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Abstract

The process of designing unconventional
aerospace vehicle configurations is characterized
by a lack of relevant data, information, and
knowledge, which prevents the designer from
applying traditional design methods. To address
this issue, significant amount of data need to be
generated, collected, and analyzed to increase
the designer’s knowledge about the physics of
the problem and to explore the diverse spectrum
of available design options. However, the
amounts of data required to successfully pursue
unconventional designs can rapidly become
overwhelming, hence limiting the designer’s
ability to fully comprehend the problem to be
solved. This paper presents a multidisciplinary
perspective termed Visual Analytics which
can be applied to address these issues in the
context of the pre-conceptual/conceptual design
of unconventional configurations. The paper
discusses the enabling techniques essential for
the visual analytics approach and illustrates
that the main requirements for a successful pre-
conceptual/conceptual design are to reduce the
designer’s cognitive burden, foster his rapid un-
derstanding of the design problem, and support
informed decision making. Finally this paper
discusses and demonstrates, through the design
of a supersonic business jet, the importance and
benefits of implementing these enablers and
of integrating Visual Analytics into the design

process. More importantly, this work illustrates
that the benefits to the analyst and decision
maker of enablers such as surrogate modeling
or probability theory are limited if they are not
integrated with the visualization, interaction,
and analytical reasoning capabilities provided by
Visual Analytics.

1 Introduction

Design is the process of defining and exploring a
vast space of possibilities that requires the build-
ing up of knowledge and familiarity with the con-
straints and trades involved. Design is also a
problem-solving activity that maps a set of re-
quirements to a set of functions, leading to a set
or series of decisions that contribute to the final
description of a solution [49, 50]. These state-
ments are particularly true for the design of con-
ventional aircraft. The design of unconventional
configurations, on the other hand, is more chal-
lenging. Indeed, while there is historical infor-
mation available on which to base traditional air-
craft designs, unconventional designs are plagued
by a lack of relevant data and knowledge. Also,
the assumptions embedded in the historical data
are very often incompatible with unconventional
design concepts. Hence, significant amounts of
data need to be generated, gathered, and analyzed
to improve the designer’s knowledge about the
problem and to capture the various design options
and perspectives involved.
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The amount of data required to success-
fully pursue unconventional aircraft designs can
rapidly become overwhelming [18]. The analyst
or decision maker, when faced with such a data
overload problem, is limited in his ability to con-
duct any kind of trades, test hypotheses, explore
the design space, and detect unexpected trends,
detail or relations, as the data sets cannot be visu-
alized [39]. Consequently, he cannot fully com-
prehend the problem to be solved, or understand
the behavior of the system under consideration.
While unprocessed data does not hold any intrin-
sic value [39], it can result in missed opportuni-
ties for critical actions, which may, in turn, result
in poor designs and significant loss of time and
money [40]. To alleviate this problem, it is nec-
essary to move away from static representations
and visualizations and develop means that en-
able the interaction between information, and the
human cognitive and perceptual systems, while
simultaneously allowing users to integrate their
background, expertise, and cognitive capabilities
into the analytical process. The need to address
these aspects has given rise to a multidisciplinary
perspective named Visual Analytics.

In the remainder of this paper we first discuss
the design of conventional and unconventional
configurations, identify the technical and human
and challenges linked to the design of unconven-
tional configurations, and present techniques and
methods to address them. Then, we introduce Vi-
sual Analytics, describe its process, and briefly
discuss the merit of implementing Visual Ana-
lytics in design. We later present an unconven-
tional design problem to illustrate how the inte-
gration of Visual Analytics into the design pro-
cess provides the designer and decision maker
with the capabilities to gain the knowledge and
insight needed to make informed decisions.

2 Systems Design and Modeling

This section discusses the design of conventional
and unconventional configurations with a partic-
ular emphasis on the challenges associated with
unconventional configurations.

2.1 Traditional Design of Conventional Con-
figurations

Current legacy tools and design methods for
conventional configurations have been developed
based on the information and capabilities avail-
able at their inception. In the early 1900s, the
Wright brothers initially developed their designs
based on the literature of the time. After a num-
ber of failures, they set out to build a facility for
wind tunnel testing. Numerous shapes (airfoil
models) were tested and documented, resulting
in a library of information that they could rely on
[30]. Since this time, aerospace engineers have
been constructing models to collect data useful
for design.

