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Abstract

This paper presents the adoption of a number of
optimisation techniques to solve aircraft trajec-
tory optimisation problems formulated as opti-
mal control problems. The adaptive bisection ε-
constraint method is adapted to enable the solu-
tion of problems in which two performance in-
dices are to be minimized simultaneously leading
to the generation of Pareto frontiers.

The techniques are applied to an aircraft tra-
jectory optimisation problem in which a generic
model of an Airbus A320 model aircraft is used.
The problem involves the generation of a Pareto
set of solutions which find a compromise be-
tween flight time and fuel consumption for a
climb from 35 ft to a cruising level of 35,000 ft
in a range of 900 km. The results are then anal-
ysed in-depth and corroborated with flight perfor-
mance theory.

1 Introduction

Optimal control theory today is used in a wide
range of engineering problems. It deals with find-
ing optimal control laws that minimize a perfor-
mance criterion (cost functional) of a dynamic
system through mathematical optimisation tech-
niques. The optimisation process involves trans-
lating the system dynamics and its desired objec-
tives into the abstract language of mathematics,
which give rise to what is called a control prob-
lem, and then to find the solution to this prob-
lem. Such a solution is also called optimal con-

trol and the path it follows to reach the desired
goal is called the optimal trajectory. The physi-
cal system which is represented by a mathemati-
cal model, consists of a set of relations between
the system states and its control inputs. Physical
restrictions on the control inputs lead to a finite
set of admissible inputs or controls. The solution
of a control problem is to determine the admissi-
ble inputs which generate the desired output and
which, in doing so, minimize the cost functional
[10].

Traditionally, optimal control problems were
solved using indirect methods, applying the cal-
culus of variations or Pontryagin’s maximum
principle to satisfy first-order necessary condi-
tions for optimality [12]. These methods are
characterized by explicitly solving the optimality
conditions stated in terms of the adjoint differen-
tial equations, the maximum principle, and asso-
ciated boundary conditions [3]. This is practical
for classical problems and some special weakly
non-linear low dimensional systems. However,
to obtain a solution of dynamic systems described
by strongly non-linear differential equations, it is
necessary to use numerical methods [12]. Even
so, these methods suffer from the fact that adding
new constraints can require deriving new neces-
sary conditions. Also, in many complex prob-
lems, getting the necessary conditions in a useful
form can be a very difficult task [5].

As problems became more complex, indi-
rect methods became increasingly harder to use,
eventually being replaced by the more computa-
tionally intensive direct methods. Direct methods
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transcribe the continuous optimal control prob-
lem into a parameter optimisation problem. Sat-
isfaction of the system equations is accomplished
by integrating them stepwise using either implicit
or explicit rules; in either case, the effect is to
generate non-linear constraint equations which
must be satisfied by the parameters, which are the
discrete representations of the state and control
histories [7]. The problem is thus converted from
the original infinite dimensional optimal control
problem into a finite Non-Linear Programming
(NLP) problem which can be solved using stan-
dard NLP solvers.

The work presented in this paper describes
the adoption of a number of techniques to solve
optimal control problems (OCPs) using direct
methods to find optimal trajectories. In partic-
ular, the adaptive bisection ε-constraint scalarisa-
tion method is adapted to enable the generation
of Pareto frontiers for bi-objective optimal con-
trol problems (BOOCPs). The underlying NLP
solver which is used for the solution of the dis-
cretised BOOCP is the open-source large-scale
non-linear solver IPOPT [14], which has been
integrated with the MATLAB environment [1],
where all the algorithms were developed.

The paper is structures as follows. Sec-
tion 1 gave an introduction to the work pre-
sented herein. Section 2 formulates a generic
single-objective continuous optimal control prob-
lem which is the discretised using pseudospec-
tral techniques in Section 3. The discretised opti-
mal control problem is then formulated into a pa-
rameter optimisation problem which can be fed
to the non-linear programming solver IPOPT in
Section 4. The optimal control problem is further
extended to support the solution of bi-objective
problems in Section 5, and the adaptation of
the adaptive bi-section ε-constrained scalarisa-
tion method is described in Section 6 which en-
ables the solution of bi-objective problems with
standard solvers. An aircraft trajectory optimisa-
tion problem is then applied to the optimisation
techniques, the results of which are analysed in-
depth and corroborated with flight performance
theory. Finally a few concluding remarks on the
work presented are given.

