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Abstract

This paper discusses terrain referenced
navigation (TRN) system using light detection
and ranging (LIDAR) and pressure altimeter in
order to compensate for an Inertial Navigation
system (INS) errors. The paper addresses
sequential processing such as Sandia Inertial
Terrain Aided Navigation (SITAN) and batch
processing algorithms such as Digital Scene
Matching Area Correlator (DSMAC) and
carries out simulations with scenarios in order
to compare the performance of these two
processing algorithms and verify which one is
more useful in each specific environment.

1 Introduction

An Inertial Navigation System (INS) has
been used for estimating positions, velocities,
and attitude angles of UAVs but it has
disadvantages in that errors are accumulated as
time goes by because of integrating
measurements of acceleration and angular
velocity obtained from an inertial measurement
unit (IMU). For this reason, the INS generally
employs Global Positioning System (GPS) in
order to correct and calibrate itself through a
Kalman filtering algorithm. However, GPS is
easily affected by outside disturbance signals.
As a result, TRN (Terrain Referenced
Navigation), which is a technique that corrects
the INS wusing the position measurement
obtained through comparing the measured
altitude data from a sensor with the stored
digital elevation map (DEM)[5] regardless of
outside disturbance signals, has been recently
studied as an alternative method for INS

correction. Thus, this technique can be used
when GPS is not available or jammed.

There are two processing methods for a TRN
system[2]. One is a sequential processing
method such as SITAN (Sandia Inertial Terrain-
Aided Navigation), which compares one
measurement data with the stored DEM at the
time when the sensor measures altitudes. The
other is a batch processing such as Digital Scene
Matching Area Correlator (DSMAC), which
compares between sensed images and stored
reference images to determine position
measurements through the best match location
of the image, and Terrain Contour Matching
(TERCOM), which obtains the measurements
through correlating a sensed terrain profile to a
stored map terrain profile.

To measure the altitude data for TRN, a
pressure altimeter, a radar altimeter and a
LIiDAR (Light Detection and Ranging) are
needed. Comparing with the radar altimeter, the
LiDAR has several advantages in that it can
measure large areas that are difficult to
approach with higher resolutions in a shorter
period of time and construct a digital elevation
map. The constructed DEM can be used for
hazard avoidance as well as TRN.

Therefore, this paper proposes the TRN
system using the LIDAR in order to compensate
for INS errors. Section 2 describes the
sequential processing method based on the
LIiDAR measurements and INS system and
measurement modeling. Section 3 discusses the
batch processing method with cross correlation
matching. Section 4 explains EKF algorithm.
Section 5 gives results of the simulations
consisted of two different environments and
comparison. Finally, section 6 gives conclusion.



2 Sequential processing method

This section explains SITAN as a sequential
processing method and describes the system
model.

2.1 SITAN

SITANI[2] is a sequential processing method
which means when the sensor measures an
altitude, the position of UAV is derived by
correlating the altitude to the stored DEM at the
time. An inclination of terrain is input into an
Extended Kalman filter (EKF) which updates
the UAV’s INS.
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Fig. 1. SITAN system

2.2 INS system model

The states of system model are defined as 6
error states expressed the position and the
velocity of UAV.

X=[6x &y &h év, év, v, (1)

where, 6x,8y,d8h are the errors of X, y and z
coordinates. év, ,év,, év,are the errors of the
velocities of UAV.

This error states are used in indirect kalman
filter for INS correction.

Equation (2) and (3) are error state equations.

X=FXx+Gw (2)
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where, W means random white noise of INS.

2.3 Measurement model[4]

The terrain-clearance measurement equation
is a nonlinear function of X, y, z coordinates. To
apply the EKF, the linearization of the
measurement equation is needed.

~

2= Y Yk (4)
_ ﬁk _hDB ()A(v 9) _|: Yiioar :|
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H, = OX oy (5)
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where, Y, and Yy, describe the estimated
measurements and true measurements of z
coordinate. h, is estimated altitude and h, (%, ¥)

is an elevation obtained in DEM when x and y
coordinates are (X,¥). Yo IS @ Measurement by

LiDAR and vy, isameasurement by pressure
altimeter. Finally, H, is a measurement

sensitivity matrix and the first and second rows
mean the terrain slops of x and y coordinates.

3 Batch processing method

This section discusses DSMAC method and
cross correlation.