Expert designers who are well versed in these
information resources follow a three-phase de-
sign process comprising conceptual, preliminary,
and detailed phases. During this process, “de-
sign evolves in increasing levels of detail, from
high-level representations of the overall concept
to the details of each and every component” [19].
In the conceptual phase of the design, a hand-
ful of design concepts are considered [61, 65].
These concepts are created using a predictive set
of tools based on existing flight data documenting
both aircraft configuration and characteristics. At
the end of the process, a full-scale aircraft is sub-
jected to experimentation and flight testing, thus
generating data and knowledge leveraged to de-
sign the next generation of aircraft. This library
of information, built through successive aircraft
developments, represents the best source of infor-
mation on which to base derivative design con-
cepts.

It is often taught that design is an art or talent
that is obtained and built upon over time. Daniel
Raymer [61] states

“If the designer is talented, there is
a lot more than meets the eye on
the drawing. A good aircraft design
seems to miraculously glide through
subsequent evaluations by special-
ists without major changes being re-
quired.”
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This talent described by Raymer is invalu-
able because it indicates a familiarity with the
design and an innate understanding of the con-
sequences of early decision making. However, as
discussed in the following section, the character-
istics and confidence that define great designers
are lost when faced with the task of designing
unconventional configurations or configurations
involving radically new technologies.

2.2 Advanced Design of Unconventional
Configurations

Design requires the exchange of data, informa-
tion and knowledge [24]. However, the class
of configurations considered for the new meth-
ods presented in this paper are configurations
for which there does not exist any historical
database, the designer’s expertise is limited or
nonexistent, and there is typically no feasible
design space unless new technologies are in-
fused. The absence of these three key features
prevents the designer from applying traditional
design methods. More particularly, it prevents
him from conducting any kind of trades, un-
derstanding sensitivities, identifying active con-
straints and feasible design spaces, hence limit-
ing the chances that these configurations be suc-
cessfully developed.

The following sections describe in more de-
tail the main human and contextual challenges as-
sociated with the pre-conceptual/conceptual de-
sign of unconventional configurations. These
sections also briefly discuss the enablers and
methods necessary to address these challenges
and provide the designer with the knowledge and
insight necessary to the successful development
of unconventional configurations. These meth-
ods are further illustrated in the context of a de-
sign problem in Section 4.

2.2.1 Human Challenges and Solutions

This section provides a brief discussion on
human-related challenges during the design of
unconventional configurations.

• Communication

Communicating expertise or results is es-
sential to any decision making exercise
such as design. Most of the challenges
in communicating results lie in the abil-
ity to present the data with an appropriate
level of detail, enable the rapid extraction
of relevant information by all the parties
involved, independent of their background
or expertise, retain the audience’s atten-
tion, and clearly articulate important in-
formation to obtain the stakeholders’ buy-
in. Based on the realization that abstract
knowledge without representation is hard
to work with, Burkhard [15] proposes to
“combine different visualization types that
complement one another to illustrate dif-
ferent levels of detail.” Presenting informa-
tion from various perspectives and formats
is also more likely to satisfy the different
thinking styles, expertise and knowledge of
the stakeholders, thereby improving com-
munication between them and reducing po-
tential misunderstandings and conflicts.

• Collaboration

The multi-disciplinary nature of design
calls for the involvement of various people
with different qualifications, background
and expertise. Stakeholders may have dif-
ferent interpretations of the data or may
contribute at different levels of the analy-
sis [27]. In particular, differing perceptions
of the design problem among the actors
may lead to difficulties in reaching consen-
sus. Consequently, there is a need, as previ-
ously discussed, to allow users to integrate
their background, expertise and cognitive
capabilities into the analytical process.