2 The Generic Optimal Control Problem

In general, a Single-Objective Optimal Control
Problem (SOOCP) is solved by finding the state
trajectories x(t), the control trajectories u(t), and
times t0 and t f in the interval t ∈

[
t0, t f

]
, that min-

imize the cost functional J. The problem is for-
mulated as follows [4]:

J = φ
[
x
(
t f
)
, t f

]
+

∫ t f

t0
L [x(t) ,u(t) , t]dt (1)

where φ is the endpoint cost and L is the integrand
cost, known as the Mayer and Lagrange cost re-
spectively.

The SOOCP is subjected to the following
constraints which must be satisfied by the solu-
tion:

ẋ = f [x(t) ,u(t) , t] , t ∈
[
t0, t f

]
(2)

hl ≤ h [x(t) ,u(t) , t]≤ hu, t ∈
[
t0, t f

]
(3)

el ≤ e
[
x(t0) ,x

(
t f
)
,u(t0) ,u

(
t f
)
, t0, t f

]
≤ eu

(4)

where ẋ represents the system dynamics in the
form of differential constraints, and h and e are
the path and event constraints respectively.

The state, control and time variables are also
bounded as follows:

ul ≤ u(t)≤ uu, t ∈
[
t0, t f

]
(5)

xl ≤ x(t)≤ xu, t ∈
[
t0, t f

]
(6)

t0l ≤ t0 ≤ t0u (7)
t f l ≤ t f ≤ t f u (8)
t f − t0 ≥ 0. (9)

3 Pseudospectral Discretisation

Solving the OCP analytically is generally a very
difficult task. This problem can be eliminated
if solutions are approximated in reasonable time
with the utilization of efficient numerical tech-
niques on digital computers. With this approach,
the OCP is discretised such that the state and
control trajectories are represented by vectors of
points at nodes representing time.

The computation of a solution for the discre-
tised optimal control problem involves a number
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of mathematical computations, the most compu-
tationally intensive of which are those approxi-
mating the derivatives of the state trajectories at
the discretisation nodes and integrating the cost
functionals. Over the last few years, pseudospec-
tral discretisation techniques have emerged as the
most suitable computational methods for solving
optimal control problems owing to their accu-
racy and speed, with an impressive convergence
rate known as spectral accuracy [13]. In fact,
for smooth problems, spectral accuracy implies
an exponential convergence rate [11]. For such
reasons, pseudospectral techniques have been
adopted in this work.

The discretisation process commences with
the introduction of the following transformation
in the general optimal control problem [8]:

τ← 2
t f − t0

t−
t f + t0
t f − t0

, t ∈
[
t0, t f

]
(10)

This results in the mapping:

τ ∈ [−1,1]← t ∈
[
t0, t f

]
(11)

The OCP is now to find the state and control tra-
jectories x(τ) and u(τ) respectively, in the interval
τ ∈ [−1,1], and times t0 and t f , that minimize the
performance index:

J = φ
[
x(1) , t f

]
+

t f − t0
2

∫ 1

−1
L [x(τ) ,u(τ) ,τ]dτ

(12)
subject to the following constraints and bounds:

ẋ(τ) =
t f − t0

2
f [x(τ) ,u(τ) ,τ] ,τ ∈ [−1,1] (13)

hl ≤ h [x(τ) ,u(τ) ,τ]≤ hu,τ ∈ [−1,1] (14)

el ≤ e
[
x(−1) ,x(1) ,u(−1) ,u(1) , t0, t f

]
≤ eu

(15)

ul ≤ u(τ)≤ uu,τ ∈ [−1,1] (16)
xl ≤ x(τ)≤ xu,τ ∈ [−1,1] (17)

t0l ≤ t0 ≤ t0u (18)
t f l ≤ t f ≤ t f u (19)
t f − t0 ≥ 0. (20)

