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Abstract  

Description of EWT (Electronic Wind 

Tunnel) code is done. This code is used in 

TsAGI from 1996. It permits to solve stationary 

(RANS) and non-stationary (URANS) Navier-

Stokes equations with Reynolds-averaging. A 

possibility to simulate large-scale vortices 

(LES) is realized. Special boundary conditions, 

such as “wind tunnel start”, “permeable walls” 

(perforated and slotted), “threadmill” and 

“plenum chamber walls” are discussed in 

details. It is mentioned that code effectively uses 

chimera-type grids based on original “connect” 

technology. Practical aspects are described. It 

is shown that grid templates with special blocks 

for model and wind tunnel parts are prepared in 

advance. It permits to change model in EWT 

operatively. Important algorithm for grid 

rebuilding, in the case of changing the model 

incidence and slip angles, is also developed and 

works reliable. 

Initially (1996), the code was adapted for 

conditions of T-128 wind tunnel (TsAGI). Later 

on (2006), the version for ETW (European 

Transonic Windtunnel) appeared. Special code 

for T-104 wind tunnel (TsAGI) with simulation 

of “moving runway” and open test section has 

been developed after that (2008).  

Examples of results obtained in the frame 

of code integration to experimental cycle of 

different wind tunnels are presented. Important 

tasks are solved: 1) wall interference 

prediction; 2) systematic mistakes such as 

support influence etc. estimation; 3) creation of 

optimal wind tunnel parts. Picture bellow shows 

result of penishe height problem solution during 

mounting the half model in T-128 TsAGI. 

Streamlines around “free” model and half-

model in wind tunnel are compared. 

1   Introduction  

Experience of simulating some aspects of the 

physical experiment in the wind tunnel is of the 

highest interest. These works were started by 

TsAGI in the 1980s on the initiative of 

V.Ya.Neiland (Corresponding Member of the 

Russian Academy of Sciences) in order to 

improve the reliability of the aerodynamic 

characteristics obtained in the TsAGI wind 

tunnels (WT) for the models of the Buran-

Energia aerospace system. For transonic 

working regimes of the TsAGI T-128 tunnel, it 

was for the first time [1] that the numerical 

method developed by Yu.B. Lifshiyz and S.A. 

Velichko [2] was used to estimate the effect of 

the tunnel’s perforated walls. This made it 

possible to establish the procedure for adapting 

the perforated boundaries of the WT T-128 test 

section [3]. For subsonic flow regimes, a 

research team headed by V.M. Neyland has 

developed procedures for taking into account 

the effect of perforated boundaries on the 

aerodynamic characteristics of the models. For 

the external surface of the boundary layer on the 

perforated wall the boundary conditions were 

experimentally found as the Darcy law [4], [5]. 

In the flow potential core, the Laplace problem 

was solved (method of singularities [6] and 

integral method [7]). V.Ya.Neyland proposed in 

1992 to develop nonlinear code and take into 

account influence of wind tunnels walls on 

results of Tu-144 model tests in T-128 and T-

109 TsAGI. It was beginning of Electronic 

Wind Tunnel (EWT). He is scientific supervisor 

of this study up today. By means of the EWT 

software package [8], [9], the limit Mach 
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number for the applicability of fast linear 

methods was determined. It was proved that for 

a moderate degree of the test section blockage 

the linear methods can be applied up to M = 0.9. 

The methodology for taking into account the 

effect of boundaries for subsonic velocities of 

the flow in that form as it is used at present in 

T-128 is described in details in [10]. Originally, 

for the determination of the influence of flow 

boundaries, two basic experimental methods 

were used: (1) tests of geometrically similar 

models; (2) tests of the same model in the small 

and large WT, where the tests in the large wind 

tunnel were considered as an approximation of 

infinite flow. In order to find the influence of 

the support devices, the experimental method of 

“doubling” was used, when the model was 

mounted on one sting and tests were made with 

and without the dummy sting. In order to 

account for the effect of the flow boundaries 

and supporting devices the appropriate 

procedures have been developed. Unfortunately, 

experimental methods cannot provide reliable 

data for the case of an isolated model in an 

infinite flow. This drawback is removed by 

numerical procedures, the results of which are 

easily integrated into the available methods to 

account for the effect of the flow and supporting 

devices. At present, these works are ongoing. 

