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Abstract  
We discuss the features of optimal force transfer 
and use them to develop the method for 
discovering the distribution of material of 
structure for obtaining its minimal volume. The 
suggested method works with one or several 
external loadings and allows one to discover the 
optimal structure and to recognize the 
phenomenon of Razani in which a structure with 
unequal stresses due to several loadings is more 
light-weighted than fully stressed. With using 
the developed method we have solved the 
original Razani problem and apply it for wing 
optimization of the novel hypersonic airplane. 

1  General Theory  
The function of any structure is transfer 

(delivery) of forces from points of their 
application to points of their absorption 
(neutralization). From the analysis, we can use 
the analogy with thermodynamic system [1], 
which transfers heat from sources to sinks. 
From this, 

Hereafter, we will use the terminology from 
thermodynamics in application to mechanics 
of solids. The relations between used terms and 
classical notions of mechanics of solids can be 
discovered easily. 

we can represent any structure 
having stationary loading as a stationary 
nonequilibrium system through which one can 
transfer the forces, and that the “quantity” of 
forces in structure is independent of time. 

Internal energy in structure is the 
quantitative measure of external loading transfer 
and depends on internal forces in structural 
elements: 

1 2 mE E ( F , F , ... F ).=    (1) 
Internal forces Fi, i=1,2,...m are derived from 

external loading and they define the 
effectiveness of external loading transfer and 
also the structure optimality, as the system is 
responsible for transfer. 

Structure changing leads to changing of 
internal forces, and it follows that strain energy 
also will be changed. This energy change 
caused by structure changing can be defined as: 

1 1 2 2 m mdE U  dF U  dF ... U  dF  ;= + + +  (2) 
where 
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We name magnitudes Ui, i = 1,2,...т as 
internal force potentials. Force potential 
difference defines the intensity of force transfer. 
Inasmuch as force transfer happens due to force 
potential difference, we can record: 
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where 
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defines the conduction of the structural 
element r = 1,2,…m; concerning force Fi .The 
force potentials in turn are the functions of 
structure condition; therefore, 

1 2i i mU U  ( F , F , ... F ).=    (6) 
Subsequently, change of i-th potential by 

structure changing can be expressed as: 
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where values 
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define the quantitative estimation of 
influence of the internal forces on potentials. 

Comparing (5) and (8), we get: 
1

ri
ir

C ;K=  i = 1,2,…m; r = 1,2,…m . (9) 

Magnitude, opposite to the conduction of the 
structural element r = 1,2,…m concerning force 
Fi, will be named resistance to transfer of the 
forceFi. 

In contrast to classical understanding of 
strength of materials and structures, here we put 
another sense in concept of resistance to transfer 
of forces, namely, resistance to actual force 
transfer process. So, in a hole, the conduction of 
a structure concerning forces is zero, and 
resistance to force transfer is infinite; on the 
contrary, the absolute rigid body has zero 
resistance to force transfer and infinite 
conduction. 

Optimality of a structure as a system for 
external loading transfer is directly connected 
with the concepts of force conduction and 
resistance to transfer of force. 

Hypothesis 1. With a single loading, the 
optimal structure, made from a given material 
volume, is the structure with minimal resistance 
(maximal conduction) to external loading 
transfer. 

Hypothesis 2

If it is possible to express analytically the energy 
accumulated in a structure, as well as resistance to 
transfer external force, in the form of functions from 
applied forces then we can find material distribution 
on structural elements directly. Generally, it is 
impossible to define such an explicit relation; 
therefore, we will continue with problem arguing. 

. With several loadings, the 
optimal structure, made from a given material 
volume, will have minimal value of the sum of 
resistances to force transfer of each external 
loading. 

2  Linearly elastic system 
As an universal method for computation of 

strain-stress distribution of elastic body, we will 

use the finite-element method, which is applied 
now very widely and is accessible in the form of 
commercial software packages. 