In the Legendre pseudospectral approxima-
tion, the state and control trajectories x(τ) and

u(τ) respectively, in the interval τ ∈ [−1,1], are
approximated by Nth order Lagrange polynomi-
als xN(τ) and uN(τ) based on interpolation at the
Legendre-Gauss-Lobatto nodes [11]:

x(τ)≈ xN(τ) =
N

∑
k=0

x(τk)φk(τ) (21)

u(τ)≈ uN(τ) =
N

∑
k=0

x(τk)φk(τ) (22)

where xN(τ) and uN(τ) are the Lagrange interpo-
lating polynomials, and φk(τ) are known as La-
grange basis polynomials. The derivative of the
state vector is approximated as follows:

ẋ(τk)≈ ẋN(τk) =
N

∑
i=0

Dkix(τi), i = 0,1, ...,N

(23)
where D is the differentiation matrix correspond-
ing to the LGL nodes.

The differential constraints are evaluated at
the LGL nodes such that:

f (τk) = fk
(
xN(τi),uN(τi),τi

)
, i = 0,1, ...,N

(24)
The differential defects at the collocation

points are calculated by subtracting the differen-
tial constraints from the derivative of the state
vector:

ζ(τk) = ẋ(τk)− f (τk) (25)

The path constraint functions are similarly
calculated at the LGL nodes:

h(τk) = hk
(
xN(τi),uN(τi),τi

)
, i = 0,1, ...,N

(26)
The objective function of the optimal control

problem is approximated as follows:

J ≈ φ
[
xN (1) , t f

]
+

t f − t0
2

N

∑
k=0

L
[
xN (τk) ,uN (τk) ,τk

]
ωk (27)

where the weights ωk are defined at the LGL
nodes.
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4 NLP OCP Formulation

In Non-linear Programming (NLP), a system of
equalities and/or inequalities is solved over a
set of unknown variables, such that an objective
function is minimized. In general, a NLP prob-
lem is defined as:

min
y
{J} (28)

subject to:
g j (y)≤ 0,(1≤ j ≤ r) (29)
hk (y) = 0,(1≤ k ≤ s) (30)

yli ≤ yi ≤ yui,(1≤ i≤ ny) (31)

where y is the vector of decision variables of size
ny to be optimised with lower and upper bounds
yli and yui respectively. g j (y) and hk (y) are the r
inequality and s equality constraints respectively.

The OCP can be formulated into a NLP prob-
lem by following a simple procedure. The ob-
jective function can be calculated directly from
equation (27), and the decision vector y is con-
structed from the state vector xN , the control vec-
tor uN and the initial and final times t0 and t f
respectively. This results in vector y having di-
mension ny = nx(N + 1)+ nu(N + 1)+ 2 and is
constructed as follows:

y = [xN uN t0 t f ]
T (32)

The decision vector is constrained by a lower
bound vector yli and an upper bound vector yui:

yli = [xN
l uN

l t0l t f l]
T ; (33)

yui = [xN
u uN

u t0u t f u]
T ; (34)

The equality constraint vector hk (y) is con-
structed from the differential constraints such
that:

hk(y) = [ζN ]T (35)

with the dimension of the equality constraints
vector r equal to nx(N +1).

The equality constraints vector incorporates
the path, event and time constraints with their re-
spective bounds:

gk(y) = [hN−hN
l hN

u −hN

eN− eN
l eN

u − eN t f − t0]T (36)

5 Generic BOOCP Problem Formulation

In flight trajectory optimisation, it is often the
case that an engineer needs to find an optimal
control law which minimizes the fuel consump-
tion and the time of flight, or a compromise might
be required between carbon dioxide and nitrous
oxides emissions. These are inherently BOOCPs.