2.2.2 Contextual Challenges and Solutions

• Lack of Physical Data:

As previously mentioned, the design of
unconventional configurations is character-
ized by a lack of physical and historical
data. One way to alleviate this issue is
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through physics-based modeling and nu-
merical simulation. To be of value, the
physics-based models need to be at the ap-
propriate fidelity level for the physics of
the problem to be captured. The lack of
data also precludes the designer from ob-
serving trends that have not been observed
before. Under these circumstances, there is
thus a need to create the appropriate con-
ditions so that trends and causality can be
studied. In other words, the data corre-
sponding to a particular designer’s interest
need to be created. This is accomplished
through data farming, a concept coined by
Brandstein and Horne [10], and described
by Horne and Meyer [29] as the “study and
development of methods, interfaces, and
tools that make high performance comput-
ing readily available to modelers and al-
lows analysts to explore the vast amount of
data that results from exercising models.”

• Sensitivity to Requirements:

Design requirements are a direct driver of
cost and, therefore, affordability. It is thus
critical to understand and capture the sig-
nificance of requirements’ impact on the
design [4, 11], as well as the sensitivity
of affordability metrics to requirements.
Also, the mission requirements and con-
straints associated with the design of a
new concept are likely to change as the
stakeholders learn about the design prob-
lem. Each change may result in the selec-
tion of a different design concept. Conse-
quently, unless multiple scenarios are in-
vestigated and documented, a static ap-
proach to design will rapidly show its limi-
tations. Additionally, decision making im-
plies considerations beyond the technical
aspects. Consequently, the final solution
may be different from one decision maker’s
perspective to the next. There is thus a
need to move from deterministic, serial,
single-point designs to dynamic parametric
trade environments. In particular, as advo-
cated by De Baets [20], the designer should

be provided with “a parametric model of
the airplane to allow quick changes in the
shape and size of the vehicle.” This para-
metric formulation should also have the ap-
propriate degrees of freedom to allow the
decision maker to play the what-if games
he is interested in.

• Integration of Multiple Disciplines:

The design of revolutionary, unconven-
tional configurations requires that the mul-
tiple disciplines describing the problem, as
well as their interactions, be integrated.
However, as mentioned by Kamdar et al.
the “very large number of variables and
the physics behind the system are too pro-
found or esoteric to be fully understood”
[33]. Additionally, the disciplinary interac-
tions are so intricately coupled that a para-
metric environment is necessary to avoid
re-iterating the design process until all re-
quirements are met [20]. This parametric
environment, depending on the level of fi-
delity of the disciplinary models it is com-
posed of, may run slowly, hence limiting
the designer’s ability to explore the design
space. Indeed, as acknowledged by Ligetti
[46] et al. “speed is critical for certain
cognitive tasks.” A successful approach
that addresses this challenge, while pro-
viding an all-encompassing model for ex-
ploring a complex design space, is surro-
gate modeling [20, 33]. Surrogate mod-
eling enables virtually instantaneous anal-
yses to be run in real-time [46] by ap-
proximating computer-intensive functions
or models across the entire design space
with simple mathematical/analytical mod-
els [83]. A variety of surrogate mod-
eling techniques exists that yield insight
into the relationships between design vari-
ables (x) and responses (y) and facilitate
concept exploration [83, 71]. The most
prevalent ones include Response Surface
Methodology (RSM) [54, 9, 8], Artificial
Neural Network (ANN) [75, 16], Krig-
ing (KG) [70, 69], and Inductive Learn-
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ing [43]. The reader is invited to consult
[83, 73, 71, 32] for reviews and compar-
ative studies of these different techniques.
One of the most popular of these surrogate
modeling techniques, RSM, is discussed in
more detail in the context of an example
application (Section 4.4.1).

• Uncertainty:

The design problem is plagued with uncer-
tainty. Uncertainty exists at all levels and
is notably present in the requirements, ve-
hicle attributes, and technologies that de-
fine the design concept. Consequently, the
sensitivities of the outcomes to the assump-
tions need to be assessed. The need to ad-
dress uncertainty can be handled, as further
illustrated in Section 4, through the imple-
mentation of probability theory and proba-
bilistic design methods. Additionally, dur-
ing this phase of the design process, the de-
signer does not know which technologies
are going to be implemented in the final de-
sign. Probability theory and probabilistic
design methods can support the designer
in his selection of technologies by provid-
ing him with the capability to continuously
and simultaneously trade between require-
ments, technologies and design concepts.
Finally, the use of probability theory in
conjunction with RSM can allow the ana-
lyst and decision maker to quantify and as-
sess risk and to explore huge combinatorial
spaces. The combination of these methods,
as illustrated in Section 4, can enable the
discovery and examination of new trends
and solutions in a transparent, visual, and
interactive manner.