Special codes have been developed to simulate 

the experiment in TsAGI’s wind tunnel T-104. 

Interesting results were obtained by the efforts 

on the creation of the mathematical model of the 

European Transonic Windtunnel (ETW) with 

slotted walls [9]. This work was carried out with 

support from J. Quest, the coordinator of the 

projects of the European Union. At present, 

such mathematical models for European wind 

tunnels are being created in the research centers 

of Germany, France and Britain, for example, 

[11], [12], [13]. 

2. Mathematical Model of WT and its 

Construction Features 

For convenience, all geometrical objects used in 

the creation of the WT surface mathematical 

model or of the corresponding model of an 

aircraft’s surface are divided into compartments. 

For example, in the case of the aircraft’s 

forward fuselage, the flight deck is one 

compartment and the cylindrical part of the 

fuselage is another compartment. 

The number of compartments depends on 

the complexity of the object. The procedure 

consists of several stages and has elements of 

interactive operation. For example, let’s 

consider the technology used at TsAGI. As the 

first step in the design engineering bureau, on 

the basis of the available drawings, a CAD 

project of the wind tunnel is created, for 

example WT T-104. At the second step, the 

Coons patches [13] are constructed. The patches 

are clearly seen in Fig. 1. 

 

 
 

Fig. 1. Mathematical model of the airframe-wing-engine 

configuration 

 

At the third stage, a computational grid, 

which has special blocks designed to locate 

virtual models of aircrafts, is constructed. As an 

example, we consider a typical case of the 

arrangement of the model of a passenger aircraft 

with an engine. A photograph of the 

experimental unit for Transonic Wind Tunnel 

with close test section is shown in Fig. 2. 

Calculations are performed using a 

multiblock structured computational grid. Each 

block is a curvilinear hexahedron (possibly with 

degenerated boundaries). Mathematical model 

and blocks structure are illustrated in Fig. 3.  
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Fig. 2. Model in the Transonic Wind Tunnel 

 

 
 

Fig. 3. Block structure near the model in the Transonic 

Wind Tunnel 

 

The space around open test section of the 

low-speed WT T-104 is more variform. The 

airplane model is placed over a platform 

(experimental table), which, in this case, 

imitates a land (Fig. 4). So, the block structure 

is more complicated (Fig. 5). 

 

 
 

Fig. 4. General view of the WT T-104 

 

 
 

Fig. 5. Block structure of the WT T-104 

 

All dimensions used in the problem match 

the available drawings as closely as possible. 

Inside the calculation blocks, an adapted grid, 

which is condensed in those places, where large 

flow gradients are expected, is constructed - for 

example, at the edges of the wings. 

For each cell, we determine the volume, 

area, coordinates of the center, normal vectors 

of faces, etc. The boundary conditions are set on 

the boundaries of the calculation region. Some 

of them are written in the standard way, for 

example, the no-slip condition at solid surfaces. 

The other part has a specific form, characteristic 

only for the given problem. 

For example, the condition of the 

“treadmill” is formulated by analogy with the 

condition of the flow slipping with a given 

velocity. Particular attention is paid to 

specifying the levels and scales of turbulence at 

the entrance to the test section of the WT. This 

makes it possible to expect that in the case of 

the correct description of the flow gradients in 

the tunnel, the levels and scales of turbulence in 

the model installation will correspond to the 

reality at least in the order of magnitude. The set 

of special boundary conditions includes 

algorithms of modeling the flow near the 

boundaries with perforation and the so-called 

slotted walls. There are two sets of parameters 

with and without taking into account the flow in 

the WT plenum chamber. 
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3. Computational method 

3.1. Explicit scheme. Global, local and 

fractional time stepping  

Let’s consider following scalar non-linear 

model equation of general form: 
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For simplicity, let’s consider a uniform grid 

with steps h ,  . For a start, let’s consider an 

explicit scheme of the second order in time that 

is used by authors for numerical solution of 

Euler and Reynolds equations. In this scheme, 

the time step is performed using two-step 

procedure like “predictor-corrector”. It may be 

considered as an explicit two-step Rounge-Kutta 

procedure – Euler method with central point: 
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Here, i  is a number of calculation cell in space. 