In the bi-objective case, the optimal control
problem is defined similar to the definition of the
SOOCP in Section 2 with the exception for equa-
tion (1) which is now modified to cater for two
objective functions:

Ji = φi
[
x
(
t f
)
, t f

]
+

∫ t f

t0
Li [x(t) ,u(t) , t]dt (37)

where i = 1,2.
Following the pseudospectral discretisation

and approximation process described in Section
3, the objective functions are calculated as fol-
lows:

Ji ≈ φi
[
xN (1) , t f

]
+

t f − t0
2

N

∑
k=0

Li
[
xN (τk) ,uN (τk) ,τk

]
ωk (38)

where i = 1,2. NLP formulation of the BOOCP
will lead to the following problem:

min
y
{J1,J2} (39)

subject to:
g j (y)≤ 0,(1≤ j ≤ r) (40)
hk (y) = 0,(1≤ k ≤ s) (41)

yli ≤ yi ≤ yui,(1≤ i≤ ny) (42)

Solving the BOOCP problem results in a
Pareto set of optimal solutions. A standard NLP
solver is limited to solving only single objective
optimisation problems. Therefore, a scalarisation
technique needs to be used to reduce the BOOCP
to a series of SOOCPs to populate the Pareto
frontier. The three most applied scalarisation
methods in the literature are the linear weighted
sum (LWS), the normal boundary intersection
(NBI) and the normal constraint (NC) methods.
In previous work, the authors of this paper have
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proposed a new method, that of the adaptive
bisection ε-constraint method which has been
shown to perform better than the reviewed meth-
ods. Hence, the adaptive bisection ε-constraint
method was adopted to generate Pareto frontiers
for the BOOCPs in this work.

6 The adaptive bisection ε-constraint
method

The adaptive bisection ε-constraint method [6], is
a scalarisation method which is used for the gen-
eration of optimal Pareto frontiers in bi-objective
optimisation problems, in the context of this
work, BOOCPs. Similar to other scalarisation
methods, the Pareto frontier is generated by solv-
ing a sequence of single-objective optimisation
problems in a systematic manner. In this method,
one of the objective functions is selected to be
optimised while the other is converted into an ad-
ditional constraint, leading to a solution that can
be proven to always be weakly Pareto optimal.
Systematic modification of the value of the ob-
jective function forming the additional constraint
leads to the generation of an evenly distributed
Pareto frontier.

The method transforms the BOOCP into np
SOOCPs, where np is user specified and it deter-
mines the target number of points on the Pareto
frontier. The algorithm starts by obtaining the an-
chor points J∗1 and J∗2 of the BOOCP, correspond-
ing to the minimum values of each of the perfor-
mance indices through solving the two SOOCPs
formulated in equation (39). The anchor points
define the extremal points on the Pareto frontier,
ensuring the ensuing scalarisation method does
not fail to consider any part of the Pareto frontier
in the optimisation process. The intersection of
the lines J1 = J∗1 and J2 = J∗2 defines the utopian
point Ju, which, albeit being an ideal solution,
does not lie in the feasible region of the optimi-
sation problem (Fig. 1).

The remaining (np−2) problems to be solved

Fig. 1 Graphical representation of the design
metric space of a BOOCP.

are formulated as follows:

min
y
{J1} (43)

subject to:
g j (y)≤ 0,(1≤ j ≤ r) (44)
hk (y) = 0,(1≤ k ≤ s) (45)

yli ≤ yi ≤ yui,(1≤ i≤ ny) (46)

with the additional constraint:

J2 = εc. (47)

The value of εc for each of the remaining
SOOCPs is calculated as follows. Once the the
anchor points are determined, the utopian line,
which is a straight line joining the anchor points,
is bisected to obtain the first value of εc in equa-
tion (47). The solution of the resulting SOOCP
will lead to an additional point on the Pareto fron-
tier. Sometimes this will lead to an infeasible
problem that leads to no solution. In this case,
the line joining the anchor points is subdivided
into four sections and the constraint εc is set to
the value of J2 at one-fourth the length of the
line. If the problem is still infeasible, the value of
J2 at three-quarters of the line joining the anchor
points is then tried. The line will continue being
bisected until a solution is found or a constant K
set by the user is reached.
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Once an additional point J∗3 is found, the
euclidean distance between the point and other
points on the Pareto frontier is determined. The
two points with minimal euclidean distance are
then used to find an additional point on the Pareto
frontier by using the method of line bisection as
previously described. This process is repeated
until the number of Pareto points np requested by
the user is found. For each point on the frontier,
the optimal state and control trajectories can be
easily deduced from the optimisation variables.

