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Abstract

This study explores the effectiveness of apply-
ing optimal control techniques to the flight con-
trol law clearance problem, which is the chal-
lenge of ensuring the safety of an aircraft’s
flight control system for all allowable inputs.
The main criteria chosen were the angle-of-
attack limit exceeding criterion in the longitu-
dinal plane, and the angle-of-sideslip limit ex-
ceeding criterion in the lateral plane. Other
criteria, such as load factor and side-force
were also considered. Using general double-
engine airplane aero data to obtain realis-
tic aerodynamic coefficients, longitudinal and
lateral linear models were developed. The
flight control system developed for this air-
craft by the Institute of Flight System Dynam-
ics (FSD) of Technische Universität München
was used for the clearance task. A linear sys-
tem of this type has a bang-bang worst case
input (i.e. using only maximum or mini-
mum values) when the states are unbounded;
but a possible bang-singular-bang or bang-bang-
singular worst-case input when one or more
states are bounded (i.e. intermediate values
are also used). These results were validated
with collocation-based optimization using Fal-
con.m (FSD Optimal Control Tool for MAT-
LAB). In the physical domain these results
translate into actuator rate limiting issues;
thus limited elevator/rudder/aileron deflection

and rate of elevator/rudder/aileron can lead
to even more extreme worst case performance.
The input signals in this study were pilot com-
mands (stick and pedal) and/or wind distur-
bances in the form of gusts. The main find-
ings in the longitudinal plane were that the
pilot stick commands typically involve maxi-
mal/minimal and sometimes intermediate val-
ues (whenever the elevator gets saturated).
Wind disturbances in this plane (normal gusts)
are typically maximal/minimal (bang-bang)
and their effect on the aerodynamic angle-
of-attack highly depends on the gust shape
(equivalent time constant). The main find-
ings in the lateral plane were that the pilot
stick commands have very little effect on the
sideslip, thus demonstrating a very good de-
coupling. The pilot pedals, on the other hand,
were very effective in building up sideslips and
the worst-case structure was obtained by us-
ing them periodically (in a trapezoidal wave
shape) at the Dutch-roll frequency. The worst-
case wind disturbances are non-periodic maxi-
mal/minimal (bang-bang) and their effect on
the aerodynamic angle-of-sideslip highly de-
pends on the gust shape.
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1 Introduction

Flight control law clearance is the practice of
ensuring the safety of an aircraft for all admis-
sible time-varying pilot inputs under all pos-
sible operational conditions [1]. This proce-
dure is performed before an aircraft is tested
in flight, regardless of how stable or robust its
control law is designed to be. In theory, in
order to clear a flight control law, it must be
proven for all variables and uncertainties, over
the entire flight envelope, that the aircraft can-
not be driven to an uncontrollable state. To
date, the practice used in industry is to divide
the parameter space into a grid and test the
flight control law for a finite number of ma-
neuvers [2].
Unfortunately this method is rather time con-
suming, costly and by no means foolproof. An
alternative approach is optimization; instead
of showing that a flight control law is valid
under all possible conditions, the worst possi-
ble aircraft behaviour is sought, and if it can
be demonstrated that the behaviour is within
acceptable limits, then the flight control law
is valid [3]. For example, when clearing the
nonlinear handling criteria of angle-of-attack
(AoA) limit exceeding, one would determine
a function for AoA (derived from the numer-
ical integration of the chosen model over the
specified time interval) which would depend
on some uncertain parameters (such as center
of gravity along x-axis, y-body-axis moment
of inertia, pitching moment coefficient deriva-
tives, etc.)[4]. Then the chosen optimization
algorithm would attempt to find the maximum
value attained by the AoA by varying these
parameters, and if that value does not exceed
the maximum permissible AoA then the cri-
terion is cleared. A number of studies have
already tried (with some degree of success) to
utilize this method with various optimization
techniques, such as genetic algorithms, differ-
ential evolution and adaptive simulated an-
nealing [1][5][6][7]. However these techniques
essentially use brute force to find a solution
and tend to be very computationally intensive.
Optimal control relies more on the knowledge

of the dynamics of the system and will provide
accurate quantitative results as well as useful
insights.
In [8] the optimal control theory was em-
ployed, by direct and indirect methods, in or-
der to improve the means of ensuring flight
control clearance. The problem was formu-
lated with a running cost which approximated
the maximal AoA over a given time, or a ter-
minal cost of maximal AoA at an arbitrary
time. The analysis was based on the Mini-
mum Principle and the characteristics of the
worst case control were explored.
The present paper continues to explore the ef-
fectiveness of applying optimal control tech-
niques to the flight control law clearance prob-
lem. More general linear models are used (in-
stead of the Short-Period approximation in
[8]) for the longitudinal as well as the lat-
eral planes, including the effects of wind gusts.
The specific criteria chosen were the angle-of-
attack (AoA) limit exceeding criterion in the
longitudinal plane, and the angle-of-sideslip
(AoS) limit exceeding criterion in the lateral
plane. Based on direct and indirect meth-
ods, the characteristics of the worst case con-
trols and worst case gusts for a general double-
engine airplane were explored.

