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Abstract  

Dual time stepping (DTS) time integration 

techniques for Discontinuous Galerkin (DG) 

method are presented for one-dimensional 

Burgers equation and for full three-dimensional 

Navier–Stokes equation system. Unfiltered and 

spatially filtered equations with Smagorinsky 

subgrid scale model are considered which are 

compared in terms of energy spectrum 

resolution capability. Presented time integration 

techniques are applicable to unsteady large 

eddy simulation problems and are designed to 

be unconditionally stable in viscous regions of 

the flow. Computational efficiency of different 

(1–4) temporal order DTS techniques is 

compared to the efficiency of the explicit DG 

scheme in two test cases. All computations are 

performed with constant global physical time 

step. High order spatial and temporal 

discretizations as well as implicit first order 

pseudo-time scheme are described in details. 

1  Overview of equations and their 

approximation  

Both one-dimensional Burgers equation and 

three-dimensional Navier–Stokes equation 

system one can be represented in the following 

form: 
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U is vector of conservative variables, G 

consists of spatial U  derivatives (gradients), 

and F are the fluxes of U. It is convenient to 

represent fluxes as a sum of convection and 

diffusion contributions: diffconv
FFF  . 

Diffusive fluxes consist of molecular and 

subgrid parts. 

1.1 One-dimensional Burgers equation 

This equation can be considered as a 

simplification of Navier–Stokes equation 

system. There is one variable u , so uU . 

Convective flux is actually a scalar, it is 

nonlinear and defined as 2/F 2conv u . 

Diffusive flux is 
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When no spatial filtering is applied, 0SC  

(hereinafter, this version of equation is called 

“ILES”, which refers to Implicit LES [1]). With 

spatial filtering, we use 2.0SC  by default 

which corresponds to Smagorinsky subgrid 

scale model for Burgers equation (with subgrid 

viscosity coefficient SGS  defined as 

xuh  /2
). We designate the filtered version of 

equation as “LES”. Here h  is cell size. 

To sum up, we consider one-dimensional 

Burgers equation of the form 
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1.2 Three-dimensional Navier–Stokes 

equation system 

In case of Navier–Stokes equation system, U  is 

 ТEwvu  ;;;; . 

Vectors of convective fluxes along axes: 
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Vectors of diffusive fluxes along axis i: 
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Closing relations for Navier–Stokes 

equation system are state equation RTp  , 

expressions for total energy and entalphy of gas 

mass unit 
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expression for dynamic coefficient of molecular 

viscosity 
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expressions for tensor components of 

momentum diffusive and subgrid fluxes 

,div
3

2
2)( 








 ijijSGSij S  V

























i

j

j

i
ij

x

u

x

u
S

2

1
,
 

expressions for vector components of heat 

energy diffusive fluxes 
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subgrid scale viscosity coefficient formula [2] 

  ijijSSGS SSC 2
2

  , 3
 V , 

where V  is cell volume. 

1.3 DG method equation system 

DG solution in each point is represented as a 

linear combination of local polynomial basis 

functions )(xj : 
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Equation system is multiplied by basis 

function )(xi  and integrated over the cell 

volume Ω. After integration by parts and 

applying Gauss–Ostrogradsky formula, the 

following equation is obtained: 
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Dual time stepping time discretization [3] 

requires finite difference approximation of 

unsteady term which is   
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or in general form, 
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Substituting this formula into (1) and 

introducing pseudo-time  , we obtain 
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At the initial pseudo-time moment 
)0(  , we take n)0( U)U(  , and solve the 

equation system (2) till the moment when a 

stationary state in pseudo-time is reached, i.e. 

until 0U/   . At that moment, the first term 

in (2) disappears, and (2) coincides with (1) 

(with )U(  replaced by 1nU  ). If the stationary 

state is unique, it will coincide with 1nU  , i.e. 

we get the solution of the system (1) at 

unknown physical time layer 1nt . A simple 

choice for pseudo-time marching is one-step 

backward Euler implicit scheme. 

Other features of the particular DG 

implementation are: othonormal polynomial 

basis function set [4], Riemann solver by Roe, 

BR2 viscous terms approximation [5], Gauss-

Seidel linear equation system solver [6]. The 

details of our earlier DG implementation can be 

found in [7]. 

2 One-dimensional Burgers turbulence test 

2.1 Computational domain, initial and 

boundary conditions 

A one-dimensional computational domain 

 LL,  with periodic boundary conditions is 

used in this test. Initially, a random spatially 

uncorrelated field )0,(xu  is generated with 

Gaussian distribution. 

