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Abstract  

The present study investigates a stabilizing 
effect of longitudinal wall-oscillation on two 
dimensional channel flow by the Floquet theory. 
To apply this theory to the present periodic flow, 
a time-dependent Orr-Sommerfeld equation is 
discritized using the collocation points. The 
velocity profile needed in this analysis is 
calculated by superposition of the plane 
Poiseuille flow and the Stokes layer because of 
the linearity of the governing equation. In this 
study, the Reynolds number, which is defined by 
maximum mean-flow velocity and a half width 
between the two walls, is fixed to 10,000 that 
corresponds to the turbulent state of usual 
channel flow. When the remaining two 
parameters, frequency and amplitude of the 
wall-oscillation, are changed parametrically, it 
is found that on the parameter space the stable 
region exists even under the supercritical 
condition. The direct numerical simulation 
(DNS) also carried out to validate this feature. 
DNS demonstrates that the transitional period 
to the fully turbulent state is longer or shorter 
compared with non-oscillating case depending 
on the parameters mentioned above.  The 
comparison of the results obtained the Floquet 
analysis with DNS shows that the stable region 
in the Floquet analysis roughly coincides with 
the region of slow transition. 

1   Introduction 

Drag reduction is one of the important issue on 
the public transport system. For the aircraft, the 
account of skin friction in the total drag is about 
50%. Thus many researchers focused on how to 
reduce the skin friction. Some people tried by 

passive control, as the wavy walls or roughness 
surface1,2). On the other hand, as active control, 
wavy walls, vibrating walls, or suction/blowing 
walls were examined3-6). 

In these studies, it seems that the 
oscillating wall is one of the candidate for 
realizing low friction systems. Jung et al.7) 
firstly pointed out that spanwise wall-oscillation 
of the two dimensional channel flow can reduce 
the wall shear stress for a turbulent channel flow. 
Succeeded study by Quadrio and Ricco8) 
numerically demonstrated the friction-drag 
reduction of 44.7% and also estimated the net 
energy saving of 7.3%. 

From a different viewpoint, there are some 
studies which investigated a simplified flow 
field9,10).  Basic idea of these studies is 
combination of the plane Poiseuille flow with 
the oscillating Stokes layer. The strong point of 
this strategy is that both flow field are described 
as exact solutions of a linear equation derived 
from the Navier-Stokes equation. Since there 
are many theoretical and numerical 
investigation have revealed its essential features 
for the plane Poiseuille flow11,12), it seems that 
this approach using the combination of these 
two flows is useful to understand the 
characteristics of the stability. However, 
treatment of the periodicity of the flow is an 
obstacle. 

In general, the stability of the flow, such as 
the boundary layer flow, can be described by the 
Orr-Sommerfeld (O-S) equation which is 
derived from the Navier-stokes equation. But on 
the unsteady system, the differential term with 
respect to time remains in the O-S equation. 
Although the Floquet theory is a strong tool for 
stability analysis of such a periodic systems, it is 
difficult to directory apply the Floquet theory on 
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this time-dependent O-S equation. In order to 
avoid this difficulty, author adopts a 
discretization into the time-dependent O-S 
equation. Then this discretization can rewrite it 
as a simple periodic differential equation and 
allows us to use of the Floquet analysis. 

The purpose of the present paper is to 
investigate the stability of the wall-oscillating 
channel flow using the Floquet analysis. Also, a 
DNS is carried out in order to confirm the 
results obtained by the stability analysis. 

In Section 2, the modified channel flow 
dealt here is explained. In Section 3, a time-
dependent Orr-Sommerfeld equation and its 
discritization are explained, and a methodology 
linear stability analysis based on the Floquet 
analysis is described. Then in Section 4, another 
approach, namely DNS study is demonstrated. 
Finally conclusions are given in Section 4. 

2    Modified Channel Flow 

2.1    Linear Combination 

A schematic view of the modified channel flow 
investigated are shown in Fig.1. Here, Ω and 
Uw are frequency and amplitude of the 
longitudinal wall-oscillation. Thus, parameters 
describing this system are Ω , Uw, and the 
Reynolds number defined as Re≡h Umax/ν , 
where Umax is the maximum value of the mean  
flow, ν the kinematic viscosity and h a half 
distance between two walls. In the present study, 
Re is fixed as 10,000, which is a supercritical 
condition, for convenience. 