Let there be a finite-element model of an 
investigated structure. The energy of transfer 
of external loading

TE ,= {R } [ C ]{R }

 from points of their 
application to points of their absorption equal 
strain energy and in terms of finite-element 
method is defined as: 

   (10) 
where {R} is the vector of an external 

loading and [C] is the flexibility matrix. In 
consideration of the process of external loading 
transfer in accordance with (2) - (3), and (8), we 
define resistance of structure to transfer the 
external loading as a second derivative from 
transfer energy on the acting loading: 

2

2

d E  . 
d

= [ C ]
{R }

   (11) 

Equation (11) defines a flexibility matrix as 
the numerical characteristic of resistance to 
transfer external forces, but does not allow 
discovering the required values of its 
coefficients, which means the required values of 
structural element parameters for optimal 
transfer of real set of loadings. 

Hence, although a structure should transfer 
external forces, its energy value and resistance 
to transfer is necessary to define as a function of 
internal forces, secondary on an external 
loading. 

Let us turn to (11). Matrix magnitude in 
accordance with theory of matrix algebra in 
common case is evaluated as: 

0

  

  
  max

≠
=

{x}

[C] {x}
{x}[ C ] ;  (12) 

where ||…|| means some norm of matrix or 
vector. We need to minimize the resistance to 
transfer concrete loading; therefore, as a vector 
{ x }, we take the vector of external loading {R} 
and then 

;
 [C ] {R }  { d } 

 [ C ] = =
 {R }  {R } 

 (13) 

where {d} is the vector of elastic 
displacements (deformations) from loading {R}. 

Equation (13) gives an integral criterion of 
resistance to transfer external forces and 
expresses the dependence of resistance to 
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transfer from both external forces {R} and 
material distribution among structural elements. 

Due to several loadings, according to 
Hypothesis 2, the magnitude, which is subject to 
minimization for reaching an optimality of a 
structure, taking into account (13), will be 
defined as 

1

k

j
C ;Σ

=

=∑ j

j

 { d }  

 {R }  
   (14) 

here j = 1,2,…k is the loading number. 
 
Let us verify our theses and Hypothesis 2 on 

the Razani (1965) problem. Three-rod truss 
takes two loads RI and RII, which act at 
different times. Internal forces in the rods 1, 2, 3 
from loadings RI and RII and other conditions 
are shown in Fig. 2. Here, S is the cross-section 
area of rods and E*, ρ are the elasticity modulus 
and density of the rod’s material. 

3  General Algorithm for Linear-Elastic 
System Designing  

Let there be a structure with arbitrary 
distribution of the material in which all elements 
work in proportional elastic limits by all applied 
loadings. Let also there be the finite-element 
model of this structure, allowing one to compute 
vectors of elastic displacements j{ d } , where j = 
1, 2,…k is the loading number. We accept as 
norms of vectors j{ d }  the sum of absolute 
values of their components: 

1

n

l j
l

   d  
=

=∑j{ d }    (15) 

Let us consider vector j{R } , all components 

in which are equal (±1), and the sign of j{R }  
component coincides with the sign of the 
matching component of vector j{ d } . Then, (15) 
can be written as: 

1

n

l j
l

   d   .
=

= =∑ T
j j j{ d } {R } [C]{R } (16) 

From the analysis of (16), it follows that if 
vector j{R }  is accepted as a unit load and for 

computing generalized displacement *
jd , its 

value will be equal to accepted norm of vector 

j{ d } . On the other hand, the generalized 
displacement can be computed using internal 
forces in structural elements with the help of 
Maxwell-Mohr integrals1

1 1

*n m
i ij

l *j
l i i i

A  F
   d   ;

 E= =

  = = =
δ∑ ∑T

j j j{ d } {R } [C]{R }

. For the determinacy, 
we suppose that structural elements work in 
two-dimensional stress state and then: 

     (17) 

2 1

*
ijx ijyij ijx i ijy ijy i ijx

ijxyi ijxy

F F  ( F F ) F  ( F F )

 ( ) F  F  ;

  = −µ + −µ + 
+µ

 

where ijF  is the line force in i-th structural 
element from unit loading j{R } , corresponding 
to elastic displacement j{ d } ; ijF  is the line 
force in i-th structural element from design 
loading j{R } ; Ai is the element plan area; δi  is 
the thickness of i-th element; Ei

*, μi are the 
material elasticity modulus and Poisson's ratio; 
and m is the quantity of elements. Line force is 
computed as  i i iF = δ σ . 