Half-integer indices correspond to sides of 

calculation cell. n  is time step number, ih  is 

grid step in space (cell size), n  is a time step 

value. The used scheme belongs to Godunov-

type scheme class. Therefore, to calculate 

parameters on sides of cells, a Riemann problem 

solution about decay of an arbitrary 

discontinuity is used: 

)()( 2/12/1   ii UFuF , ),Decay(2/1 RLi uuU  . (3) 

To achieve the second approximation order 

in space, a linear reconstruction of space 

distribution of parameters over cell is used: 
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To calculate gradients of parameters in the cells, 

minimal derivative principle that guaranties 

TVD-property of scheme is used. Details can be 

found in [9].  

Such explicit scheme is stable, when time 

step   satisfies to know CFL condition: 

.1CFL 
i

n

hdu

dF 
                  (5) 

Advantages of scheme (2) - (4) are clear 

physical sense and small errors of the method. 

They make this scheme optimal for high-quality 

description of non-stationary processes. 

However, attempts to use this scheme for 

description of flow with turbulent boundary 

layers show that it is ineffective because its 

conditional stability results in too slow motion 

in time.  

 

Fig. 6. To explanation of global, local and fractional time 

stepping 

A standard approach for time stepping 

organization (global time stepping) is following. 

The most rigid condition for time step is chosen 

and time step min i  is performed in all the 

cells (Fig. 6, а). Let’s maxmin   . It is typical 

for strongly non-uniform grids that are used for 

simulation of flows with boundary layers. At 

that time, Courant number 1CFL i  in most 

cells. Then, the information in most cells passes 

only small part of grid step ih  per time step. 

Therefore, the information propagates very 

slowly over the computational domain and a lot 

of time steps are necessary to describe the 

characteristic interval of global flow changing. 

This is the problem of small time steps. To the 

contrary, implicit scheme, in principle, permits 

to perform the calculation with arbitrarily large 

values of time steps and, accordingly, to achieve 

the result immeasurably faster. It is this factor 

that makes implicit schemes so popular.  
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But, as it is shown in [9], the payment for 

the velocity of result obtaining is loss of quality 

of non-stationary process description. There are 

some methods to accelerate the calculation, in 

the case of explicit approach to approximation 

of equations. 

When a stationary flow is calculated using 

time-marching method, we aren’t interested in a 

quality of intermediate non-stationary process 

description. Only its convergence to a correct 

stationary state is important. In this case, 

different methods of convergence acceleration 

may be used. One of them is a method of local 

time stepping. It is known approach (see, for 

example, [14]). In this case, the calculation in 

each cell is performed with time step that is 

defined by local restrictions in this cell (Fig.6, 

a). As a result, time step value changes from one 

cell to another. But when all the parameters 
1n

iu  

are given, they are formally prescribed to the 

same time layer. Later on, this procedure is 

repeated up to the moment, when a stationary 

solution is achieved. In using this procedure, 

convergence to stationary solution accelerates 

essentially, because maximal possible value of 

time step is taken in each cell, 1~CFLi , and the 

information transfers maximal possible distance 

( ih~ ) per time step. Thus, the flow faster adapts 

to the stationary boundary conditions. It is easy 

to understand that the number of time steps 

should be  minmax /O  times less in comparison 

with global stepping.  

The other widely propagated method to 

accelerate convergence to stationary solution is 

multigrid method [14]. If non-stationary flow is 

calculated and it is important to describe each 

moment of this flow development correctly, 

then neither local time stepping nor multigrid 

method are acceptable. In the current work, a 

method of fractional time stepping is assumed to 

be used in this case. 

The idea of fractional time stepping is that 

the calculation in each cell is performed with 

the most time step (i.e. with maximal possible 

Courant number). But the numbers of interim 

time steps are different in different cells and 

they are chosen so as all the cells achieve the 

same layer of physical time in some moments 

(Fig.6, b). When the same time layer is 

achieved, let’s name it as a completion of global 

time step. For example, if a interim time step in 

the cell A is equal to max , in B - 2/max  and in 

C - 8/max , then, during one global time step, 

one should perform one interim time step in the 

cell A, two interim time steps in the cell B and 

eight interim time steps in the cell C. Therefore, 

the global time step in each cell is divided 

(fragmented) into smaller interim time steps so 

as the interim time steps satisfy to the local 

restriction on time step in the given cell. That’s 

why the procedure is named as fractional time 

stepping. 

