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Abstract  

The gradient information could improve the 

design efficiency of the original kriging model. 

A new method combined gradients with 

Hierarchical Kriging (HK) model is developed 

in this paper. The model is built in two steps. At 

first, initial sample points and the gradient with 

respect to design variables are computed by 

high-fidelity solvers. Gradient information and 

a selected step size are used for Taylor 

approximation to obtain derived sample points. 

Then these sample point are used for building a 

low-fidelity kriging model. At last, a high-

fidelity model can be obtained by adjusting the 

low-fidelity using the initial samples. An 

analytical function test case demonstrates that 

the gradient enhanced Hierarchical Kriging 

(GEHK) model has overcome limitations of 

traditional gradient-based kriging model, and 

the prediction accuracy of the model can be 

improved evidently. In the airfoil drag reduction 

case, the GEHK model improves the 

optimization efficiency, and could get a better 

result compared with the ordinary kriging 

model. 

1 Introduction  

Surrogate modeling can be used to greatly 

improve the design efficiency. The kriging 

model is perhaps the most effective, due to the 

advantage of capturing multiple local extrama 

of highly nonlinear functions [1]. With the 

development of computers, the kriging model 

has been extensively used in aerodynamic 

optimizations [2~4]. However, the accuracy of 

the kriging model is limited by training 

strategies and the number of samples [5]. When 

a large number of design variables are involved 

in the design problem and high-fidelity 

numerical models are utilized, it is still very 

time-consuming for the design process. 

To enhance the efficiency of a kriging 

model, gradients of the objective function can 

be involved in the model. There are two ways to 

combine kriging model with gradients.[6] The 

one is Direct Cokriging (D.Cok.). In this 

method, the samples and the gradient 

information are conserved through a heritage of 

the correlation function and parameters. The 

other one is the Indirect Cokriging (I.Cok). The 

original kriging formulation can be used with an 

augmentation sample data derived by gradients. 

It was found that the parameters of D.Cok. may 

converge to wrong values, then the model is ill-

fitted.[7] For I.Cok, step sizes used to derive 

new samples are key parameters. A too long 

step may destroy the accuracy of derived 

samples, while a too small step cannot introduce 

much gradient information for the model, due to 

similarity of samples and derived samples. 

Laurenceau [7] suggested a fixed step size of 

10
-4

 times of design space range. Liu [8] 

presented an approach to solve the problem by 

including the step size for the design variables 

as one of parameters in kriging models.  

This objective of the present work paper is 

to develop a new method to combine gradient 

information with kriging models. A recently 

proposed kriging model called Hierarchical 

Kriging (HK) is utilized and the gradient is 

solved by the adjoint method. The HK model is 

briefly introduced in section 2, and the proposed 

method in this paper is described in section 3. 

An analytical function optimization case is 

tested using the I.Cok. and GEHK method in 

section 4, then an airfoil drag reduction case is 
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demonstrated. Concluding remarks are provided 

in section 5. 

2 Overview of Kriging Model 

2.1 Kriging  

Here we just present a brief describe about 

kriging modeling. A more detail information 

about the model can be found in the reference 

[5]. Kriging models combine a global model 

plus localized departures: 

y( )   x x   (1) 

where x  is an m-dimensional vector (m is the 

number of design variables), and y( )x  is the 

unknown function of interest.  

The first term in Eq. (1) provides a “global” 

model of the design space, which is called 

regression model. We employed a constant term 

in this paper. The second is a realization of a 

stochastic process with zero mean, Z(x). The 

Z(x) term represents a local deviation from the 

global model, calculated by quantifying the 

correlation of x with nearby points. The 

covariance matrix of Z(x) is given by Eq. (2). 
i j 2 i j[Z( ),Z( )] [R( , )]Cov x x R x x   (2) 

In Eq. (2), R is the correlation matrix, and 
i jR( , )x x  is the stochastic-process correlations 

between any two of the sn  sample data 

points i j,x x . In this paper, the authors use a 

spline correlation model, which is defined by:  
2 3
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where j j j jw x   ,and ( 0)j j    are the 

unknown correlation parameters used to fit the 

model, and jw  and jx  are the j-th components of 

vectors w  and x . The kriging predictor for the 

values of x is obtained from 
1ˆ ˆ ˆ( ) (y )Ty    x r R 1           (4) 

where ̂  is the estimated value of  , and y is a 

column vector of length ns that contains the 

sample values of the response, r  is the 

correlation vector of length sn  between an 

untried x and the sample data points. 