Thus, the magnitude of resistance to transfer 
external loading j{R }  is defined by internal 
forces in structural elements and (13) taking into 
account (17) will become: 

1

1
*m

i ij
*

i i i

A  F
  .

 E=

  
δ∑j

j j

 { d }  
 [C] = =

 {R }   {R }  
(18) 

Due to several loadings, (14) defined the 
total resistance of the structure in accordance 
with Hypothesis 2 and taking this into account 
(17), will be converted to the form: 

1 1 1

1
*k k m

i ij
*

j j i i i

A  F
C .

 EΣ
= = =

  = =
δ∑ ∑ ∑j

j j

 { d }  

 {R }   {R }  
(19) 

As the result, we have the following problem 
of constrained minimization: to find such 
material distribution of the given mass M0 
among structural elements, which provides 

min  ;CΣ ⇒    (20) 
by 

0
1

0
m

i i i
i

 A  M  .
=

ρ δ − =∑   (21) 

                                                 
1 This is also referred to as the unit load or dummy load 
method. 



ALEXANDER I. DANILIN 

4 

On the step of developing recurrent 
relationships, we will suppose that internal force 
in structural elements does not depend on 
material distribution. We take into account this 
dependence later by development of algorithm 
for searching the structure with minimum of 
resistance to transfer external loadings. 

We will solve the minimization problem 
using the Lagrange multiplier method. Here, the 
Lagrange function is 

0
1

m

i i i
i

Lg C    A  M  ;Σ
=

 
= + λ ρ δ − 

 
∑  (22) 

where λ is the Lagrange multiplier. 
Conditions of its minimum have the form: 

2
1

0
1

01

1 2
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*
ijk

i
*
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m

i i i
i

 F
 ;  Lg

  
E

            i , ,...m ;
Lg  A  M .

=

=

    + λρ =∂
= − ∂δ δ

 =

∂ = ρ δ − = ∂λ

∑

∑

j{R }
(23) 

The first m equations of system (23) define 
the conditions of minimum of a structure 
resistance to transfer of external loadings {R}j, 
j=1,2,…k. These conditions are considered as 
the optimality criteria of a structure: 

2
1

1

1 2

*
ijk

*
ji i i

 F
const  ;  

  
  E

               i , ,...m ;
=

   = λ =
ρ δ

=

∑ j{R }  (24) 

Expressing δi from  (24) and substituting it in 
the last equation of system (23), we find the λ 
value: 

2

1 1

2
0

*m k
ljl

l *
l jl

 F
A

E   
 .

M

= =

  ρ   
 
 λ =

∑ ∑
j{R }

 (25) 

We put λ in (24) and find the required 
thicknesses of structural elements δi, which by 
accepted assumption give the function CΣ a 
minimal value: 

0

1

1 1

1

1 2

*k
ij

i **m k ji iljl
l *

l jl

 FM  , 
  E F

A
E   

                                                       i , ,...m.

=

= =

    δ =
 ρ ρ    

=

∑
∑ ∑

j

j

{R }

{R }

 (26) 

From (26), we can see that new thickness of 
structural element δi is necessary to take 
proportionally to square root from sum of 
normalized to loadings subintegral functions of 
Maxwell-Mohr integrals, divided on the product 
of density by elasticity modulus of structural 
element. Do all loadings in an equal measure 
define material distribution in structure?

 
  

Definition. We will name dimensioning

 

 such 
loadings, whereby at least one structural 
element has stress state exceeding stress state in 
this element from other loadings. 

