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Abstract  

This study investigates the effects of body 

aerodynamics on the longitudinal dynamic 

stability characteristics of insect flight. The 

aerodynamic model, which comprises the panel 

method and the extended unsteady vortex-lattice 

method, is used to compute the aerodynamic 

forces acting on the body and the wings, 

respectively. The nonlinear equations of motion 

of the insect are solved by a multibody dynamics 

code. The trim conditions are found by the trim 

search algorithm. The dynamic modal 

structures of the insect motion, including 

eigenvectors and eigenvalues are obtained to 

indicate the effects of the body aerodynamics on 

the dynamic stability. The results of the study 

show that the effects of the body aerodynamics 

on the dynamic stability and the trim conditions 

of insect flight tend to be more significant when 

the flight speed increases. 

1  Introduction  

Insect flight has drawn researchers’ interests for 

the past several decades. Learning the way 

insects fly is beneficial for the future designs of 

micro air vehicles. Unlike other types of 

aircraft, insects use only a pair or two pairs of 

wings to control their flight. Because of this 

flight characteristic, researchers have made 

many attempts to understand the dynamic 

stability of insect flight [1-7]. However, in these 

studies, the contribution of the body 

aerodynamics has been usually neglected. 

Generally, this assumption is adequate to 

hovering and low-speed flight. Nevertheless, in 

fast flight, the contribution of body aerodynamic 

may not be small; hence, this force component 

needs to be included to ensure the accuracy of 

the results. 

The purpose of this study is to analyze the 

effects of the body aerodynamics on the 

dynamic flight stability of a hawkmoth 

Manduca sexta model with respect to various 

flight speeds. The aerodynamic model used in 

this study is the combination of the panel 

method (PM) and the extended unsteady vortex-

lattice method (UVLM). Both of these methods 

are based on the potential flow theory. The PM 

is applied to compute the aerodynamic force on 

the body; while the extended UVLM is used for 

the aerodynamics of the flapping wings. The 

extended UVLM proposed by Nguyen et al. [8] 

can include the effect of the leading-edge 

vortices appearing on insect wings, and 

overcome the instability due to wing-wake 

interaction. To solve the nonlinear equations of 

motion, the multibody dynamics code, which is 

available in the MSC. Adams software, is 

employed. The trimmed flight states are 

obtained by the trim search algorithm [7]. The 

eigenvalues and eigenvectors of the linearized 

dynamic system are computed and analyzed to 

indicate the effects of the body aerodynamics on 

the longitudinal dynamic characteristics of 

insect flight. 

 
 

Fig. 1. Insect model 
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2  Methodology  

2.1 Insect Model  

The insect model used in this study features the 

hawkmoth Manduca sexta with mass properties 

and dimensions similar to those from [6]. The 

insect model consists of a body and two wings 

(Fig. 1). In the trimmed flight, the body-fixed 

coordinate system [xb yb zb] and the ground-

fixed coordinate system [xG yG zG] have the 

same orientation as shown in Fig. 1. The stroke 

plane angle and body angle are denoted by β 

and χ, respectively. 

The wing kinematics parameters and the 

values of β and χ are based on the measurement 

data of the real hawkmoth Manduca sexta [9]. 

2.2 Aerodynamic Model 

As mentioned in the introduction section, the 

PM and extended UVLM were used to compute 

the aerodynamic forces acting on the body and 

the wings, respectively. This section will 

present the descriptions of these methods. 

2.2.1 Panel Method 

The PM used in this study is similar to that 

presented by Katz and Plotkin [10]. The PM is 

based on the potential flow theory, which 

assumes that 1) the flow is attached, 2) viscous 

effects are insignificant and ignored, 3) the flow 

is irrotational, which means there is no vorticity 

everywhere in the computational domain except 

for solid-body surfaces and wake sheets. 