The coordinate system of (x,y,z) 
corresponding to the physical space is taken for 
x in the streamwise direction, y in the direction 
normal to the wall, z in the spanwise direction. 
As mentioned before, the modified flow dealt 
here can be thought as a superposition of the 
exact solutions of a linear government equation 
as the follows, 
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here ρ is the dencity. This equation is derived 
from the incompressible Navier-Stokes equation 
under the parallel flow assumption. In this 
context, the flow can be represented as 
U=U(U(y,t),0,0), and U(y,t) is, 
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here,  2/  , and i denotes the imaginary 
unit. The former part of Eq.(2) is contribution of 
the plane Poiseuille flow, and the latter is the 
Stokes layer. In the Floquet analysis, Eq.(2) is 
used as the base flow. 
 

 
Fig.1 Schematic view of the modified channel 
flow. Ω and Uw are frequency and amplitude of 
the longitudinal wall-oscillation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Velocity profiles at some instances. 
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2.2    Velocity Profiles 

Figure 2 shows a typical velocity profiles at 
each 1/8 period of the wall-oscillation. Because 
of the symmetry, the only lower half is shown. 
In this case, Uw is set to 0.5. 

3   Floquet Analysis  

3.1   Time-Dependent Orr-Sommerfeld 
equation 

When the flow field is described by the base 
flow U and the small disturbance u and p, the 
linearized disturbance equation for u can be 
derived from the Navier-Stokes equation as the 
follows. 
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Now, we assume that the small disturbance 
can be described as a modal plane wave, 
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here u=u(u,v,w), and kx, kz are real wave number 
in x, z direction, respectively. Substituting 
Eq.(4) into Eq.(3) with the equation of 
continuity, we obtain time-dependent Orr-
sommerfeld equation, which takes the form of 
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where D is the differential operator in y 
direction. 

3.2    Flouet Exponents 

If Eq.(5) can be rewritten as the form, 
 

),(ˆ),(),(ˆ tytyGtyv
t





,
 (6)

 
because of the periodicity of function G, we can 
expect from the Floquet theory that the solution 
of Eq.(6) can be described as the follows, 
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Here φ i(y,t) is a periodic function with the 
period T, and μi is a complex number called as 
Floquet exponents. If the real part of μi is 
positive, the system should be unstable. 

Thus, in order to rewrite Eq.(5) as the form 
of Eq.(6), the Chebyshev spectral collocation 
method is employed. For this, Gauss-Lobatto 
scheme is adopted for the collocation points, 
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Then, Eq.(5) can be rewritten as the follows, 
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where Dij

(2) is the differential matrix of the order 
(N+1) x (N+1). If  the inverse matrix of       
(Dij

(2) - kx
2 -kz

2 ) exists, Eq.(9) can be written in, 
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When the function v̂  is expanded by N+1, 
Eq.(9) is written in the follows. 
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If Eq.(11) is simply described as, 
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from the Floquet theory, we can expect that the 
solution of Eq.(12) have the form of, 
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Here Φ(t) is an arbitrary periodic function with 
the period T, and Q consists of (N+1) Floquet 
exponents. Because of the character of the 
periodic function Φ(t), 
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Therefore, the Floquet exponents are obtained 
as the follows. 
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When the eigenvalues of the matrix Q denote as 
μi and the eigenvalues of F as σi, we can obtain 
the Floquet exponents in the form of, 
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Thus, if we know the matrix F, the Floquet 
exponents are obtained from Eq.(17). In general, 
the matrix F can be numerically obtained by the 
integration of Eq.(12) during the period T. In the 
present study, the Cranc-Nicorson method is 
employed for this process. 

3.3    Results 

Substituting velocity profiles shown as Fig. 2 
into U in Eq.(5), the time-integration of Eq.(12) 
is executed in order to obtain F(T). Before the 
parametric study, the calculation of the Floquet 
exponent was checked by putting Uw in Eq.(2) 
onto 0. In this case, the Floquet exponent should 

be equivalent to the eigenvalue of the plane 
Poiseuille flow. Table 1 shows the comparison 
of the eigenvalues obtained in the present study 
with the results by Orszag11). It seems that the 
accuracy of the numerical scheme using here is 
sufficient. 
 