2 Modeling

The model used for the analysis consists of a
plant, which includes the aircraft dynamics,
a controller, and a servomechanism. The in-
put comes from the pilot commands subject to
saturation with predefined bounds and gain.
Wind disturbances in the form of gusts are in-
cluded. Fig. 1 depicts a block diagram of the
basic layout.

2.1 Linear Plant Model

In determining the plant we assume the stan-
dard linear model which separates the longitu-
dinal and the lateral planes [9]. For the longi-
tudinal plane, after linearization in a straight
and level flight at altitude h and velocity V ,
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Fig. 1 Basic block diagram of the model.
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where u is the velocity along x-axis; α is the
angle-of-attack; θ is the pitch angle; q is the
pitch rate; δe is the elevator deflection; and wg

is the vertical gust. For the lateral plane we
have:
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where r is the yaw rate; β is the angle-of-
sideslip; p is the roll rate; φ is the roll angle;
δa is the ailron deflection; δr is the rudder de-
flection; and vg is the lateral gust. The gust
values are shaped by a first order filter with a
parameter τ :

G(s) =
wg(s)

wgc
(s)

=
vg(s)

vgc
(s)

=
1

sτ + 1
(3)

where wgc
and vgc

are control-like variables
and are arbitrary functions subject to hard-
limits. Note that this approximation for the

gust enables the search for worst-case gusts in
the form of the optimal control theory for lin-
ear systems. This would not be the case with
fixe-shaped gust. Fig. 2 presents a common
fixed-shaped gust using the wg

2
· (1 − cos(xπ

l
))

formula [10] (with x = V t and l being a typical
length). The two shapes are somewhat differ-
ent, however there is no strong reason to prefer
one over the other as they are both approxi-
mations. Anyway they yield similar results in
the simulations.

Fig. 2 Gust profile linear (solid) vs. cosine
shaped (dashed).
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2.2 Servomechanics

A second order servomechanism model with
a natural frequency of 40 radians per second
and a damping ration of 0.707 was used for all
servos:

G(s) =
δi

δic

=
ω2

n

s2 + 2ξωns + ω2
n

=
1600

s2 + 56.56s + 1600

(4)

where i ∈ {e, a, r}, and the sub-index c in-
dicates a commanded value. The control de-
flections are subject to hard limits as are the
angular rates-of-change of the control deflec-
tions.

2.3 Control Loops

The flight control system developed for this
aircraft by the Institute of Flight System Dy-
namics of Technische Universität München
was used for the clearance task. In the lon-
gitudinal plane, the stick force is translated
into a normal load command. The control
loop includes proportional gains plus an inte-
gral term, integrating the error between that
actual and the commanded load factor. In
the lateral loop the pedal movement is trans-
lated into a side-load command whereas the
lateral stick-force is translated into a roll an-
gle command. The control loop includes pro-
portional gains plus two integral terms, in-
tegrating the errors between that actual and
the commanded values. Fig. 3 and Fig. 4
present step commands at a typical envelope
point (h = 2000m, V = 55m

s
) for the pitch

and yaw control loops. Notice the relatively
lower damping of the later with respect to the
former. This fact plays a great deal in the
following results.

Fig. 3 Step-response in the pitch loop.

Fig. 4 Step-response in the yaw loop.