• Data Overload:

While this may seem contrary to the lack
of physical data previously discussed, it
is important to recognize that designers
of unconventional configurations are fac-
ing a data overload problem. This prob-
lem mainly originates from the significant
amounts of data that need to be generated,

collected, and analyzed in order to increase
the designer’s knowledge about the physics
of the problem. Data by itself has little
value if it is not structured and visualized in
a way that allows the designer to act upon
it. This challenge can be addressed by en-
abling the interaction between the informa-
tion and the human cognitive and percep-
tual systems.

2.2.3 Preliminary Remarks

This brief review of the challenges faced by
the designer during the conceptual design phase
illustrates that, independently of the methods
and techniques proposed, the real requirement
is to reduce the designer’s cognitive burden; to
foster, in a broad sense, his rapid understanding
of the design problem; and to support informed
decision making.

Humans deal with the world through their
senses. The human visual system, in particular,
provides us with the capability to quickly identify
patterns and structures [82] and supports the tran-
sition from cognition, the processing of informa-
tion, to perception, the obtaining of insight and
knowledge. Hence, visual representations are of-
ten the preferred form of support to any human
cognitive task because they amplify our cogni-
tive ability [68] and reduce the complex cogni-
tive work necessary to perform certain activities
[38, 40]. From the early ages, when design was
conducted on a piece of paper, up until today
with the recent advances in Computer-Aided De-
sign (CAD) models, design has always been con-
ducted and communicated through visual means.
As explained by Wong et al. [88], “visual rep-
resentations are essential aids to human cogni-
tive tasks and are valued to the extent that they
provide stable and external reference points on
which dynamic activities and thought processes
may be calibrated and on which models and the-
ories can be tested and confirmed.” However, it
is important to understand that “visualization of
information alone does not provide new insights”
[52]. In other words, information visualization
without interaction between the information and
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the human cognitive system does little to stimu-
late human reasoning and enable the generation
and synthesis of knowledge or the formulation of
appropriate conclusions or actions [52].

A multidisciplinary perspective termed Vi-
sual Analytics has originated from the need to
address this issue and reasonably appears as the
common enabler to the many solutions enunci-
ated in Section 2.2. In particular, Visual Analyt-
ics provides visualization and interaction capabil-
ities, allowing the analyst and decision maker to
be presented with the appropriate level of depic-
tion and detail to help them make sense of the
data and synthesize the knowledge necessary to
make decisions.

3 Visual Analytics

3.1 Definition and Scope

Visual Analytics, as defined in the National Visu-
alization and Analytical CenterTM(NVACTM) 5-
year Research and Development Agenda for Vi-
sual Analytics [78], is the “science of analytical
reasoning facilitated by interactive visual inter-
faces.” While Visual Analytics initially had a
strong focus on homeland security, it has since
broadened to various users [37]. It has now de-
veloped into a field of study that stems from
and encapsulates diverse research areas and dis-
ciplines (Figure 1) grouped into three main com-
ponents: interactive visualization, analytical rea-
soning, and computational analysis. More partic-
ularly, Visual Analytics reduces the user’s cogni-
tive burden by combining and leveraging both hu-
man and electronic data processing strengths and
capabilities (Figure 2), with the goal to “make
processing data and information transparent for
an analytical discourse” [39].