3.1 DSMAC

DSMACI[3] is originally used for
Tomahawk cruise missile in order to provide a
reliable and precise measurement of location.
During the missile flying, the current location of
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missile where the most well matched is
determined by acquired images of the ground
comparing with an existing image that is stored.
In this paper, as previously mentioned, altitude
measurements obtained from the sensors such as
LIiDAR and pressure altimeter are used for
generating terrain elevation map instead of
images and compares with DEM in order to
estimate the current position.

-y

Fig 2. DSMAC operation
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3.2 Cross-Correlation matching[1]

Area-based matching technique is used to
extract the most similar parts by analyzing the
similarity between elevations measured by the
LiDAR sensor and DEM. In other words, terrain
elevation map generated by LiDAR is defined
as a template window and then, the size of a
search window is set as much as including the
template window. While the template window is
moving within the search window, the most
well matched areas are found. This paper uses
cross-correlation matching technique for area-
based matching technique.
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Fig 4. Concept of Cross-Correlation matching

The first picture (a) is a template window
through LIiDAR. The second picture (b) is a
search window in DEM and red areas mean a
matching window.

Cross-correlation coefficient (p,-1< p<1) is

defined as equation (8).

i[(hT (Xi ! yj)_ﬁr\)(hm (Xi' yj) _ﬁ»;)}

n
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nem-1 (8)
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where, o,,, IS covariance between a template
window and a matching window and o, and ¢,

are the standard deviations of the template
window and the matching window.
Cross-correlation coefficient has a statistical
characteristic so that the maximum cross
correlation coefficient does not mean the best
matched. Thus, when the cross correlation
coefficient is denoted as a three-dimensional
curved surface, the position where the partial
derivative is zero in the three-dimensional
curved surface is the best well-matched. This
position can be the location of UAV estimated.

p =X+, Xy +¢,x°y? +¢,x°y°
+C X2 +C XY +C, X7y + X7y
+CoX + Cig XY + Cy XY +Cp,xy°

+ClE + C14y + ClS y2 + Clﬁ y3 (9)



Using the three-dimensional  surface
approximation equation (9), the pixel position
and any polynomial coefficients can express the
cross correlation coefficient (10).

2, ¥ x3y x3y2 ys .
pr| X Xy Xy? o yiliG,
| Pos | _X3 X3y X3y2 ys_ | Ci6 | (10)

Through pseudo inverse, the polynomial
coefficients can be obtained. The three-
dimensional surface approximation equation can
be calculated by substituting the polynomial

coefficients for C,,C,---Cj .

The equation (11) is for finding the sub-pixel
position when a partial differential of three-
dimensional surface approximate equation is
zero.

dp=Lax+ Py -0
OX OX (11)

the most well-matched position

Fig 5. Position of maximum coefficient of correlation

3.3 Measurement model

True measurement of the x and y coordinates
is calculated by Cross-Correlation matching
using LIDAR.

=Y, Y
X, X,
= 9k - yk 12
o 12

k pressure
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where, %, 9, ,h are x, y and z coordinates by
INS. %,y are x and y coordinates by using
cross-correlation matching. h . is the altitude
measured by pressure altimeter. The true
measurement is used in kalman filter.

4 Extended Kalman Filter

This section describes the EKF[4] used for
this research simulation. Kalman filter is
originally used in linear system. However, when
kalman filter is applied to nonlinear system,
extended kalman filter (EKF) is needed in
instead of Kalman fitler. The filter method has
two stages: one is a state propagation step, the
other is a state update step. The equation (6)
represents the propagation step for error states
and error covariance.

)A(; =f (5\(;—1) = chA)A(Ll
Isk_ = (Dk—llsktl(bl—l +®, ,GQ_,G'®, At? (6)
@, , =1 +FAt

where, %, is an priori estimated error state and
% is an posterior estimated error state. P,
represents an error state covariance. Q,,

represents a noise covariance matrix of INS.
@, ,is a state transition matrix. . The equation

(7) represents the update step for error states
and error covariance.

Z, =H, X
K= 'Sk_HI (Hk FA)k_HI + Rk)_l (7)
X =% +K(z, -2,)
P =(I-KH, )P, (I -KH,)" +KR K"

where, z,is errors of true measurements which
are introduced earlier in section 2.3 and z, is the
estimated measurements. H, is measurement
sensitivity matrix. After obtaining kalman gain,
% and B’ are calculated by substituting the
kalman gain in equation (7).