The distribution is centered: 0)0,( xu  

and has average amplitude 10)0,(
2/1

2 xu . It 

is allowed to evolve in a highly resolved 

numerical computation on a dense mesh using 

high order explicit DG scheme up to the 

moment when 1),(
2/1

2 txu . At this moment, 

a typical Burgers turbulence forms (Fig. 1) with 

clear 2~)( E  energy spectrum region 

(Fig. 2). Here 
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In this computation, low viscosity 

coefficient value 410  is used. Resulting 

field is considered initial for further 

computations. 

 
Fig. 1. Burgers turbulence as a result of initial 

random field evolution in time 

 
Fig. 2. Energy spectra of initial uncorrelated 

field (blue) and Burgers turbulence (red) 
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2.2 Computational meshes, models, and 

numerical scheme settings 

Three types of computations were conducted, 

representing “Direct numerical simulation” 

(“DNS”), “Implicit large eddy simulation” 

(“ILES”), and “Large eddy simulation” 

(“LES”). Viscosity coefficient   was taken to 

be 310 . 

In all computations, DG method was used 

with quadrature rules that provide exact 

integrals for the polynomials used, i.e. 1K  

Gauss points inside each 1D element for K
th

 

order basis functions. 

“DNS” computations were performed on a 

mesh with 2048 cells with DG 3K  and 

6K  using global time stepping ( 210CFL  , 

where hut }max{CFL  ). The differences 

between 3K  and 6K  were found to be 

negligible (energy spectra differ at 

wavenumbers 1200 ) which indicates 

polynomial convergence of the solution. 

“ILES” computations were performed on a 

mesh with 128 cells with DG 1K  (256 

DOFs). Both explicit global time stepping and 

1–4 order DTS (hereinafter denoted as DTS1, 

DTS2, DTS3, and DTS4) with physical CFL = 

2, 1, 0.5, 0.1 were used. 

“LES” computations were performed on a 

mesh with 64 cells with DG 3K  (the same 

NDOFs as in “ILES”). As with “ILES”, explicit 

global time stepping and DTS1–DTS4 were 

used. 

2.3 Results processing 

All computations were run until turbulent 

kinetic energy 



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L

L

dx
u

k
2

2
 

 

equals 200k , where 0k  is its initial value. 

Turbulent kinetic energy is integrated over the 

whole computational region using the same 

Gauss quadrature rules as in the rest of the 

numerical scheme. )(tk  dependence on an 

interval from 20k  to 200k  is extracted and 

compared between computations. 

Energy spectrum )(E   at the final 

moment of computation is determined and 

compared; spectrum is obtained using 

wavenumbers 
L

N i




2
 , where ...,,4,2iN  

cellsN  ( cellsN  is the number of cells in the 

computational mesh). Integration is done over 

all cells; each cell is divided uniformly by 10 

points with equal weights. 

2.4 Reference solution  

0/)( ktk  plots obtained in “DNS” computations 

are shown on Fig. 3. Red dashed line 

corresponds to 3K , blue dashed line 

corresponds to 6K . Evidently, lines coincide. 

)(E  plot at the final moment of time is shown 

on Fig. 4. A clear 2  spectrum is obtained for 

100  followed by viscous damping region. 

2.5 Solutions comparison in terms of 

accuracy  

At first, solution accuracy was compared in 

explicit global time stepping computations with 
310CFL   to eliminate influence of temporal 

discretization on the results. In Fig. 5 and 6, 

0/)( ktk  and )(E  plots are compared between 

“DNS”, “ILES”, and “LES”. 

 

 
Fig. 3. Turbulent kinetic energy decay k(t)/k0 in 

reference computation. Red dashed line – K = 3, 

blue dashed line – K = 6 
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Fig. 4. Energy spectra E(κ) in reference 

computation. Lines as in Fig. 3. 

 
Fig. 5. Turbulent kinetic energy decay k(t)/k0. 

Lines: blue – “DNS”, red – “ILES” K = 1, light-

blue – “LES” K = 3 

 
Fig. 6. Energy spectra E(κ). Lines as in Fig. 5. 

All models give approximately the same 

)(tk  dependence which indicates that energy is 

transferred from large scales to small. In other 

words, small scale motions do not influence the 

dynamics of large scale energy containing 

motions. This justifies the use of ILES 

technique: depending on the numerical scheme, 

small scale motions may be simulated 

incorrectly, but this does not spoil large scale 

turbulence which is of engineering importance. 

This result is true at least for Burgers equation. 

Concerning the spectrum, in 3K  “LES” 

solution with Smagorinsky subscale model and 

2.0SC , the spectrum is highly damped in 

20  region. In 1K  “ILES” solution, the 
2  spectrum is resolved up to 50 . This 

result suggests trying Smagorinsky subgrid 

model with lower SC  or even 3K  “ILES” in 

the future. 