According to Dudley [11], hawkmoth Manduca 

sexta is amongst insect species that have the 

most streamlined bodies; thus, it is possible to 

apply the PM by assuming that there are no 

vortices shed from the body. 

Let Ф the velocity potential in the ground-

fixed coordinate system, then the boundary 

conditions of the problem are given as 

lim 0


 
r

 (1) 

  0b   v n  (2) 

i const   (3) 

where, r, vb, n, and Фi are the position vector, 

the local velocity of the body, the local normal 

vector of the body surface, and the velocity 

potential inside the body, respectively. 

Equations (1-3) are corresponding to the far-

field boundary condition, the Neumann 

boundary condition, and the Dirichlet boundary 

condition, respectively. The far-filed boundary 

condition assures the zero flow velocities in the 

far field. The Neumann boundary condition 

assures that the local flow velocity relative to 

the body surface is parallel to the body surface, 

which means the flow does not penetrate into 

the body. The Dirichlet boundary condition 

guarantees the constant velocity potential inside 

the body. 

According to the potential flow theory, for 

low-speed flows, the governing equation of the 

aerodynamic problem can be reduced to the 

Laplace equation of the velocity potential Ф 

[10]: 

0   (4) 

Applying the third Green’s identity, the 

solution of Eq. (4) at an arbitrary point P in the 

computational domain could be given as [10] 

 
1 1 1

4

1 1

4

b

w

S

S

P dS

dS

  





    
       

    

 
  

 





n
r r

n
r

 

(5) 

where, Sb and Sw are the body and wake sheet 

surfaces, respectively. σ and μ are called source 

and doublet elements. The expression of σ is 

i

n n





 
 

 (6) 

The doublet elements μ on the body surface 

are given as 

i     (7) 

However, on the wake sheets, the doublet 

elements are 

l u     (8) 

Here, Фl and Фu are the velocity potentials on 

the lower and upper surfaces of the wake sheets, 

respectively. 
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From Eq. (3), it follows that 0i

n





. 

Therefore, in light of Eqs. (2) and (6), the 

source elements σ are determined as 

b  v n  (9) 

Now, the body is divided into triangular 

and quadrilateral panels. On each panel we 

place a source element σ and a doublet element 

μ. The values of the source elements are given 

by Eq. (9). In order to determine the values of 

the doublet elements, we form a system of 

algebraic equations based on the Dirichlet 

boundary condition [Eq. (3)]. It is possible to set 

the constant in Eq. (3) to be zero. For bodies 

with sharp trailing edges, the values of doublet 

elements on wake sheets could be determined 

by the Kutta condition, which requires all 

vortices along sharp trailing edges to leave these 

edges and form wakes. Wakes are assumed to 

transport with local flow velocities. 

In this study, the vortex-core growth 

model, which was introduced by Nguyen et al. 

[8], is employed to overcome body-wake and 

wing-wake interactions. According to Nguyen 

et al., wakes consisting of doublet elements 

could be converted to the system of vortex lines 

whose core radius increases with time. This 

technique helps to avoid the singularities due to 

wing-wake and body-wake interactions. 

However, it may cause some difficulties while 

computing the velocity potential induced by 

wakes. To solve this problem, we can determine 

the velocity potential due to wakes by the 

integration of the wake-induced velocity along 

an arbitrary integral path 1-2: 
2

1

wake waked   v s  
(10) 

where, vwake is the wake-induced velocity. In 

this integral, point 1 is assumed to be in the far-

field, and point 2 is chosen at the position, 

where we need to determine the velocity 

potential. 

The pressure on the body surface is 

computed by the modified Bernoulli equation: 
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where, ρ is the air density; pref is the far-field 

reference pressure; vref  is the reference velocity, 

which is equal to the local velocity of the body. 

The aerodynamic force on a panel is computed 

as 

 refp p S   F n  (12) 

where, ΔS is the area of the panel. 