3 Problem Formulation

An optimal control problem consists of a cost
function, a dynamic system, boundary con-
ditions and sometimes constraints. The dy-
namic system(s) was covered in the previous
section. As for boundary conditions, the fo-
cus will only be on initial conditions, specifi-
cally x(t0) = 0 which translates into straight
and level flight. The main step now is turn-
ing the clearance criterion into an appropri-
ate cost function. The clearance criteria which
were the focus of this project were the angle-
of-attack limit exceeding criterion in the lon-
gitudinal plane and the angle-of-sideslip limit
exceeding criterion in the lateral plane. In-
creasing the angle-of-attack (AoA) is generally
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associated with increasing the lift force, how-
ever after reaching the critical angle, which
produces the maximum lift, further growth
results in a stall. Therefore it is in the in-
terest of the control engineer to ensure that
aircraft cannot increase its angle-of-attack be-
yond the critical angle. Similar considerations
apply to the angle of sideslip (AoS) in the lat-
eral plane. Thinking about this in terms of op-
timization, these criteria can be expressed as
follows: If the maximum AoA/AoS produced
by the worst case pilot input (and/or the worst
case gust values) is less than the critical angle
(or some smaller angle if a factor of safety is
included) then the criterion is satisfied. This
means that the cost function must be struc-
tured in such a way that it maximizes the
largest possible magnitude of AoA/AoS within
the chosen time interval. The cost function is
described as follows: maximize the magnitude
of the AoA/AoS at an unspecified final time
tf . This form is easily described with a Mayer
formulation, and by keeping tf free it allows
the optimization tool to choose the proper fi-
nal time such that the maximum magnitude is
achieved. Constraints are useful for describing
the physical limitations of the systems. The
control surfaces of an aircraft cannot move a
full 360◦ at infinite speeds. They have max-
imum and minimum displacements as well as
maximum angular speeds. If the displacement
or angular speed of a control surface is de-
scribed by a state (using (4)), these bounds are
easily incorporated into the system in terms of
state constraints.

4 Theoretical Analysis

4.1 Unbounded Case

Claim: For a single-input LTI system with the
form:

ẋ = Ax + Bu (5)

y = Cx (6)

x ∈ R
n, u ∈ R, y ∈ R

m

A ∈ R
nxn, B ∈ R

nx1, C ∈ R
1xn

(7)

umin ≤ u ≤ umax (8)

x(t0) = x0 (9)

Subject to the cost function:

min (y (tf)) (10)

The optimal control is bang-bang.
Remarks:

• The final time tf is free but is typically
subject to an upper limit i.e tf ≤ tfM

• The same proof with opposite signs
holds for max (y (tf ))

Proof :

H (x, u, t,λλλ) = λλλT (Ax + Bu) (11)

Using Pontryagin’s Minimum Principle [22]:

λ̇̇λ̇λ = −
∂H

∂x
= −ATλλλ (12)

ū = arg min
u

H (x, u, t,λλλ) =











umax,λλλT B < 0
umin,λλλT B > 0
using,λλλ

T B = 0
(13)

using ∈ [umin, umax] (14)

Therefore the solution is either bang-bang, or
bang-singular-bang, with a switching function
that is a linear combination of the costates.

To determine the singular control, the time
derivatives of Hu must be equal to zero. From
this result it can be shown that:

BT
(

Ak
)T

λλλ = 0, k = 0, 1, 2, ... (15)

If the system is controllable, the only λ that
satisfies them is the trivial solution.













BT

BT AT

...

BT (An−1)
T













λλλ = 0 (16)

CTλλλ = 0 (17)

Where C is the controllability matrix of the
system. If the system is controllable, then C

is full rank (and invertible):

(

CT
)

−1

CTλλλ =
(

CT
)

−1

0 (18)
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λλλ = 0 (19)

A singular solution only exists when each ele-
ment of λλλ remains zero for a non-instantaneous
time interval. This contradicts the minimum
principle, thus the solution which results in
the maximum J is non-singular, bang-bang.

Remarks:

• The above is the standard procedure
for the non-singularity of linear time-
optimal problems.

• For more than one control, i.e. u ∈ R
k,

if the system is controllable with respect
to each controller, then we will not have
a singular arc. The proof for that is sim-
ilar to the above.

4.2 Bounded Case

Next, consider state bounds, which can be ex-
pressed as inequality constraints on the state
variables. (Note: For multiple constraints just
repeat this process with a new additional S

and µ, and the solution will be of a similar
form):
Claim: For the single-input LTI system (5)-
(10) with the additional constraint imposed on
state i:

|xi| ≤ ximax
(20)

Or, equivalently

S(x, t) = x2

i − (ximax
)2 ≤ 0 (21)

The optimal control is bang-bang with (possi-
ble) singular arcs.
Remark: We call it “singular” because of the
way the Hamiltonian is going to be defined
(22). In fact this is simply the control as de-
termined by the equality constraint - see be-
low - typically with intermediate values with
respect to the control bounds.
Proof : The Hamiltonian is extended to in-
clude the state constraints, as follows:

H = λλλT (Ax + Bu) + µ
(

x2

i − x2

imax

)

(22)

Where

µ =

{

= 0, S < 0
> 0, S = 0

(23)

The Euler-Lagrange equations become:

λ̇̇λ̇λ = −
∂H
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And the optimal control is:

ū = arg min
u

H (x, u, t,λλλ) =











umax,λλλT B < 0
umin,λλλT B > 0
using,λλλ

T B = 0
(25)

The singular optimal control can be deter-
mined from S = 0 as:

ẋi = eiAx + biu = 0 → using = −
eiAx

bi

(26)

Where ei is the row vector of size n with the
only non-zero entry being 1 at index i. Fi-
nally, by equating the second time derivative
of Hu = BTλλλ to 0, we get:

− BT AT λ̇̇λ̇λ − 2µẋibi − 2µ̇xibi = 0 (27)

− BT
(

A2
)T

λλλ − 2µxiB
T AT ei

T − 2µ̇xibi = 0

(28)
From (28) we readily obtain the differential
equation governing µ.

5 Longitudinal Optimization Results -

Maximizing AoA

The following example for the longitudinal
plane is aimed at maximizing the aerodynamic
AoA for a combined stick and wind input. The
wind time constant is τ = 1s and its maxi-
mum value 6.7m

s
. The nominal flight speed is

55m
s

and the time horizon is set to 8.5s. Notice
that the linearization validity over such a long,
strong maneuver deteriorates and the results
can no longer be considered quantitatively.
Fig. 5 presents the worst-case results. For
the time horizon in this example the servo
limits are reached as can be seen in Fig.
5 and the worst-case stick input comprises
bang-bang and singular arcs. Note that the
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Fig. 5 Responses for worst-case stick and wind inputs (maximizing AoA)

inclusion of bounds slows down the system
and decreases the maximum AoA which could
be reached without considering the respective
limits. The corresponding switching function
λT BλT BλT B is shown in Fig. 6 and it satisfies (25).

Fig. 6 Switching structure for worst-case stick
and wind inputs (maximizing AoA)

6 Lateral Optimization Results - Max-

imizing AoS

For the lateral plane the objective is to maxi-
mize the aerodynamic AoS. First we will only
use the pedal command without wind input.

Furthermore the lateral stick command is not
used here as it does not change the results sig-
nificantly thus demonstrating a very nice roll-
yaw decoupling of the control laws. Again the
nominal flight speed is 55m

s
and the maximum

time horizon is now set to 10s. The result-
ing responses are shown in Fig. 7. The pedal
command δr is bang-singular-bang and corre-
sponds very nicely with the Dutch-Roll fre-
quency (1.3 rad

s
= 0.2Hz) over the entire al-

lowable 10s. The switching function is plotted
in Fig. 8, and it satisfies (25).
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Fig. 7 Responses for worst-case pedal inputs (maximizing AoS)

Fig. 8 Switching structure for worst-case
pedal inputs (maximizing AoS)

Finally the combined worst-case scenario
for pedal inputs with gusts of τ = 2s are pre-
sented in Fig. 9. Please note that again the
servo bounds have been reached. As can be ex-
pected, the combined response (Fig. 9) leads
to a further increase for the aerodynamic AoS
at the end of the time horizon compared to the
previous case (Fig. 7).

7 Conclusions

The most important result of this work is the
validation that the clearance problem (specif-
ically, the AoA, AoS limit-exceeding criteria)
can be framed and solved as an optimal con-
trol problem. This allows for the problem to
be solved in a format that is more familiar
to control engineers, with available software
and optimization tools. This can drastically
help to reduce the overhead in time to learn
and implement the procedure. The theoretical
analysis proved that, for the linear system, the
worst case input is bang-bang with costate-
dependent switching function when the states
are unbounded and the system is completely
controllable, and is possibly bang-singular-
bang otherwise. When solved numerically the
optimization results, matched perfectly with
the theoretical analysis. They have also been
in fair agreement with the 6DOF results when
the validity of the linearization was main-
tained. The results can be used a starting
point for a more intensive 6DOF Monte-Carlo
study. This study will be based on the ob-
tained worst-case control / disturbance struc-
tures, and will incorporate a sensitivity study
to all relevant parameters in order to validate
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Fig. 9 Responses for worst-case pedal and wind inputs (maximizing AoS)

the flight control systems. The optimization
with a non-linear 6DOF model seems like a
feasible task with the available software tools
(like FALCON.m or GPOPS), and it is recom-
mended for further research.
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