1 2 ns T(x) [R( , ),R( , ), ... ,R( , )]  r x x x x x x  (5) 

For any given vector θ  that consists of 

components k , ̂  and the estimate of the 

variance ˆ   can be defined as 
1

1
ˆ

T

T

y


 

1 R

1 R 1
  (6) 

T 1ˆ ˆ(y ) (y )
ˆ

sn


    

 
1 R 1

  (7) 

The unknown correlation parameters θ

the kriging model are estimated by maximizing 

the following likelihood function. 
2

s ˆ( ) [n ln( ) ln ] / 2Ln      R   (8) 

2.2 Hierarchical Kriging 

In a standard kriging model, the regression 

model is defined as low-polynomials, typically 

linear or quadratic. Instead of using polynomials, 

the HK uses a secondary kriging model as the 

model trend of the primary kriging model of the 

function of interest. A kriging model for low-

fidelity function is built as the exactly same 

process of a standard kriging. Refer to Eq.(4), 

the prediction of the low-fidelity function at any 

untried point X can be written:  
1ˆ ˆ ˆ( ) R (y )T

lf lf lf lf lf lfy     x r 1   (9) 

There is an assumption that the random process 

corresponding to the high-fidelity function is of 

the form: 

ˆ ˆy( ) lfy    x x   (10) 

The HK predictor can be written as 
1ˆ ˆ ˆ ˆ( ) ( ) (y )T

lfy y    x x r R F   (11) 

where 
1

1
ˆ

T

T

y


 

F R

F R F
, s(n )(1) T

lf lf[y (x , , y (x ))]  F . 

Compared with Eq.(4), the scaling factor ̂  

of HK can be obtained by replace 1  with F . 

The approximated low-fidelity function 
ˆ

lfy scaled by an unknown constant factor  , 

serving as the global trend function. 

The HK model also provides a better mean-

squared error (MSE) than traditional cokriging , 

which is one of the unique features of this 

model. The readers is refer to [9] for more detail 

information of building a HK model. 
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3 Proposed Gradient Enhanced HK model 

The GEHK model has two level of fidelity 

in our study. Firstly, some initial samples are 

obtained by CFD simulation, including 

aerodynamic characteristic (e.g., lift coefficients, 

drag coefficients) and their gradients with 

respect to design variables. Then new samples 

are derived by first order Taylor approximation 

using gradients and a selected step size. 

Although the samples may be accurate enough 

when steps are appropriate, these new derived 

samples are considered as the low-fidelity data. 

A low-fidelity kriging model is built using 

derived samples. At last, a high-fidelity model 

can be obtained by adjust the low-fidelity 

kriging with initial samples. The process of an 

optimization using GEHK is shown in Fig. 1.  

 
Fig. 1 Flowchart of the optimization using GEHK model 

4 Optimization Results  

4.1 Analytic Function Test Case 

An analytical test case by Forrester [10] is 

employed here. The analytical function is: 
2(6 2) sin(12 4), [0,1]y x x x     (12) 

Four sample points was used for building a 

kriging model. The sample points, the true 

function and the kriging result are presented in 

Fig. 2a. Three different step sizes were used for 

first order Taylor approximation, and two new 

derived samples were obtained around every 

initial sample point. Thus, a total number of 8 

derived sample points was obtained.  

For the I.Cok. model, the initial 4 samples 

and the 8 derived sample points were used for 

building the kriging model indiscriminatingly. 

However, the GEHK was modeled in two steps. 

At first, the derived samples were used for 

building a low-fidelity model. Then the low-

fidelity was adjusted by the initial sample points. 

When the step size 0.1x   , both the I.Cok 

and GEHK perform better than the kriging 

without gradient, as shown in Fig. 2a and Fig. 