2.2.2 Extended Unsteady Vortex-Lattice Method 

The PM presented in section 3.3.1 may be 

applied to bluff bodies. However, for the thin 

wings of the insect model, we need to use the 

unsteady vortex-lattice method (UVLM). In 

fact, the UVLM is a reduced version of the PM. 

For thin objects like insect wings, the lower and 

upper surfaces coincide with each other, and 

they have the opposite normal vectors. 

Therefore, the source elements on the lower and 

upper surfaces computed by Eq. (6) have the 

opposite signs; thus, they will cancel out each 

other. Hence, for the UVLM, source elements 

are unnecessary. 

Similarly, the upper and lower doublet 

elements are combined to form a unique one. 

Due to the equivalence between a doublet 

element and a vortex ring [10], it is possible to 

replace the combined doublet elements by the 

system of vortex rings. The circulation values of 

the vortex rings are found by solving the system 

of algebraic equations that are formed by the 

no-penetration boundary condition on the 

aerodynamic panels. 

The UVLM in this study is extended by 

including the leading-edge suction analogy 

model, which was developed by Nguyen et al. 

[8] to consider the effects of the leading-edge 

vortices. We assume that the leading-edge 

vortices on insect wings have a spiral form, 

similar to that on a delta wing. Therefore, these 

vortices provide an extra normal force 

component in a similar way to that of the 

suction force. More details of the extended 

UVLM can be found in [8]. 
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2.3 Equations of Motion and Trim Search 

Algorithm 

2.3.1 Nonlinear Equations of Motion 

The equations of flapping-wing insect motion 

are highly nonlinear, and they can be expressed 

in the following form [1]: 

1 1

( )b A b b cg b bd b cgm m   

 

F g V ω V

a b
 

(13) 

 2

2 2

b A b bd b bd b bd

b bd b bd

  

  

M ω I c ω

I ω a b
 

(14) 

Here, b AF  and b AM  are the aerodynamic force 

and moment, respectively; m is the mass of the 

model; b g  is the gravitational acceleration; b cgV  

and b bdω  are the velocity of the body center and 

the angular velocity of the body, respectively; 

b bdI  is the inertial moment tensor of the body. 

According to [1], a1 represents the contributions 

of the weight of the wings and the inertial force 

of the wings due to the body motion; a2 

represents the contributions of the moments 

produced by the weight of the wings and by the 

inertial forces of the wings due to the body 

motion; b1 and b2 are related to the inertial 

forces and moments of the wings due to the 

flapping motion. The subscript b refers to the 

body-fixed coordinate system. 

In this study, the nonlinear equations of 

motion in Eqs. (13) and (14) are solved using 

the multibody dynamics solver of the MSC. 

Adams software. The aerodynamic force and 

moment b AF  and b AM  are computed by the 

aerodynamic model presented in section 2.2, 

and exported to the MSC. Adams environment. 

More details of this multibody dynamics solver 

are given in [6,7]. 

2.3.2 Trim Search Algorithm 

Before studying the dynamic flight stability of 

the insect model, it is important to find the trim 

conditions. In this study, the trim conditions are 

found by the gradient-based trim search 

algorithm introduced by Kim et al. [7]. Three 

parameters, including the flapping frequency f, 

the mean values of the sweep angle   and the 

rotation angle  , are adjusted to obtain the trim 

conditions. The sweep angle ϕ and the rotation 

angle α are amongst the set of the Euler angles, 

which were defined in [8], to determine the 

position of the wings. 

According to this algorithm, the trim 

search program has to run many iterations until 

the rigorous criteria of the trim conditions are 

satisfied. After each iteration, the initial velocity 

of the model, and an external offset force 

applying to the model need to be updated to 

balance the model. The offset force is then 

replaced by the change in the wing kinematics 

through the adjustments in the three parameters 

f,  , and  . These adjustments are computed 

through a matrix consisting of the derivatives of 

the aerodynamic force and moment with respect 

to the wing kinematics parameters. The detailed 

descriptions of the trim search algorithm may be 

found in [7]. 