After that, DTS influence was studied in a 

series of DTS1–DTS4 computations. The 

resulting 0/)( ktk  and )(E  plots for initial 

CFL = 2 are shown in Fig. 7–10. During the 

computation, CFL drops approximately 5 times 

relative to its initial value. 

 

 
Fig. 7. Turbulent kinetic energy decay k(t)/k0 in 

“ILES” K = 1, initial CFL = 2. Lines: blue – 

explicit time stepping, light-blue – DTS1, 

magenta – DTS2, green – DTS3, red – DTS4 
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Fig. 8. Energy spectra E(κ) in “ILES” K = 1, 

initial CFL = 2. Lines as in Fig. 7 

 
Fig. 9. Turbulent kinetic energy decay k(t)/k0 in 

“LES” K = 3, initial CFL = 2. Lines as in Fig. 7 

 
Fig. 10. Energy spectra E(κ) in “LES” K = 3, 

initial CFL = 2. Lines as in Fig. 7. 

All DTS schemes were found to be 

conditionally stable allowing time marching 

with CFL up to 1 – 4. The problem is assumed 

to be with DTS approximation of nonlinear 

convective fluxes. It looks like it is linearization 

procedure which makes conventional implicit 

schemes unconditionally stable. This finding 

makes the possibility of high CFL DTS 

computations questionable on highly stretched 

(e.g. boundary layer) meshes at least in low 

viscosity regions. 

Higher order DTS schemes (DTS3, DTS4) 

are quite non-monotone and have lower limiting 

CFL value than lower order DTS schemes 

(DTS1, DTS2); this behavior is seen in the 

DTS4 plots obtained with initial CFL = 2: both 

0/)( ktk  and )(E  are distorted relative to the 

other solutions. 

With lower initial CFL = 0.5, the 

difference between different DTS schemes 

disappears; all the solutions are close to global 

time stepping solution. 

To sum up, in the current test subgrid 

model only damps small scale motions and 

makes the solution smoother and simpler to 

converge; Smagorinsky model efficiently 

eliminates DG scheme non-monotonicity near 

the discontinuities and is recommended for use 

but with substantially lower SC  value. 

2.6 Solutions comparison in terms of 

efficiency  

No evident dependency of run time on DTS 

order was found in computations. Run times 

scale approximately inversely with CFL, see 

Fig. 11. 3K  “LES” computation takes 1.34–

1.80x more time than 1K  “ILES” on the 

same NDOFs using dual time stepping and 

1.83–1.89x more time than 1K  “ILES” using 

explicit time stepping. Most importantly, 

explicit scheme is 9x faster than DTS schemes 

despite 67x lower time step. Therefore, 

according to 1D Burgers equation test, it is 

recommended to use explicit schemes for 

unsteady computations, at least when a mesh is 

close to uniform. 
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Fig. 11. Performance comparison: run time vs. 

time step, 1D Burgers equation test case 

3 Three-dimensional isotropic turbulence test 

3.1 Computational domain, initial and 

boundary conditions  

A three-dimensional computational domain 

      2,02,02,0   m with periodic 

boundary conditions is used in this test. Initial 

condition is a random velocity field )0,(xiu  in 

the form of 
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The value iû  is randomly generated with  

the following properties: 
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Here ijb  stands for correlation tensor of 

isotropic turbulence, k  is a volume of cell in 

phase space. The energy spectrum is chosen to 

be consistent with equilibrium state 
3/5~)(  CE . The practical coefficient C in 

energy formula is chosen to achieve field with 

turbulence intensity of 1 m/s. The static pressure 

field is set constant over the domain. Viscosity 

coefficient value is determined according to 

Sutherland’s formula. 

3.2 Computational meshes, models, and 

numerical scheme settings  

Computations with Implicit large eddy 

simulation (ILES) and Large eddy simulation 

(LES) have been conducted. 

ILES computations use mesh with 

555555  cells and DG 1K  ( 5107.6   

DOFs). Time-stepping strategies tested are 1
st
  

order explicit global time stepping (RK4, a 4 

step 4
th

 order Runge-Kutta scheme) and 2
nd

 

order DTS1–DTS4. 

LES computations use mesh with 

323232  cells and DG 3K  ( 5106.6   

DOFs). The same time-stepping strategies 

tested: explicit global time stepping (RK4) and 

DTS1–DTS4. The subscale model is 

Smagorinsky with 2.0SC . 

3.3 Results processing  

Computations are performed until the turbulent 

kinetic energy value drops 10 times to its initial 

value 0k . A typical velocity field is shown on 

Fig. 12. 