7 Aircraft Trajectory Optimisation

An aircraft trajectory optimisation problem was
considered in this paper to demonstrate the va-
lidity of the techniques presented. The trajec-
tory optimisation problem involves generating a
Pareto frontier of optimal climb trajectories for
an aircraft flying from 35 ft above screen height
to a cruising altitude of 35,000 feet while cover-
ing a range of 900 kilometres. Two cost function-
als were considered in this case, the minimization
of flight time and the minimization of fuel con-
sumption.

7.1 Problem formulation

For such a problem, an aircraft performance
model (APM) was developed to model the phys-
ical non-linear dynamic response of a generic
A320 airliner. BADA coefficients [2] were used
to develop the APM, following the methodology
of Glover and Lygeros [9], described in the fol-
lowing state equations:

Ẋ =V cosγ (48)

ḣ =V sinγ (49)

V̇ =−CDSρV 2

2m
−gsinγ+

TmaxTR

m
(50)

ṁ =− f (51)

where X is the distance (range) covered by the
aircraft on the ground, h is the height above
ground level (AGL) (in this example it is con-
sidered as the altitude with the provision that the
ground elevation is zero at the mean sea level

Event Initial or Final Condition
1 Xi = 0 km
2 hi = 35 ft
3 Vi = 165.2 kts
4 mi = 68 tonnes
5 X f = 900 km
6 h f = FL 350

Table 1 BOOCP event constraints.

(MSL)), V is the true airspeed (TAS) of the air-
craft and m is the mass of the aircraft. X , h, V and
m constitute the four states of the model which
can be used only for vertical profile trajectories
due to an omitted degree of freedom (DOF) in
the lateral axis of the aircraft.

The control inputs to the aircraft are the flight
path angle γ, and the thrust ratio TR which is a
fraction of the maximum thrust available from
the engines at a particular altitude, Tmax. The en-
gine model integrated with the APM is a simplis-
tic model of a turbofan engine as described in the
BADA user manual [2].

CD is the coefficient of drag which varies
with the aircraft configuration i.e. take-off, ini-
tial climb or clean. S represents the total area of
the lifting surfaces on the aircraft, ρ is the air den-
sity at a particular value of h assuming standard
atmospheric conditions and f is the rate of fuel
consumption. Finally, g is the gravitational ac-
celeration assumed to be constant.

The initial and final conditions of the aircraft,
formulated as event constraints in the BOOCP
problem formulation are defined in Table 1. Fur-
thermore, path constraints were applied to the tra-
jectory optimisation problem which puts realistic
limits on the performance of the aircraft and its
propulsion system. The first path constraint is
the stall speed of the aircraft which is a function
of the aircraft configuration. The upper end of the
speed scale is limited by VMO and MMO which are
the maximum operating speed and the maximum
operating Mach number respectively. Finally, the
maximum thrust provided by the engines is also
formulated as a path constraint.
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Fig. 2 Pareto frontier for minimum time and min-
imum fuel burn.

Fig. 3 Altitude profiles for Pareto set.

7.2 Results analysis

The Pareto frontier of the aircraft trajectory opti-
misation problem is presented in Figure 2. The
frontier is evenly distributed and illustrates the
utopian solutions at the extreme ends of the fron-
tier, and intermediate solutions that provide a
compromise between fuel consumed and flight
time for a particular trajectory. The altitude-
range profiles of the complete Pareto set are il-
lustrated in Figure 3 as a three-dimensional sur-
face plot. The trajectory at the front of the surface
is the minimum time trajectory, whereas the pro-
file at the far back represents the trajectory which
consumes the least fuel. The complete surface is
filled with successive plotting of trajectories rep-
resenting the rest of the points in the Pareto opti-
mal set. The discussion henceforth will focus on
the utopian solutions.