2.3.3 Linearized Equations of Motion 

If we assume that the flapping frequency of the 

wings is much higher than the natural 

frequencies of the body motion, the mass of the 

wings is much smaller than the body mass, and 

the upstroke and downstroke motions of the 

wings are symmetric, the wingbeat-cycle 

average technique may be used to reform Eqs. 

(13) and (14):  

( )b A b b cg b bd b cgm m   F g V ω V  (15) 

( )b A b bd b bd b bd b bd b bd  M ω I ω I ω  (16) 

Here, the over-bar refers to the wingbeat-cycle 

average values. 

If the insect model is slightly deflected 

from its trimmed state, the equations of motion 

could be linearized. In the present study, the 

nondimensional quantities are considered: 
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where, U is the mean velocity of the wing; S is 

the total area of the two wings; T is the flapping 

period; c  is the mean wing chord; X and Z are 

the aerodynamic forces in the xb and zb 

directions, respectively; M is the pitch moment; 

u and w are the velocities in the xb and zb 

directions, respectively; q is the pitch rate pf the 

body. 

The linearized equations of motion could 

be given as [7] 

u u

w w

q q
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where,   is the pitch angle and 
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A  

(19) 

Here, ue is the flight speed. 

3  Results and Discussion  

3.1 Effects of the Body Aerodynamics on the 

Trim Conditions 

The trim conditions of the insect model at 

various flight speeds ranging from 0.0 m/s to 

4.0 m/s are derived using the trim search 

algorithm. The values of the three parameters f, 

 , and   in the trim conditions with respect to 

the models with and without the contribution of 

the body aerodynamics are presented in Table 1 

against the flight speed.  

In Table 1, the values in parentheses are 

corresponding to the model considering the 

contribution of the body aerodynamics. As 

revealed by Table 1, the difference in the mean 

sweep angle   is the most significant. 

According to Kim and Han [12],   and   are 

effective control inputs to the pitch moment and 

the drag force, respectively. The flapping 

frequency f is believed to be the most effective 

to the lift force. The insect body is streamlined; 

therefore, its lift and drag forces should be small 

and have little effects on the overall 

aerodynamic loads of the model. Therefore, the 

insect does not need to significantly adjust its 

frequency f and rotation angle α. However, the 

pitch moment of the streamlined body is not 

small at high-speed flight, and this relatively 

large pitch moment resulted in a considerable 

adjustment of the sweep angle ϕ. As seen in 

Table 1, the change of   increases from -0.19 

deg in hovering to 3.43 deg at 4.0 m/s. 

Therefore, we can conclude that the effects of 

the body aerodynamics on the trim conditions 

are negligible in hovering and low-speed flight, 

and they tend to increase with the flight speed 

and become considerable in fast flight. 

 

Table1. Trimmed flight parameters 
ue, 

m/s 

f, Hz  ¸ deg  ¸ deg 

0.0 27.11 (27.16) -7.22 (-7.41) 93.14 (93.04) 

1.0 25.63 (25.67) -5.24 (-4.91) 87.30 (87.20) 

2.0 23.43 (23.39) -11.69 (-10.90) 79.92 (79.78) 

3.0 26.92 (26.85) -20.24 (-18.75) 68.32 (68.08) 

4.0 24.70 (24.68) -19.89 (-16.46) 69.06 (68.60) 

 

 
Fig. 2. Pressure differences and wake patterns at 

4.0 m/s 
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Figure 2 illustrates the pressure differences 

and the wake patterns of the aerodynamic 

models with and without the body aerodynamics 

in trimmed flight at 4.0 m/s. In this figure, the 

color contours on the wings represents the 

pressure differences (in Pascal) between the 

lower and upper surfaces; whereas, the color 

contour on the body represents the differences 

between the far-field pressure and the pressure 

on the body surface [Eq. (11)]. 