2b. The minimum is overpredicted by the I.Cok 

and a conservative prediction is obtained by the 

GEHK. As 0.3x  , the I.Cok. is fitted badly, 

due to the poor accuracy of derived samples. It 

will have adverse effect on the process of 

searching minimum. However, the inaccurate 

samples are not used directly for building 

GEHK model. When a larger step size 0.5x   

is used, false minimum is presented by I.Cok 

(Fig. 2d). The GEHK model continued to be 

better than the I.Cok. model using a very large 

step size. 
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a) b)  

c) d)  

 

Fig. 2 Comparison of different kriging model for an analytical example  

 

To further demonstrate the advantage of the 

GEHK method, the expected improvement (EI) 

[11,12] function was employed to refine the 

model. The step size was selected as 0.5. The 

convergence history of objective function is 

sketched in Fig. 3. After 5 iterations, the GEHK 

model achieves the minimum. It needs about 10 

iterations for the I.Cok model to find the 

minimum. 

It is worth noting that the same sample 

points are used for both kriging models. For the 

I.Cok. model, the original kriging formulation is 

used with an increased number of sample data 

which located in the proximity of the original 

sample points. The error could be introduced 

into the model due to inappropriate step sizes. 

However, the GEHK does not need very 

accurate derived samples, because we have the 

assumption that the derived samples are “low 

fidelity data” at first. The derived samples 

provide global trend for the fitting of true 

function. These samples also serve as if they are 

gradients because they tend to have strong 

correlations with the original sample points 

given the close distances to each other. 

 
Fig. 3  Convergence history of objective function based 

on I.Cok. and GEHK method 

4.2 Airfoil Drag Reduction Case 

In a practical optimization case, multipoint 

design strategy is often employed to avoid 

degradation in performance at offdesign 

conditions. A multipoint design needs more 

computational cost when additional design 



 

5  

EFFICIENT AERODYNAMIC OPTIMIZATION WITH HIERARCHICAL KRIGING COMBINED WITH GRADIENT 

  

conditions are considered. Although the 

application of kriging model can reduce the 

computational cost, the optimization is still 

time-costly due to each design condition 

requires a simulation. In order to verify the 

adaptability of the GEHK for multipoint design, 

this section aims to a three-design point case of 

RAE2822 airfoil using the GEHK. 

Table 1 presents the design points for 

RAE2822 airfoil in this optimization case. The 

objective function is a weighted drag coefficient, 

which was calculated from drag coefficient of 

each design condition. Weighting coefficient is 

defined by the relative importance of each 

design condition.  

Table 1 Design points for RAE2822 airfoil multi-point 

drag reduction optimization 

 Ma Re     

1 0.73 6.50e6 2.78° 0.4 

2 0.726 6.46e6 2.44° 0.4 

3 0.6 5.34e6 2.57° 0.2 

The aerodynamic and geometrical 

constraints were imposed by adding penalties to 

objective function. The optimization problem 

can be written as:  

1 2 3
1 2

1,0 2,0 3,0 0 0

min 1 1 ,d d d l

d d d l

C C C CA
c c

C C C A C
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  (13) 

where A  is the area of the airfoil and the 

subscript 0 indicates the value for the baseline 

airfoil. 

The aerodynamic characteristics (cl, cd) 

were solved by the SU
2
, which was developed 

by the Aerospace Design Lab (ADL) of 

Stanford University [13]. The one-equation 

turbulence model S-A was employed and the 

JST scheme was used for spatial discretization 

coupled with an implicit time resolution. 

Gradients with respect to design variables were 

solved by the adjoint method. Due to the 

similarity in the form of adjoint equations and 

original flow equations, we applied the 

numerical scheme in a very similar way to 

compute the adjoint solution. The computational 

grid is shown in Fig. 4. A hybrid-element mesh 

has been used with 22,740 total elements. The 

unstructured portion of the mesh starts at a 

distance far enough from the airfoil surface. 

Hence, the boundary layer will remain in the 

structured portion of the grid. The minimum 

value of dimensionless wall distance is less than 

1 to resolve the boundary layer profile. 

 
Fig. 4 Convergence history and relative prediction error 

of multi-point design using the GEHK and kriging model 

A 10-variable optimization employing the 

Hicks-Henne parameterization was considered. 

The amplitude of each design variable was in 

the domain 0.5% of the airfoil chord length. 

 Before the optimization started, a set of 

sample points were obtained by Latin 

Hypercube sampling (LHS). For building a 

kriging model, the number of samples for each 

design condition is commonly 10 times of 

design variables. Then the total number of 

simulations for building a kriging model is 300. 