Figure 4 illustrates the altitude-range profile
for the two extremal solutions. On one hand, the
minimum time solution consumes 4.36 tonnes of
fuel and completes the trajectory in 1 hr 2 mins.
On the other hand, the minimum fuel solution

Fig. 4 Altitude profile for minimum time and
minimum fuel burn.

consumes 3.49 tonnes of fuel in a flight time of 1
hr 14 mins. This means that for this specific prob-
lem, an increased flight time of 12 mins over a
900 km leg can be traded for approximately 20%
of the fuel consumed.

The minimum fuel trajectory involves a steep
climb to the cruising altitude at which flight level
the aircraft flies the rest of the leg. This is ex-
pected since gas turbines are most efficient at
high altitudes where the air density is lower,
which results in less drag on the aircraft. How-
ever, it is worth noting that the upper bound on
the altitude in the BOOCP formulation was that
of 45,000 ft giving the aircraft the possibility to
fly higher than 35,000 ft in the level flight phase
followed by a descent to the requested altitude at
the end of the leg. This did not materialise, how-
ever, since the cost of gaining additional gravi-
tational potential energy was larger than the sav-
ings in fuel resulting in flying a few flight levels
higher.

It is interesting to note that the minimum time
trajectory follows a completely different strat-
egy. The flight starts with a shallow climb up to
around 24,500 ft, followed by a level flight and
finally a shallower climb to the requested altitude
of 35,000 ft. The altitude the aircraft adopts to
fly level at is the cross-over altitude i.e. the alti-
tude at which the maximum operating speed and
the maximum operating Mach number coincide.
Consequently, this happens to be the altitude at
which the aircraft can fly at the maximum true
airspeed which results in minimum flight time.

In both cases, the climb from 35 ft occurs at
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Fig. 5 Thrust ratio profile for minimum time and
minimum fuel burn.

the maximum thrust provided by the engine as
can be seen in Figure 5. In the minimum time tra-
jectory it is clear that engine thrust is kept at the
maximum level permissible by operational con-
straints to gain the maximum possible airspeed
which will result in minimal flight time. When
minimising fuel consumption, however, this is
less obvious because fuel consumption is directly
related to thrust levels. Reducing the thrust dur-
ing the climb while keeping a constant flight path
angle will result in a decrease in the rate of climb.
As a result, it will take longer to reach the target
altitude. Since the total fuel consumed during the
climb is the integral of the rate of fuel consump-
tion for the duration of the trajectory, the longer
the flight time, the larger the fuel consumption.
The optimisation results suggest that it is cheaper
to climb at high thrust levels and high rates of fuel
consumption at high rates of climb rather than by
simply keeping low thrust levels for a prolonged
time. This is also understandable in the context
that, for a given calibrated airspeed (CAS), TAS
increases disproportionately with altitude. In still
air, such as the case considered, TAS is what de-
fines the ground speed and hence the flight time.
As a result, it is expected that it will be advan-
tageous to expedite climb beyond that providing
minimum fuel burn during climb in order to reach
higher altitudes quicker.

The true airspeed and flight path angle (FPA)
profiles illustrated in Figures 6 and 7 correlate
perfectly with the observations previously made.
The minimum time trajectory yields a speed pro-
file which is larger in magnitude throughout the

whole flight range over the minimum fuel coun-
terpart. The former adopts a TAS of 495 kts,
equivalent to 0.86 Mach, at the crossover alti-
tude, while the latter flies at a nearly constant
TAS varying from 419 kts to 410 kts at 35,000 ft.
This corroborates with the fact that during cruise,
the aircraft would be expected to climb or slow
down gradually as the aircraft becomes lighter
through progressive fuel burn. In this case, the
latter strategy was adopted. The steep climb of
the minimum fuel trajectory is reflected in Figure
7 in which a maximum FPA of 6.2o is adopted as
opposed to a maximum FPA of 4.4o in the min-
imum time case. The minimum time trajectory
exhibits a lower climb gradient than its counter-
part in order to afford a quicker TAS during the
climb, since in both cases the engine thrust is set
to the maximum level. Furthermore, in the mini-
mum time trajectory, the second climb at the end
of the trajectory, which is shallower than the first
with a maximum FPA of 1o, is explained by the
fact that at higher altitudes turbine engines gen-
erate less thrust due to the thinner atmosphere.
Moreover, no trade-off is occurring between ki-
netic and potential energy to provide the addi-
tional rate of climb until the very end of the flight.