Because the internal force distribution in 
structural elements in common case depends on 
material distribution, the set of dimensioning 
loadings also depend on material distribution 
and can be changed by iterations. 

Now, we have the complete set of theoretical 
prerequisites for development of algorithm for 
designing a linear-elastic system. As the method 
for stress and strain state calculation, we will 
use the finite-element method; therefore, all 
described operations are relative to finite-
element model of the structure. 

1. Let there be given the material of the 
structural elements and its some initial mass М0. 
The external loadings also are given and they 
are stationary and do not depend on material 
distribution. 

2. Let us assign some initial material 
distribution among structural elements δ0i. We 
suppose that a structure consists of membrane 
structural elements having two-dimensional 
state of stress and inside the element each kind 
of stress is the same at all points of the element. 

3. For each loading, to compute the elastic 
displacements j{ d } , j = 1,2,…k, the stresses in 
structural elements include equivalent stress. 
For membrane elements, we have: 

2 2 2 2 1equ
ij ijx ijy i ijx ijy i ijxy   ( )  ;σ = σ +σ − µ σ σ + +µ σ

   (27) 
4. Using equ

ijσ  to select t dimensioning 
loadings in accordance with Definition

5. For dimensioning loadings to form the unit 
loading vectors

, t ≤ k. 

j{R } , j=1,2,…k and computing 



 

5  

DESIGNING OF AIRFRAMES HAVING MINIMUM MASS UNDER 
SEVERAL LOADINGS (NOT ONLY FULLY STRESSED) 

  

subintegral functions *[ ]ijF  of Maxwell-Mohr 
integrals, see (17). 

6. To compute by (24) optimality criterions λi 
for all structural elements i=1,2,…m, select their 
maximal and minimal values. If 

1max

min

 ,
 λ

− ≤ ε λ 
  (28) 

where ɛ is the small prescribed value, then go 
to point 9. 

7. To calculate the new thicknesses δ1i by 
(26) for t selected loadings. 

8. To assign the thicknesses δ1i as initial δ0i, 
go to point 3. 

9. Exit from iterations. Here, it is necessary 
to modify the obtained material distribution in 
accordance with strength requirements for 
structural elements. For it, we find the multiplier 
of thickness changing 

1 1

equ
ij

i ,...m j ,...t
i

K max   max   ;
[ ]σ = =

  σ
=    σ   

 (29) 

where [ ]σ i
 are the allowable strengths and 

define their new values: 

i iK   ;σ
σδ = δ    (30) 

where δi are thicknesses, found in iterations 
3-8. Because we proportionally change the 
thickness of all structural elements, saving their 
proportions, the relative force distribution in 
structure will not vary. Here, we can define the 
mass of such structures: 

0
1

m

i i i
i

M  A  K   K  M  .σ
σ σ

=

= ρ δ =∑  (31) 

4  Testing of Method: Razani Problem [2] 
Let us verify our theses and Hypothesis 2 on 

the Razani [2] problem. Three-rod truss takes 
two loads RI and RII, which act at different 
times, see Fig. 1.  

Razani this problem solved by the following 
initial data: elasticity modulus of the rod’s 
material E* = 1; density ρ = 1; external loads RI 
= RII = 1; allowable stresses [ σ ] = 1; length of 
the rod No. 2 is L = 1. 

Structure of uniform strength by S2 = 0 and 
S1 = S3 = 1 has mass M = 2.828 units while 
optimal structure has the following parameters: 
S2 = 0.408; S1 = S3 = 0.789; S1/S2 = 1.93; mass of 

rods Mopt = 2.638 units. At that, strength 
requirements are NOT violated, but equal stress 
in all rods is not achieved; central rod No. 2 by 
both loadings has the stress, which is less than 
allowable. 

 
Fig. 1. Razani truss. 

 
Our algorithm has solved this problem very easy 
and completely repeats Razani solution [2]. 