It should be noted that the first description 

of such method that is known by authors was 

given in the article [15]. 

3.2. Implicit scheme. Dual-time stepping  

Now the most propagated method to solve 

the problem of small time step is the use of 

implicit schemes. Let’s take the same model 

equation for example and describe the implicit 

scheme. The scheme that satisfies following 

requirements has been chosen: 

1. The scheme for steady calculations can be 

low (first) order approximation at time. That 

is, this scheme can have simplified implicit 

operator, i.e. linearized implicit operator. 

2. The scheme for unsteady calculations is to 

be “time-accurate”, i.e. it has to be of the 

second order approximation at least (used 

schemes have the second order 

approximation is space). In addition, these 

schemes haven’t to simplify of implicit 

operator, i.e. the implicit operator isn’t 

linearized, doesn’t split into space directions 

or into physical processes and so on. 

3. The approximation of the space operator in 

scheme has to be based on the same 

principles as the corresponding 

approximation in the explicit scheme. 

For the model equation (1), “unsteady” 

implicit scheme is formulated as follows: 
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     (6) 

In approximating the space fluxes, the same 

formulas (3), (4) as in the explicit scheme are 

used, but parameters from the implicit 

(unknown) time layer )1( n  are substituted 

into these formulas. Three-layer approximation 

that ensures the second approximation order in 

time is written for time derivative. In the linear 

case, it can be proved that the scheme (6) is 

absolutely stable. Formally, the time step n  

may be arbitrarily large ( 1CFL ). It permits 

to essentially accelerate the calculation in near-

wall zone of boundary layers in comparison 

with the explicit scheme. But, at that, a clear 

physical interpretation of the scheme losses and 

the values of specific errors essentially increase 

in comparison with the explicit scheme [9]. 

The main difficulty in using such implicit 

scheme is to solve the discrete equation (6). 

Because the space fluxes are approximated at 

the implicit time layer and they use, at that, the 

information from neighboring cells, then the 

equation for the current cell proves to be 

connected with the equations for neighboring 

cells. Hence, we obtain a system of non-linear 

algebraic equation (6), where the number of 

equations is equal to the number of the cells in 

“implicit” zone. 

Different approaches to solution of such 

non-linear equation system are possible, for 

example, with the aid of Newton’s method. But 

Newton’s method, along with the most of other 

exact iterative methods for solution of large 

non-linear equation system, requires in vast 

resources of RAM (it is necessary to store in 

RAM the matrix 
u

R







 of size NN   - the matrix 

with rarefied strip that has the width about 3/2N  

and contains 105 non-zero diagonals in 3D case) 

and in vast calculation time (costs per iteration 

are very large: the matrix 
u

R







 is calculated at 

each iteration again, then it is inverted and 

multiplied by the vector R


). In addition, it can 

be that the iterations don’t converge. 

That’s why, a dual-time stepping method 

is usually used for realization of time-accurate 

implicit scheme instead of traditional methods 

for solving large non-linear algebraic equation 

systems. In the case of such approach, a 

fictitious non-stationary term is added to the 

discrete equation (6): 
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            (7) 

Here,   is pseudo-time. The idea is following. 

The stationary solution of the problem (7), when 

it is single, coincides with the solution of the 

discrete equation (6): in the stationary limit 
1 nuu . It permits to solve the equation (6) by 

method of marching along pseudo-time. The 

solution of the equation (6) can be achieved as a 

limit of developing the pseudo-non-stationary 

process that is described by the equation (7). 

Because it is time-marching method and we 

are interested in a stationary solution only, then 

different methods of convergence acceleration 

may be used to obtain this solution. 

One of the first realizations of dual-time 

stepping method, which was proposed by 

E.Jameson [14], used the explicit method of 

marching along pseudo-time. To accelerate the 

convergence to the stationary solution (i.e. to 

solution at the implicit physical time layer 1n  

– see (6)), a local time stepping method is used. 

Thus, some thousands of pseudo-time steps are 

to be performed for one step of physical time. 