Visualization is essential to scientific rea-
soning and the scientific process as a whole.
However, in order to facilitate the generation of
knowledge and the formulation of informed de-
cisions, visualization needs to be combined with
analytical techniques [39] and embedded in the
analysis/reasoning process, as opposed to being
an end-product of it [52]. In other words, vi-

Scope of 
Visual Analytics

Information Analytics

Interaction

Cognitive and 
Perceptual Science

Presentation, 
production, and 
dissemination

Data Management & 
Knowledge 

Representation

Geospatial Analytics

Scientific Analytics

Knowledge Discovery

Statistical Analytics

Fig. 1 The Scope of Visual Analytics (Repro-
duced from [40])
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Human-centered Computing
Human Cognition

Perception

Visual Intelligence

Decision-making 
Theory

Information Design

"The best of both worlds"

Fig. 2 Visual Analytics integrates Machine and
Human Strengths (Adapted from [39])

sualization should also be considered as an ex-
ploration means and not limited to communica-
tion or presentation purposes [82]. Along the
same lines, John W. Tukey had recommended, in
1977, a shift from confirmatory data analysis to
exploratory data analysis [81]. These aspects are
further discussed and illustrated in the following
sections.

3.2 Process

The process illustrated in Figure 3 superimposes
the visually enabled reasoning process, as de-
fined by Meyer et al. [52] and the Visual Ana-
lytics process, with the ultimate goal to support
informed decision making. The Visual Analytics
process is based on the visualization model pro-
posed by Van Wijk [82] and further enhanced and
formalized by Keim et al. [40] and Riveiro et al.
[64]. Both processes are discussed concurrently
in the following paragraphs.

3.2.1 Data Pre-processing

The nature of the data sets, as described in Sec-
tion 1, requires some data pre-processing (DW )
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Data/ 
Information

Data Pre-processing

Visualizations

Data Visualizations

Inferences/
Hypotheses

Hypotheses Generation

Knowledge/
Insight

User Knowledge and Insight

Input HV VH

HS

V S U CV

U CH

Feedback Loop

UV

UH

DW

HV Functions that generate hypotheses from visualization

VH Functions visualizing hypotheses 

HS Functions that generate hypotheses from data

V S Functions visualizing data U CV
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Insight concluded from visualizations

Insight concluded from hypotheses

UV Effect of user interactions on visualizations (i.e. filtering, zooming, etc.)

UH Effect of user interactions on hypotheses (i.e. generation of new hypotheses)

DW Basic data pre-processing functionality (data transformation, cleaning, selection, integration)

DATA VISUALIZATION VISUAL REASONING

KNOWLEDGE EXTRACTIONDATA ANALYSIS

Informed Decisions

Fig. 3 The Visual Analytics and Enabled Reasoning Processes (Adapted from [40], [52] and [64])

for any type of efficient data analysis or data vi-
sualization to take place. The goal of this step,
as explained by Kasik et al. [35], is to pre-
pare the data for visual representation by “iden-
tifying higher-order characteristics in the data,
such as relationships, trends, summaries, clus-
ters and synopses” [35]. Pre-processing may in-
clude data cleaning, selection, integration, trans-
formation, etc. [40, 35]. In particular, as ex-
plained by Russell et al. [68], data transfor-
mation “deals with transforming data into vary-
ing levels of abstraction or deriving additional
data that has new semantic meaning.” Data pre-
processing is usually achieved through the im-
plementation of mathematical, statistical, and lin-
guistic techniques. More detailed information re-
garding existing methods can be found in [35].
Once the data have been pre-processed and trans-
formed into efficient data representations, hy-

potheses can be generated (HS) and visualizations
can be created (VS).

3.2.2 Hypotheses Generation

Hypotheses can be formulated after applying an-
alytical and statistical methods to the data (HS).
Additionally, hypotheses can drive the type of vi-
sualization to be used (VH) and, inversely, visual-
izations can help formulate new hypotheses (HV ).
However, as explained by van Wijk [82], visu-
alization should not be used to “verify the final
truth” [82], as it has been advocated in previous
publications, due to the subjective nature of what
can be observed (different people may observe
different patterns, certain parameters may better
explain by a phenomenon than others). Along the
same lines, visualization can be misleading, be-
cause the data used to create a particular visual-
ization could have been subjectively manipulated
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by a user wishing to see a particular outcome.
Consequently, it is important that the formulated
hypotheses be verified afterwards [82].