 
Now methods of optimization are used in 

aircraft industry not only for a parametric 
optimization, for example for determination of 
optimum distribution of a material among 
structural elements within the given framework, 
but also for structural optimization when it is 
necessary to define the framework of airframe. 
The usual plan of action at discovering the 
framework consists of the following. 

Into geometrical area where the future 
airframe should be disposed, we place the 
continual model, which contains all possible 
frameworks. As usual, it is a finite-element 
model. To the given model, we apply all 
spectrums of loadings and model the supporting 
conditions. We assign some initial material 
distribution and start the iteration algorithm of 
this or that optimization method for discovering 
material distribution. During the job of the 
algorithm, the material in model is being 
redistributed: some areas increase the rigidity 
and others are degenerated. As a result, we 
discover the framework of an airframe, which 
shows paths and force kind (extension-
compression, shift) by which the exterior 
loadings are transmitted from application points 
to points of their absorption (neutralization). On 
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the basis of the analysis of this information, the 
designer suggests the framework of an airframe 
and implements its parametric optimization. 

Truss structures in accordance with their 
nature are already the frameworks of airframes 
as force can go only along rods and if the 
designer has not made the path, that is, has not 
specified a rod, then for force this possible path 
is closed. Continual models with the elements, 
which have two-dimensional or three-
dimensional stress state, have more degrees of 
freedom. Such models give for external loadings 
more possibilities in path selection from points 
of their application to points of their absorption 
(neutralization). Therefore, no wonder that the 
question appeared: whether applied methods of 
synthesis of frameworks out of continual 
models can distinguish the phenomenon of 
Razani [2] and, at its presence, to discover 
framework with unequal stresses when several 
loadings act. Let us compare the results of the 
offered theory and algorithm of searching the 
framework on a problem shown in Fig. 2. 

 

 
Fig. 2. Razani problem 

 
Optimization was implemented using the 

author's package "DRACO," realizing finite-
element method and various algorithms of 
optimization, based on optimality criteria. 

Results of optimization are shown in Fig. 3 
and Fig. 4. 

It is visible that the developed algorithm 
allows one to discover effective frameworks and 
to recognize the phenomenon of Razani [2] that 
a structure with unequal stress by several 
loadings is easier than the structure with equal 
maximal stresses in elements. In the considered 

example, the distribution of a material in Fig. 4 
on 5.046% is easier than the “fully stressed” 
distribution of a material shown in Fig. 3.  

 

 
Fig. 3.“Fully stressed” material distribution. 

 

 
Fig. 4. Achieved material distribution 

5  Hypersonic Airplane Preliminary Design 
Commercial aviation development always 

links with reduction of time of transportation 
onto the large distances. The modern park of 
passenger airplanes consists from the subsonic 
aircrafts flying at altitudes of 10-12 km with 
velocities of 800-950 km\h. Thus, flights on 
distance of 6000-8000 km take 8-12 hours, that 
in the modern dynamical world of business and 
mobility any more do not satisfy the necessities 
of passengers. 

New passenger airplanes, which appear each 
4-5 years are more effective, however they do 
not have essential new, breakthrough 
technologies. Aerodynamic properties of wing 
and performance of engines are improved; the 
noise levels and ecological contaminations are 
reduced; the seat of the passenger now looks 
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like the individual center of entertainments, but 
at the same time, there is no revolutionary 
transition onto a new technological level of 
passenger transportations. 

If problems of supersonic flight with velocities 
of 2000-2500 km\h are solved successfully 
enough, then increasing a velocity to 4000-
10000 km\h comes across the new physical 
phenomena that demand new ideas and 
technological researches, and not ordinary 
designer solutions. But only by this way, it is 
possible to achieve breakthrough in technology 
of hypersonic airline traffic. 

Let’s consider the problem to design exterior 
forms equally effective on take-off and landing 
and on cruiser hypersonic velocity. The large 
quantities of researches are directed to 
aerodynamics of a hypersonic cruising flight, 
but nobody consider a problem of reaching of 
this hypersonic velocity. Researchers suggest 
optimal aerodynamic forms for various 
diapasons of hypersonic velocities, however the 
airplane begins moving from a zero speed, and 
suggested aerodynamic forms on subsonic 
speeds simply will not ensure the necessary 
ascentional force. 