Instead, an implicit scheme with global pseudo-

time stepping is used for description of pseudo-

time stabilization process. Because we are 

interested in stationary solutions of the equation 

(7) only, one may use high-efficient implicit 
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schemes with strongly simplified implicit 

operator that are widely used now for solution 

of stationary problems. Here, a possible 

example of such hyper-fast scheme is presented: 
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 (9) 

Such scheme has only the first order in 

pseudo-time that results both in calculation 

acceleration and in improvement of its stability. 

The implicit part of space operator in the 

equation (9) has been obtained using 

linearization of space operator in the equation 

(7) and it has only the first approximation order 

as pseudo-time derivative approximation. 

Jacobeans ),( 12/1

n

i

n

ii uuAA    are calculated only 

once during the stabilization time. Let’s draw 

attention that the non-linear approximation of 

the second order is used as before for the 

explicit part of the space operator. 

The formula (9) results in a system of linear 

algebraic equations for all the cells of 

computational domain. This system has banded 

matrix (its non-zero elements are aggregated 

near the main diagonal of the matrix). But, in 

the case of 3D problems, this band of non-zero 

elements is a quite wide, in spite of its essential 

rarefaction (it contains 9 non-zero diagonals 

only and there are wide zero bands between the 

diagonals). The elements of non-zero diagonals 

are fully filled blocks of size 7х7 (it corresponds 

to 7 equations of conservation of mass, impulse, 

energy and turbulence parameters that are 

written for each cell). In spite of the wide non-

zero band of this banded matrix, this implicit 

scheme doesn’t require essential costs of RAM, 

because modified Gauss-Seidel method for 

block-diagonal matrices [16] is used to solve 

this system. Instead of exact solution of linear 

equation system (9), only 6 iterations of Gauss-

Seidel method are performed. It is acceptable 

because the exact solution isn’t necessary at 

each pseudo-time step; it is necessary only to 

the moment, when the stationary solution is 

achieved. In approaching to the stationary 

solution, the parameters become pseudo-time-

independent and 6 iterations of Gauss-Seidel 

method becomes sufficient to obtain an exact 

solution of the system (9). 

3.3. Boundary conditions 

Let’s consider some special boundary 

conditions. 

Connect is the boundary condition 

describing common boundary neighboring 

blocks of the computational domain on which 

the continuity of grid lines is violated. In this 

case the parameters at the outer side of the 

boundary are found by interpolation of the 

parameters from the near-boundary cells of the 

neighboring block. 

Tunnel In-Out is the boundary condition 

required to obtain the correct values of the 

Mach number in the control point of a wind 

tunnel. The peculiarity of the problem is that the 

input parameters are set inflexibly because they 

are introduced from the virtual control panel of 

the computational WT. Usually these 

parameters are the Mach number Mentr, full 

pressure of the fore-chamber full temperature of 

gas of the fore-chamber and the area of the entry 

section Sentr. 

Darcy is the boundary condition that 

allows simulation of WT with perforated walls. 

It is known that in the case of small pressure 

differences across the porous surface the Darcy 

law holds [17], which postulates that on the 

control surface the gas velocity normal to the 

perforated wall (the effective velocity of the 

flow through the perforation holes) is directly 

proportional to the difference of the static 

pressure across the wall. In the case of small 

perturbations, it is possible to use a simplified 

system of the Euler equations in the linear form 

and the problem of the decay of an arbitrary 

discontinuity can be solved in the acoustic 

approximation. It is assumed that the perforated 

wall separates the basic flow from the WT 
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plenum chamber in which gas is practically 

motionless. 

4. EWT as a part of experimental cycle 

4.1. European Transonic Wind Tunnel  

In this section an example of the construction of 

a rather complicated mathematical model WT, 

having slotted boundaries, which separate the 

test section from the plenum chamber, is 

considered. The overall view of such a WT 

(European Transonic Wind Tunnel (ETW)) is 

given in the photograph, see Fig. 7 (back view). 

 

 
 

Fig. 7. Photograph of ETW and flowfield in slot 

 

The lower wall with slots, shaped side wall, 

movable leaf in the WT mixing area (teeth at the 

center of the photo), and support with the model 

are seen. This WT operates in different modes. 