 

 
Fig. 12. A typical velocity field in three-

dimensional isotropic turbulence test case 

 

Turbulent kinetic energy is integrated over 

the whole computational domain using the same 

Gauss quadrature rules as in the rest of the 

numerical scheme. The dependence )(tk  on an 

interval from 20k  to 100k  is extracted and 

compared between computations. 

Energy spectrum )(E  at the final moment 

of computation is determined and compared. 
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Integration is done over all cells utilizing 

discrete 3D Fourier transformation: 

rkrruku di )(exp)(
2

1
=)(ˆ

0

3


.
 

 

The components of phase space vectors k  

turn out to be integer for the chosen geometric 

domain. Then the energy spectrum is calculated 

as 

.)(ˆ)(ˆ0.5
1

=)( *
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KKuKu
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dE 
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3.4 Solutions comparison in terms of 

accuracy  

The accuracy of computations is controlled in 

two stages. The first is held during the 

computation and second is final control. In both 

stages the DTS solutions are compared to the 

references, which are explicit global time-step 

RK4. These references give us the dependency 

of turbulence kinetic energy on time )(tk  and 

turbulence energy spectrum )(E  at the final 

step of computation. 

Energy spectra for successful 1K  ILES 

computations are shown in Fig. 13, for 3K  

LES computations – in Fig. 14. 

 

 
Fig. 13. Energy spectra E(κ) in ILES K = 1 

computations. Nk  stands for Nyquist 

wavenumber 

 

Fig. 14. Energy spectra E(κ) in LES K = 3 

computations. Nk  stands for Nyquist 

wavenumber 

 

The DTS computations imply the large 

work on setting up optimal computation 

parameters. The question to choose optimal 

CFL, convergence depth for inner iterations, 

type of convergence (relative or absolute) is of 

the main concern. 

DTS3 and DTS4 runs in general are failed. 

The main result is in unbounded oscillations 

growth. This corresponds to the Burgers 

equation test case where higher order DTS 

schemes appeared to distort the solutions. 

Tuning the parameters, yields suppressed 

growth of oscillations, but the accuracy remains 

very poor. Good accuracy for DTS3 was 

achieved with LES K=3, but the resulting speed 

of computation left no chance to finalize it in 

reasonable time. 

All successful computations (explicit time 

stepping, DTS1, DTS2) produced almost 

identical results. The 3K  LES solution give 

highly damped energy spectrum, especially at 

medium and high wavenumbers. The 1K  

ILES solution results in resolution of 3/5  

spectrum up to 20~  m
3
/s

2
. This result again 

shows that standard 2.0SC  value is excessive 

and suggests trying Smagorinsky subgrid model 

with lower SC  or even 3K  ILES in the 

future. 
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3.5 Solutions comparison in terms of 

efficiency  

Concerning the required memory, 1K  ILES 

computation used 2.2 Gb RAM while 3K  

LES computation used 4.8 Gb RAM. 

Run times (in CPU units) are collected in 

the following table: 

time stepping 1K  ILES 3K  LES 

global 41056.3   4106.11   

DTS1 4108.16   poor accuracy 

DTS2 4105.16   4106.25   

 

As in Burgers equation test, there is no 

evident dependency of run time on DTS order. 

3K  LES computation takes 1.5–3.3x more 

time than 1K  ILES on the same NDOFs. 

Again, explicit scheme is 2.2–4.7x faster than 

DTS schemes despite much lower time step. 

Besides, DTS scheme requires additional time 

for optimal convergence criterion search to 

provide reliable quality of computation and 

acceptable efficiency. 

Therefore, according to 3D isotropic 

turbulence test, it is recommended to use 

explicit schemes for unsteady computations, at 

least when a mesh is close to uniform. 

3 Conclusions 

Dual time stepping techniques for 

Discontinuous Galerkin method are presented 

for one-dimensional Burgers equation and for 

full three-dimensional Navier–Stokes equation 

system. The results of two test cases 

computations are reported which allow to make 

the following conclusions: 

1. Smagorinsky subscale model used with 

DG 3K  is more dissipative than DG 1K  

ILES on the same NDOF, although both models 

are able to capture some part of )(E  inertial 

subrange. It is proposed to try lower SC  values 

with high order DG schemes. 

2. 1K  DG ILES is up to 3 times more 

efficient than DG 3K  LES with the same 

NDOF. 

3. There is no difference in efficiency 

between DTS1–DTS4, but DTS3 and DTS4 

solutions suffer from increased non-

monotoniciy. DTS2 looks the best compromise 

among dual time stepping schemes considered. 

4. Explicit scheme is several times faster 

than DTS despite significantly lower time steps. 

It is recommended to use explicit schemes for 

unsteady computations (at least when a mesh is 

close to uniform). 
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