We suggest the new scheme of airplane which 
can satisfy different requirements for wing 
performances on different flight modes, see Fig. 
5, 6. 

 
Fig. 5. Configuration for initial stages of flight 

 
Fig. 6. Hypersonic cruising configuration 

 
The offered construction has following 
singularities. 
1. Elevons in a take-off/landing configuration 

turn to a deflected nose in a hypersonic 
configuration for control of a shock wave 
adjoining at various Mach numbers. 

2. In subsonic and transonic configuration all 
loadings on the console are taken by a 
swiveling block. In a take-off/landing and 
hypersonic configuration the console is in 
addition docked to a motionless part of a 
wing in four points by a wing collet fixture as 
it is displayed on model, see Fig.7, 8. 

3. As in a swivel section spars and ribs in 
various configurations change places, we 
offer cobweb skeleton, displayed on Fig. 7. 

 
Structural analysis in three various 
configurations has discovered, that the strain-
stress distribution of take-off and landing and 
subsonic configurations practically coincide, as 
the swiveling block has incomparably higher 
stiffness factor in comparison with collet fixture 
and agglomerates on itself all external loading. 
Therefore for optimization we will consider two 
loading cases: take-off/landing and hypersonic. 
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The airfoil section in classical sense here is not 
present, the wing represents as a plate, therefore 
aerodynamic pressure on a wing we will take as 
uniform. 

 
Fig. 7. Wing skeleton 

 

 
Fig. 8. Wing skin 

 
Span of outer wing (from wing stab to wing 
end) in take-off/landing configuration equal 
21m, and in hypersonic configuration equal 
11.5m.  
 
Operational G-force in take-off/landing mode 
we will take ny = 1.5, and in hypersonic mode, 
ny = 3. Part of the take-off mass of airplane 
supporting in air by the outer wing is 20 378 kg. 
Allowable stress [σ] = 400 MPa. 

 
Let's execute optimization of a structure of a 

swivel section of a wing with usage of a 
developed method and compare the results with 
classical full stressed material distribution [4].  

 

Optimization results for skeleton are displayed 
on the Fig. 9, 10 and for skin on Fig. 11, 12. 
 

 
Fig. 9. “Fully stressed” material distribution on 

walls of skeleton: δmax = 4.6 mm. 
 

 
Fig. 10. Material distribution on walls of 
skeleton by our theory: δmax = 3.4 mm. 

 

 
Fig. 11. “Fully stressed” material distribution on 

skin: δmax = 4.8 mm. 
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Fig. 12. Material distribution on skin by our 

theory: δmax = 5.6 mm. 
 

Under such conditions the mass of “fully 
stressed” material distribution equal 2677 kg, 
the while mass of discovered by our theory 
structure equal 2442 kg. Our structure is easier 
than “fully stressed” one. Mass benefit is 
8.78%. The proof strength k = σmax / [σ] of the 
both structures approximately equal: for “fully 
stressed” structure k = 1.00528; for our structure 
k = 0.999964. 

Comparison Fig. 9, 10 and Fig. 11, 12 show, 
that our material distribution essentially another 
than in “fully stressed” structure.  

Detail analysis of results show that in our 
structure most part of elements works in both 
loadings, the while in “fully stressed’ structure 
we can find many elements, which work in one 
case of loading but do not work in another one. 
Therefore “fully stressed” structure under 
several loadings not always is optimal. 

6  Conclusion 
We suggest the new method, which discover an 

optimal structure under acting of several 
loading. We have tested it on Razani problem 
and have solved the model optimization problem 
of hypothetic wing for hypersonic airliner. We 
have demonstrated that suggested method has 
some advantage in achievement the minimal 
mass structure and give to designer the new tool 
for structural optimization on early stage of 
airframe designing. 
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