As a rule, tests are carried out in the nitrogen 

medium at a temperature of 100 K. It is possible 

to carry out studies with the use of air at a usual 

temperature of about 280 K. These modes are of 

the greatest interest for this work. Another 

photo showing the location of the airplane 

model on the support is given in Fig.2. The 

photo clearly shows the longitudinal slots in the 

walls, the fin sting with the crescent of the alpha 

mechanism, and the blade for turn of the flow at 

the end of the channel. The WT test section is 

surrounded by the plenum chamber, which has a 

large diameter (6 m) and serves to equalize the 

main flow. A feature of this mathematical 

model is that the slots in the WT walls have an 

extremely small width and, despite this, have 

the utmost influence on the stream in the flow 

core. From this viewpoint, the considered 

problem has a substantially different linear 

scale, which makes its solution more difficult. 

The starting data necessary for the work have 

been presented by J. Quest (ETW) as text files. 

The files had coordinates of flat projections and 

cross sections of the basic elements of the WT’s 

test section, as well as formulas describing the 

characteristic features of the fragments of 

particular details. Attention should be paid to 

the relationship of the slot width and width of 

WT walls. The width of one slot is l = 25 mm 

and WT width is L = 2400 mm. In addition, the 

slots have a complicated form and are cut in the 

metallic plate of d = 450 mm in thickness. In the 

plenum chamber, they have a width of lp = 90 

mm and contact with a nonmobile flow. In the 

construction of the mathematical model, part of 

the information is left out, for example, the 

curving of slot fringes is not taken into account. 

The cross section of the test section entrance is a 

rectangle 2000 mm high and 2400 mm wide. 

The lower panel is inclined downwards at an 

angel of δ = –0.55° relative to the axis passing 

through the given point. A significant role in the 

tests is played by the α-mechanism of the 

crescent, which exerts a strong influence on the 

results. The crescent is designed so that during a 

change in the angle of attack, the turning point 

of the model remains stationary. The fore edge 

of the crescent is rounded and the rear is 

elliptical and is defined by the formula y2 = b2 

(a2 – x2)/a2, where a and b are ellipse’s 

semiaxes. The ellipse is interfaced with the 

contour of the central body on a tangent. The 

geometry of the central body is simplified 

without accounting for the rounding of the 

edges. A separate element of the design is the 

rotary valve located in the area of the WT’s 

reentry. It is clearly seen in Fig. 7 as an element 

which cuts into the teeth. The rotary valve has 

the ability to rotate. The front part of the valve 

is bent down. It creates a smooth junction of 

channels formed by slots with the mixing zone 

in ETW. 

To carry out the calculation, a multiblock 

grid is constructed. In the simplest case, it has 

(for a quarter) 27 blocks. One block is in the 

plenum chamber; three blocks are in the area of 
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the plenum chamber docking with slots, with 

one block in each slot; one block is in the part of 

the reentry; and one block is in the area of the 

pier and support of the model. Before the 

entrance into the test section of the WT and in 

the exit from it, additional blocks are placed to 

state the boundary conditions. The 

computational grid condenses in the designated 

areas to improve the approximation of the 

solution. Along the slot length, 110 cells are 

placed, and 50 cells are placed across it. 

Between the slots, 40 cells are placed. Even in 

the case of the totally closing of the slots, the 

plenum chamber is not overlapped completely. 

It allows one to model the flow near reentry. 

The mathematical model of ETW is necessary 

in order to understand the physical features of 

the flow in the test section and to fill in the 

missing experimental data, for example, to 

consider the scale effect of the model or to 

subtract the effect of the WT (WT walls, etc.) 

from the results of the experiment. The 

calculation shows that despite the considerable 

size of the WT (in this case, the test section 

blockage was estimated at 3%), turbulence from 

the model reach all walls and penetrate inside 

the plenum chamber. We consider the cross 

section of the central slot on the low wall near 

the reentry (see Fig. 7). The flow is highly 

turbulent and is characterized by the presence of 

several vortices. It is seen that the turbulence 

propagate not only upward (test section) but 

also downward (pressure chamber). The 

calculations show that a weak flow is formed in 

the plenum chamber directed opposite to the 

basic flow in the test section. This flow is 

expelled into the test section at the origin of the 

slot, which leads to the test section formation of 

low-frequency pulsations. Thus, the 

mathematical WT model becomes an obligatory 

part of the technology of the physical 

experiment in the wind tunnel. 