In Figures 4 to 7, it can be observed that the
end of the trajectory is salient. In particular, in
the minimum time profile the last 5,000 ft are
climbed in just 12 km. Clearly, this is not practi-
cal for both operational and safety reasons. The
speed profile during this time indicates a rapid
decrease in TAS from 495 kts to 363 kts. The
speed change occurs due to the trading of ki-
netic energy (speed) with potential energy (al-
titude) and also due to a rapid reduction in the
thrust ratio. This solution falls within the feasi-
ble search space of the optimiser since no final
condition is set on the speed in the problem for-
mulation. A similar but less prominent strategy
is adopted in the minimum fuel trajectory. In this
case, the aircraft is already flying at the cruise
altitude requiring only to cover further range to
complete the mission. Since fuel consumption is
of primary importance, in the final part of the tra-
jectory the thrust is reduced to zero to conserve
fuel leaving the aircraft to decelerate slowly to-
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Fig. 6 True Airspeed profile for minimum time
and minimum fuel burn.

Fig. 7 Flight path angle profile for minimum time
and minimum fuel burn.

wards the stall speed as it flies through the at-
mosphere which produces a retarding drag force
on the airframe. Theoretically this is possible
since no constraints in the problem formulation
are compromised even though for practical rea-
sons such a flight is not flown.

8 Conclusion and Future Work

This paper has presented the adoption of a num-
ber of techniques to solve optimal control prob-
lems using direct methods to find optimal tra-
jectories. In particular, the adaptive bisection
ε-constraint scalarisation method was adapted
to enable the generation of Pareto frontiers for
BOOCPs. The techniques were then applied to a
bi-objective aircraft flight trajectory optimisation
problem. This included a climb from 35 ft to a
cruise altitude of 35,000 covering a range of 900
km bound by operational constraints in terms of
speed and thrust provided by the engines. The re-
sults were analysed in depth and have illustrated
the strategies adopted by the optimisation process

in the presence of such constraints. Moreover
corroboration with flight performance theory was
confirmed. The work has formed the basis of a
trajectory optimisation tool which will be used to
solve more complex and practical problems in the
future.

The ultimate goal of the ongoing research
is to develop innovative real-time trajectory
optimisation methods which have the poten-
tial to be used in the next generations of
ATM Planning/Negotiation Systems and Avion-
ics Flight Management Systems. The recent
advent of Performance-Based Navigation (PBN)
concepts represents a shift from sensor-based to
performance-based navigation. PBN specifies
that aircraft navigation systems performance re-
quirements be defined in terms of accuracy, in-
tegrity, availability and continuity required for
the proposed operations in the context of a partic-
ular airspace, when supported by an appropriate
Air Traffic Management (ATM) infrastructure.
The extensive introduction of advanced Com-
munication, Navigation and Surveillance (CNS)
technologies in the Civil/Military ATM field is
reshaping the global air traffic network. How-
ever, the international aviation community is now
facing important integration and harmonization
challenges for the US NextGen (Next Genera-
tion Air Transportation System) and the Euro-
pean SESAR (Single European Sky ATM Re-
search) initiatives. Important research efforts are
also ongoing to demonstrate the feasibility of
Avionics/ATM technologies capable of contribut-
ing to the emissions reduction targets set by the
European governments. Significant contributions
are possible in the areas of trajectory optimisa-
tion, air traffic flow management and control, air-
port operations and capacity analysis, as well as
aircraft systems integration and performance en-
hancement.
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