Indirect kalman filter is used along with EKF
sothat X, is zero vector every steps.
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5 Simulation results

5.1 Simulation environment

This section analyzes the simulation results
of TRN system of UAV. The speed of UAV is
set 90m/s. HG 1700 is used as the sensor of
IMU and the noise of LIDAR and pressure
altimeter are assumed each 5m.

5.2 Example 1

In this study, simulations perform by
considering two different situations that initial
position errors have small or large values.
DSMAC and SITAN methods are compared to
each other with the two different situations. If
the initial position error is bigger than 90m, the
position could have divergence because the grid
size of DEM is 90m and the terrain inclination
varies discretely. In this section, x, y and z
coordinates errors are assumed 10m, 5m, and
2m.
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Fig 9. Start and End location of simulation

Figure 6-8 are SITAN and DSMAC
performance. The positions through SITAN and
DSMAC follow reference positions with small
or large errors. The results represent a
disadvantage of SITAN[2] which is high
probability of divergence due to the highly
nonlinear characteristic of terrain and use of
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only one measurement. To make sure to
compare to each methods, mean values of errors
are represented in table 1.

Table 1. Mean for TRN with initial small errors

x(m) y(m) z(m)
SITAN 16.40 -30.36 3.3823
DSMAC 12.02 -1.54 0.4673

Averagely, the errors of SITAN are seen to be
larger than the errors of DSMAC according to
table 1.

5.3 Example 2

. In this section, X, y and z coordinates errors are
assumed 150m, 100m, and 2m.
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Figure 10-12 are SITAN and DSMAC

performance with large error. As shown in
figures, the SITAN performance with large
errors is showed a tendency of divergence and it
is more distinct than the SITAN performance
with small errors. Table 2 represents the errors
means for TRN with initial large errors.

Table 2. Mean for TRN with initial large errors

x(m) y(m) z(m)
SITAN -249.29 -168.39 0.77
DSMAC 31.45 9.05 -0.10

600 \ \ \ \ \ \ \ \ \
I I I I I I I I [
4A0---r-——F-—9-—9-"~" |\~~~ —rF~-~T1-~-T°~
I I I I I I I I I
200 —— £ - +——d4—— -~~~ —— b ——+ — —+ — —
[ " | | | | |
ob - L o TTooe=l i ]
| | | | [ i | i
| | | | I I I | |
- i Es i Bt st i it el
= I I I I I I I I I
%X —400———#——+77ﬂ77ﬂ777\77[\777k77#77+777
e | | | | | i | | |
o N VA
I I I I I Py I I
4 e A N
800 | | | | I [ S |
1000 | | | | I | o |
R S St e e
-1200 INS/DSMAC 77ﬂiii‘iiﬂiiikiiﬁiiT{77
INS/SITAN | | | | [IERANN
-1400 | | ! | | |
0 5 10 15 20 25 30 35 40 45 50
Fig 10 X coordinate error history
400 \ \ \ \ \ \ \ \ \
I I I I I I I I I
I I I I I I I I |
200 — —F -~ A A e = —
I | T I I I I I
I | I I I I I I I
ole;ff’ﬁ:L,,,‘,,A‘,_,iL:ﬁ:L—:}‘:ffft,,,:t
= S | | | ] 1 1
I A I [ | I I
| T e |
B -200———#77+774774771.‘\77\7\777p177+777
= I I I I AN I L |
I | | | | | | | [Ny
g ! | | | | | | | |
T el ol At Rt Bttt el At s iy
I I I I I I I I I
I I I I I I I I I
600 — — b - — b 4 ot _1]_
I I I I I I I I I
I I I I I I I I I
I I I I I I
-800 INS B T S A
INS/DSMAC I I I I I I
INS/SITAN ‘ ‘ ‘ ‘ ‘ ‘
-1000 ! ! ! ! I I
0 5 10 15 20 25 30 35 40 45 50

Fig 11. . Y coordinate error history

6 Conclusion

This research carries out to verify the
performance between the two methods
(sequential processing and batch processing) for
initial error conditions to analyze each method
is more useful in each specific environment.
Through the simulations, the batch processing
method has a better performance than the
sequential processing method in the whole
simulation when the initial errors of the INS are
small or large.
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