and R, and the rating prediction

shows that, once the same ratio of Qy and R are

resulted, the C-H rating is approximately the

same. It proves the assumption of Qy/R’s

relationship and C-H rating.
Table 8 Relationship analysis of Qy/R and C-H rating

Qy/R
Mean

value of
Rating

RMS of
rating
error

Qy R
Mean

value of
Rating

RMS of
rating
error

0.1 1.4887 0.9107 1 10 1.5254 1.0779

0.1 1.4887 0.9107 0.2 2 1.4665 1.0047

0.2 3.1963 0.9275 2 10 3.2916 0.9345

0.2 3.1963 0.9275 1 5 3.2307 1.0286

0.3 2.6282 0.9976 3 10 2.5300 1.0391

0.3 2.6282 0.9976 30 100 2.4624 1.0232

Eventually, the relationship of Qy/R and C-H

rating is analyzed. In figure 10, HQ prediction

by AOCM with changing value of Qy/R shows

that, once the value of Qy/R increases, the C-H

rating will decrease. It indicates that if the pilot

pays more attention in flight observation while

he keeps the same attention in controlling, he

will make lower rating. In the four cases, if the

ratio of Qy/R are same as the value in table 9,

AOCM makes the most precisely prediction. It

may denote that while the aircraft dynamics

character changes, the pilot will allocate his

attention in different way. From the cases

studied in this article, while the aircraft

dynamics degrades, the pilot will pay more

attention in flight observation. Thus, the heavier

mental workload will degrade the pilot rating,

however, it is hard to measure the attention

allocation in observation and controlling [11],

thus this assumption is still need to be testified

and deeply researched.
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Fig. 10 Influence of the index weight ratio in rating prediction

Table 9 HQ Prediction in AOCM with modified weightings

Case Qy/R PR[9] Mean value of AOCM

rating

RMS of rating

error

1 0.25 2 2.0567 0.7115

2 0.28 2 2.0020 0.7135

3 0.46 3-4 3.5697 0.8052

4 0.80 4 4.0172 0.6094

The HQ prediction is recalculated with

modified weighting matrixes; the result is

shown in table 9 and Figure11. It shows that,

with the modified weighting matrixes, AOCM

generates more accurate HQ rating prediction

than OCM; it is more identical to the flight test

pilot rating than before.
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Fig. 11 HQ prediction with modified weighting matrixes

5 Conclusion

1) The traditional optimal control pilot model

(OCM) is based on Kalman filter which cannot

reveal the pilot’s behavior in time varying

disturbance of unknown environment. To

overcome this omissions of OCM, a Modified

Optimal Control Pilot Model based on Adaptive

State Estimate (AOCM) is developed.

2) Utilized the pilot models in pilot-aircraft

closed-loop simulation to reproduce the flight

test. In frequency domain, the AOCM is

testified by magnitude and phase comparison. In

time domain, some unknown disturbance was

added into the simulation, the attitude tracking

results show that AOCM performs better than

OCM, both the evaluations in frequency domain

and time domain proves the merit of AOCM,

and reflect the pilot’s characteristic of

environment adaption.

3) AOCM and OCM are utilized in HQ

prediction, in all the four HQ test cases, with

modified weighting matrixes, AOCM has a

more accurate HQ rating prediction than OCM,

it is more identical to the flight test pilot rating.

4) In OCM, the weighting matrixes Qy and R

are constant values. The conclusion of this

article shows that the PR prediction is critical

corresponded to the ratio of Qy/R. An accurate

PR prediction is based on the precisely Qy/R

ratio chosen, and Qy/R ratio is corresponded to

the aircraft dynamics, as the aircraft dynamics

degrades the value of Qy/R increases. It denotes

that if the pilot keeps the same attention in

controlling then he will pay more attention in

flight observation, while the aircraft dynamics

degrades. Thus, the heavier mental workload

will degrades the pilot’s rating. Therefore, the

weighting matrixes choosing principle and the

relationship between aircraft dynamics and the

weighting matrixes should be researched

particularly.
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