In this particular case, 1/4 samples were 

selected randomly for GEHK model. A total 

number of 225 simulations were required, 

because the gradients of lift and drag were also 

solved by the adjoint method. The step size is 

selected to be 10
-4

 times of design space range. 

After the initial model has been built, the 

models needed to be refined by EI infill criteria. 

The maximum iteration step is limited to 60. 

Fig. 5 shows the convergence histories of 

objective function of GEHK, and that of a 

kriging models is also shown for comparison. 
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During the optimization process, the relative 

error of model prediction at the first design 

point was evaluated, which is also presented in 

Fig. 5. When the first iteration completed, the 

value of objective function obtained by GEHK 

is obviously lower than that of standard kriging. 

It is extremely interesting that the value 

obtained by GEHK is still lower when 

continuing the standard kriging optimization for 

a further 80 calculations. It should be noticed 

that the samples used by GEHK is a subset of 

standard kriging model. After about 10 

iterations, the prediction error of the GEHK 

model always keeps at a lower level and there 

are obvious peak values on the standard kriging 

error curve. Perhaps given enough updates, the 

standard kriging is expected to approach the 

global optimum. However, the optimization 

efficiency could be improved greatly by GEHK 

model with less computational budget. 

 
Fig. 5 Convergence history and relative prediction error 

of multi-point design using the GEHK and kriging model 

Table 2 presents the optimal results obtained 

by the GEHK and the kriging model. Each of 

the two models attempts to trade off large 

reduction in drag at 0.73Ma   and 0.726Ma   , 

while simultaneously try to increase the drag 

at 0.6Ma  . Meanwhile, both lift coefficient and 

area of airfoils are constrained. Compared this 

two model, the GEHK model offers a better 

result than ordinary kriging model. At 0.73Ma  , 

the GEHK model reduces the drag coefficient 

from 0.017120 to 0.012503, and the drag is 

reduced to 0.014394 by the kriging design. At 

0.726Ma  , the GEHK model also offers a more 

substantial reduction than the kriging. The drag 

increases by 2.6% at 0.6Ma   in the GEHK 

design case, which is smaller than optimal value 

obtained by the kriging model. However, at all 

of the design points, drag reductions is at the 

expense of a decrease in lift coefficients.  

Table 2 Multi-point design result of the GEHK and 

standard kriging-base optimization 

Models Conditions 
Lift  

increment 

Drag 

 reduction 

Area 

 increment 

kriging 

1 9.2%  15.9% 

-0.48% 2 8.1% 10.9% 

3 10.0% -3.2% 

GEHK 

1 1.61%   26.9% 

-0.49% 2 -0.51% 15.7% 

3 0.40% -2.62% 

 

Fig. 6 presents the geometry and pressure 

distributions at each design points obtained by 

the GEHK model and kriging model. It is clear 

from the pressure distribution at 0.73Ma   that 

optimizations employing the GEHK and kriging 

model have weaken the shock on the upper 

surface, and the GEHK model performs better. 

The shock has been eliminated at 0.726Ma   by 

the GEHK design, and there is still a weak 

shock by the kriging design. The pressure 

distributions of both the GEHK and standard 

kriging design case change little at 0.6Ma  . 
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 (a) Airfoil geometries of optimization result  (b) Optimized pressure distribution  

at the condition of 1 

  
 (c) Optimized pressure distribution  

at the condition of 2 

 (d) Optimized pressure distribution  

at the condition of 3 

Fig. 6 Optimization result of multi-point design using the GEHK and standard kriging model 

 

5 Conclusions  

A new method combined gradients with 

Hierarchical Kriging model is developed in this 

paper. New samples are derived by Taylor 

approximation using gradients and selected 

steps. Then a low-fidelity kriging model is built 

using derived samples. Finally, a high-fidelity 

model is obtained by adjust the low-fidelity 

kriging with initial samples. The new method 

has overcome limitations of traditional gradient-

based kriging model, and the prediction 

accuracy of the model can be improved by less 

samples and gradient. An optimization test of an 

airfoil has proved that the gradient-based 

Hierarchical Kriging enhanced the optimization 

efficiency, and got a better result, compared 

with ordinary kriging model and gradient-based 

kriging model. 
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