 

Table 1 Comparison of the eigenvalues 
 ωr ωi 
present 0.23753e+00 0.37397e-02 
Orszag(1) 0.23752464 0.00373967 

 
Figure 3 shows the variation of eigenvalues 

in a period for the case of Re=10,000, (Ω, 
Uw)=(0.01,0.1) and (kx,kz)=(1.0,0.0). Two 
straight lines are correspond to the eigenvalues 
of the simple plane Poiseuille flow, namely non-
oscillating case. It can be seen in this figure that 
the stable and unstable phase change place each 
other in a period.   

 
Fig.3 Variation of eigenvalues in a period for 
the case of Re=10,000, (Ω, Uw)=(0.01,0.1) and 
(kx,kz)=(1.0,0.0).  
 
 
This investigation is liken to a quasi-steady 
analysis and it is difficult to find out whether 
this system is stable or not as the whole. 

Thus, the Floquet analysis is executed in 
order to estimate in overall stability. Result of 
the parametric study is shown in Fig. 4 as a 
contour map on Ω-Uw plane. The white color 
region represents the positive area of the 
Floquet exponent, which corresponds to the 
unstable region, and the black one corresponds 
to the stable one. The dash-dotted lines in this 
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figure are written by each 0.002 of the Floquet 
exponent, and the solid line represents zero 
eigenvalue, namely the neutral curve. It can be 
seen that the stable region exists as a deep 
crevasse along Uw axis. Regardless of the value 
of Ω, wall oscillation stabilizes the present 
system. 

 
 

 
 
Fig. 4 Contour of the Floquet exponent. White 
color corresponds to the unstable region, and 
black to the stable one. A white solid line 
represents the neutral curve. 
 
 

 
 
Fig. 5 Contour of the Floquet exponent. White 
color corresponds to the unstable region, and 
black to the stable one. A white solid line 
represents the neutral curve. 
 

To understand the characteristics of the 
effect of the wall-oscillation entirely, the neutral 
curves for different Re number. This result is 
shown in Fig. 5. A deep crevasse mentioned 
above still exists for all cases, and a stable 
valley spreads over by Uw=Ω line. It becomes 
clear that the stable region exists broadly in the 
parameter space. 

4   Direct Numerical Simulation 

4.1   Government Equation and Numerical 
Procedure 

Figure 6 shows numerical space which is set as 
x∈[0,4π],  y∈[0,2π], z∈[-1,-1]. To capture 
smaller structures in x direction, the resolution 
is increased. The number of grid in each 
directions are 128, 129, 64. The periodic 
condition is adopted in y direction. 
 
 

 
 

Fig. 6 Numerical space for DNS. 
 
 
The flow filed is described as a superposition of 
the disturbance u=u(u,v,w) on the basic flow 
U(y,t). If the pressure can be written as 

pRx e  /2 ,  the dimensionless equation for u 

is obtained from the Navier-Stokes equation, 
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here, ex denotes an unit vector in x the direction. 
The incompressible condition is, 
 

0 u  (19)
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The velocity u is expanded by the Fourier series 
for x, z directions on the Chebyshev collocation 
points yj. 
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Then, Eq.(18) is calculated by the Fourier-
Chebyshev spectral method13) for u(kx,yj,kz,t) 
with the initial disturbances given as, 
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where ε is a small parameter and q is a random 
function which satisfied the solenoidal condition. 
Energy norm for the Fourier modes (kx,kz) per 
unit mass is defined as the follow. 
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4.2   Numerical Results 

A typical results is shown in Fig.7 for the case 
of (Ω, Uw)=(0.0,0.0) which corresponds to the 
genuine plane Poiseuille flow. The curves in 
this figure represent the time variation of energy 
for each Fourier mode E(kx,kz). The solid lines 
correspond to two-dimensional disturbance, 
namely E(kx,0), and the dotted lines correspond 
to three-dimensional ones. In this calculation, 
the simulation has been started with the initial 
disturbances of order 10-9, but a specific 
disturbance with relatively large amplitude of 
order 10-5. This large disturbance is a Fourier 
mode of E(1,0), which is called the Tollmien-
Schlichting (TS) wave. Because it is well 
known that the TS mode is dominant and leads 
to the laminar-turbulent transition under the 
flow condition considered here, the large TS 
mode is initially added to the initial disturbance 
in order to save the computing time-cost. In the 
present study, all of the simulation examined are 
including this TS mode. 