3.1 Effects of the Body Aerodynamics on the 

Dynamic Stability Characteristics 

The dynamic stability characteristics of insect 

flight could be studied through its eigenvalues 

and eigenvectors of the linearized dynamic 

system. Stability derivatives are computed and 

substituted into the expression of A+ in Eq. (19). 

The eigenvalues and eigenvectors of A+ are then 

derived. Figure 3 shows the eigenvalues of the 

dynamic systems with and without the body 

aerodynamics. 

In Fig. 3, the blues and red markers 

represent the solutions corresponding to the 

models without and with the body 

aerodynamics, respectively. The green arrows 

show the movements of the eigenvalues when 

the body aerodynamics is included. It is seen 

that these movements become more evident at 

higher flight speeds. In the current flight speed 

range from 0.0 m/s to 4.0 m/s, the modal 

structure always consists of three modes, 

including the stable fast subsidence mode, the 

stable slow subsidence mode, and the unstable 

oscillatory mode. It is also indicated that the 

stable fast subsidence mode becomes more 

stable; while the unstable oscillatory mode 

becomes more unstable when the body 

aerodynamics is included. The stable slow 

subsidence mode does not seem to be affected 

so much by the body aerodynamics.  
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Fig. 3. Eigenvalues at various flight speeds 

Table 2. Eigenvectors at 4.0 m/s 

States Mode 1 Mode 2 Mode 3 

u


 
-0.2822 ± 0.4488i         

(-0.2995 ± 0.3954i) 

0.7990 

(0.5129) 

-0.3298  

(0.3659) 

w


 
1.0976 ± 0.4784i        

(1.1155 ± 0.4201i) 

4.1556 

(3.1229) 

-6.6332  

(-4.4910) 

q


 
0.1168 ± 0.3519i    

(0.1622 ± 0.3509i) 

-0.4491  

(-0.5823) 

-0.1983  

(-0.1722) 

  
1.0000  

(1.0000) 

1.0000 

(1.0000) 

1.0000 

(1.0000) 

 

Corresponding to the changes in the 

eigenvalues, the eigenvectors of the modal 

structure are also affected by the inclusion of 

the body aerodynamics. The changes of the 

eigenvectors at 4.0 m/s are shown in Table 2. In 

this table, modes 1, 2, and 3 are corresponding 

to the stable fast subsidence mode, the stable 

slow subsidence mode, and the unstable 

oscillatory mode, respectively. The values in 

parentheses are corresponding to the model with 

the body aerodynamics. 

In general, the effects of the body 

aerodynamics on the longitudinal dynamic 

stability of the insect model increase with the 

flight speed, and they are considerable only at 

high-speed flight. 

4  Conclusions  

This paper has provided the numerical results 

and discussion regarding the effects of the body 

aerodynamics on the longitudinal dynamic flight 

stability of an insect model. To simulate insect 

flight, the aerodynamic model, which comprises 

the panel method and the extended unsteady 

vortex-lattice method, was coupled with the 

multibody dynamics code running in the MSC. 

Adams simulation environment. The trim 

conditions were derived by the trim search 

algorithm. It was shown that the effects of the 

body aerodynamics on the trim conditions, and 

on the dynamic stability characteristics are 

negligible in hovering and low-speed flight. 

However, these effects become more important 

when the flight speed increases. Regarding the 

trim conditions, the sweep angle is affected 

most when the body aerodynamics is considered 

in the computation; whereas other parameters of 

the wing kinematics are not affected 

significantly. For the modal structure of the 
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dynamic system, it was observed that the 

inclusion of the body aerodynamics results in 

the more stable fast subsidence mode; while the 

unstable oscillatory mode becomes more 

unstable. On the whole, the contribution of the 

body aerodynamics could be ignored when we 

study hovering and low-speed flight; however, 

regarding fast flight, it is important to consider 

this contribution. 
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