4.2. TsAGI T-128  

For example, the method described here is 

used to determine the effect of the perforated 

boundaries of the flow in the TsAGI WT T-128. 

The photograph of T-128 test section is shown 

in Fig. 8. 

 

 
 

Fig. 8. Photograph of T-128 test section 

 

Figure 9 compares the calculation and 

experimental results on the upper wall of the 

WT test section.  

 

 
 

Fig. 9. Comparison of the pressure coefficient distribution 

on the test section upper surface 

 

Good convergence of the pressure 

coefficient, which is observed in the figure, is a 

necessary condition for the accuracy of the 

results of the numerical calculation. The 

available methods to take into account the 

influence of the flow boundaries in T-128 

permit us to determine the corrections to the 

parameters of the incoming flow (to the attack 

angle, Mach number and velocity pressure) by 

the results of the numerical studies, as well as to 

determine the results of the measurement by a 

strain-gauge balance of the loads acting on the 

model (drag, lift and pitching moment 

coefficients). An important field for the 

application of the described approach in the 

procedure of aerodynamic tests is the 

determination of the influence of supporting 

devices. In the experimental method of doubling 

the suspenders, it is very difficult to exclude the 
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interference of the basic supporting device and 

the imitator of the other device. In the 

application of the calculation methods, this 

problem is absent. The numerical methods are 

very important in designing the aerodynamic 

contours of the supporting devices having the 

minimal influence on the characteristics of the 

models under investigation. Thus, for example, 

Figure 10 shows the distribution of longitudinal 

component of the velocity fluctuations (Mach 

number) about the surface of the wing caused 

by the effect of three configurations of the fin 

sting shown in Fig. 11. 

 

 
 

Fig. 10. Distribution of the longitudinal velocity 

fluctuations for different sting positions in T-128 

 

Minimization of the turbulent components 

of velocity and their gradients on the model 

surface makes it possible to design an optimal 

supporting device.  
 

 
 

Fig. 11. Three positions of the sting in T-128 

4.3. TsAGI T-104 

Let’s describe a procedure of engine model 

testing in T-104 Wind Tunnel. To supply to the 

engine a special pylon is used that is installed 

under the engine model (Fig. 12).  

 

 
 

Fig. 12. Model of the engine with pylon and ejector 

 

The engine mode is regulated by the ejector 

(a tube at the nozzle exit). These elements are 

sufficiently large and can influence the 

experimental results. To estimate this influence, 

we carry out the calculation in two 

configurations: a) with pylon and ejector, 

b) without them. We assume that the "reverse 

thrust" device works. The jet is visualized by 

measuring the temperature fields. Let’s consider 

the "velocity cutoff" mode of reinjection jets. It 

is determined by the free stream Mach number 

at which reversed flow sucked into the engine 

inlet. In the tests, this mode is determined by the 

temperature sensors, in the calculation – by 

streamlines and temperature fields (jet is 

warmed up), as shown in Fig. 13. 
 

 
 

Fig. 13. Flow in the case of reinjection 
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The calculated data show that the pylon due 

to excessive back pressure "pushes" the stream 

from the entrance to the engine and reinjection 

occurs at higher Mach numbers than without 

pylon. This means that the experimental data 

may contain errors in the determination of the 

"velocity cutoff" mode of flow with the thrust 

reversers, as the pylon is an integral part of the 

experimental setup. But in this experiment, 

there is another important factor, which is also 

impossible to simulate in T-104 WT – the 

presence of running land. This part of the 

experiment can be fulfilled by the calculation 

with a special boundary condition. The results 

of such calculations with boundary condition 

"treadmill" one can see in Fig. 14. 
 

 
 

Fig. 14.Influence of the treadmill to reinjection 

 

The analysis shows that in the case of a 

fixed screen, reinjection begins earlier. Thus, we 

obtained an interesting result. Two effects (the 

influence of the pylon and the treadmill), which 

cannot be simulated in this experiment, give an 

opposite contribution to the outcome of the 

experiment and almost cancel each other out. 

Thus, the mathematical model of the WT is 

an integral part of the methodology of 

experimental research in wind tunnels. 
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