 
 
Fig. 7 Variation of energy of each Fourier mode 
for the case of (Ω, Uw)=(0.0,0.0). 
 
 
From this figure, it can be seen that after the 
transient phase the energy of the each mode 
develop with time and the laminar-turbulent 
transition occurs at about t=230 in this case. 

Some results with wall-oscillation are 
shown Fig.8-10 for the case of (Ω, 
Uw)=(0.25,0.3), (0.05,0.2), and (0.15,0.2).  The 
result of Fig.8 seems to almost same as non-
oscillating case of Fig.7 except for oscillation in 
the time variation of the energy for each Fourier 
mode. It can be easily supposed that this 
oscillation is caused by the oscillation of the 
walls. Actually, it was confirmed that the period 
of the oscillation appearing on the time variation 
of the energy coincides with that of the wall-
oscillation. In Fig.9, the laminar-turbulent 
transition is accelerated by the wall-oscillation. 
In this case, it takes only about 80 non-
dimensional time for the transition. On the other 
hand, the result of the Fig.10, the transition to 
turbulence is slightly delayed by the wall 
oscillation. 
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Fig. 8 Variation of energy of each Fourier mode 
for the case of (Ω, Uw)=(0.25,0.3). 
 

 
 
Fig. 9 Variation of energy of each Fourier mode 
for the case of (Ω, Uw)=(0.05,0.2). 
 
 

It is found from such parametric study that 
the laminar-turbulent transition of the flow can 
roughly be grouped in three patterns depending 
on the wall-oscillation. Result of this parametric 
study is shown in Fig.11. The circles correspond 
to the accelerated cases, the diamonds to the 
decelerated, and square to the less affected cases. 
It seems that the accelerated cases exist in small 
Ω region. 
 

 
 
Fig. 10 Variation of energy of each Fourier 
mode for the case of (Ω, Uw)=(0.15,0.2). 
 
 

 
Fig. 11 Result of the parametric study. 

 
From the comparison with Fig. 4, the 

decelerated region agrees well with a part of the 
stable region estimated by the Floquet analysis. 
However, even though these regions partially 
coincide with each other, the laminar-turbulent 
transition occurs at least in DNS. Actually, in 
the early state, the gradient of the TS mode and 
its higher harmonics are negative in DNS. Thus 
it is found that the transition is caused by 
nonlinearity. Furthermore, the accelerated 
region does not agree well. Since the thickness 
of the Stokes layer increases when frequency of 
the wall-oscillation decreases, it can be 
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conjectured that the assumption of describing 
the flow by a linear combination of the plane 
Poiseuille flow and the Stokes layer  is not 
suitable for small Ω values. Except for this 
region, these results suggest that the Floquet 
analysis can prospect the tendency of transition 
delay by watching stability of the dominant TS 
mode. 

5   Conclusion 

The present study investigates a stabilizing 
effect of longitudinal wall-oscillation on two 
dimensional channel flow by the Floquet theory. 
To apply this theory to the present periodic flow, 
a time-dependent Orr-Sommerfeld equation is 
discritized using the collocation points. The 
velocity profile needed in this analysis is 
calculated by superposition of the plane 
Poiseille flow and the Stokes layer because of 
the linearity of the governing equation. In this 
study, the Reynolds number, which is defined 
by maximum mean-flow velocity and a half 
width between the two walls, is fixed to 10,000 
that corresponds to the turbulent state of usual 
channel flow. When the remaining two 
parameters, frequency and amplitude of the 
wall-oscillation, are changed parametrically, it 
is found that on the parameter space the stable 
region exists even under the supercritical 
condition. The direct numerical simulation 
(DNS) also carried out to validate this feature. 
DNS demonstrates that the transitional period to 
the fully turbulent state is longer or shorter 
compared with non-oscillating case depending 
on the parameters mentioned above.  The 
comparison of the results obtained the Floquet 
analysis with DNS shows that the stable region 
in the Floquet analysis roughly coincides with 
the region of slow transition. 
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