3.2.3 Data Visualization

Visualization is a means to extract and present
relevant information from large volumes of gen-
erated or compiled data [82] in a format that en-
ables reasoning and analysis while allowing the
user to navigate the overall space spanned by the
data [35]. As explained by Kasik et al. [35],
data representations obtained during the data pre-
processing phase (Section 3.2.1) need to be fur-
ther transformed (VS) in order to provide the user
with intelligible and effective visual representa-
tions (Figure 4). Hence, visualization methods,
defined by Lengler and Eppler [45] as “a system-
atic, rule-based, external, permanent, and graphic
representation that depicts information in a way
that is conducive to acquiring insights, develop-
ing an elaborate understanding, or communicat-
ing experiences” can be applied to data represen-
tations to help the user identify patterns, trends,
etc. and better disseminate results and synthesize
knowledge [35].

Raw Data Concise 
Representations

Visual 
Representations

Fig. 4 The Two-Step Data Transformation and
Representation Process

The resulting visual representations depend
on the type of data, the task to be accomplished,
and the time-frame allowed for the completion of
the analysis [35, 38, 45].

3.2.4 User Knowledge and Insight

The user is a critical element of the Visual Ana-
lytics process [35] but he often knows very little
about the data [38]. The knowledge or insight
he may gain from visualization (UCV ) and visual
data exploration, in particular, is enabled through
visual reasoning and depends on the level of in-
formation and interaction provided, his level of
expertise and a priori knowledge, as well as his
cognition and perception capabilities.

Based on his newly acquired knowledge and
exploration objectives, the user may decide to ob-
tain additional insight both on the data and its
visualization. He may recompute the data and
steer the analysis in a different direction (feed-
back loop) or he may dynamically interact with
the visualization (UV ) through analytical means
and techniques like brushing and linking (con-
necting of two or more views of the same data),
and/or panning and zooming (smoothly moving
a camera across a scene while increasing or de-
creasing the magnification of the objects in the
scene) [52] to focus on a different region or di-
mension of the data space. This is expressed in
the Visual Analytics Mantra proposed by Keim et
al.: “Analyze first, show the important, zoom, fil-
ter and analyze further, details on demand” [40].

Exploring and investigating the data through
a different or more focussed angle can offer a
new perspective on the problem, thus helping
the user refine existing hypotheses and formulate
new ones (UH). As claimed by Keim, “the vi-
sual data exploration process can be viewed as a
hypothesis-generation process” [38]. These new
hypotheses, through the process of knowledge ex-
traction, may in turn contribute to increased in-
sight (UCH) and a better understanding of the
problem.

This disciplined, iterative, and interactive
process [52] by means of which the user learns
about the problem through data manipulation, in-
formation visualization, and hypotheses genera-
tion and testing, eventually leads to the formula-
tion of informed decisions.

3.3 Preliminary Remarks

As discussed in Section 1, design is primarily a
problem-solving activity. In the case of uncon-
ventional design, characterized by a lack of his-
torical data and limited designer’s expertise for
this particular problem, this problem-solving ac-
tivity requires that the data, knowledge, and in-
sight necessary for the formulation of informed
decisions be generated throughout the design
process. While significant amounts of data can
be created through simulation, the generation of
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knowledge and insight necessitates a framework
with which:

• Large and complex data sets can be ex-
plored

• Initial concepts and hypotheses can be for-
mulated and later affirmed or discarded

• Information can be synthesized and shared

• Scientific and analytical findings can be
documented and communicated

Visual Analytics, the goal of which is to support
the analytical reasoning process [79], is thought
to provide that necessary framework through the
process described above. The following sec-
tion illustrates, through an unconventional de-
sign problem, how Visual Analytics and the en-
ablers discussed in Sections 2.2.1 and 2.2.2 are
integrated into the design process to address the
aforementioned design challenges, and provide
the means for the necessary generation of knowl-
edge and insight.

4 Example Application

The failure of the High Speed Civil Trans-
port (HSCT) program led by NASA in the mid
90’s revealed the extreme sensitivity of com-
mercial supersonic aircraft to both environmental
and economical parameters. Using this knowl-
edge, and motivated by favorable market stud-
ies, the aerospace community’s interest shifted
from supersonic airliners to supersonic business
jets (SBJs) [33]. Significant amount of research
has thus been conducted on the design and de-
velopment of quiet SBJs capable of meeting the
stringent requirements of flying overland at su-
personic speeds with minimum sonic boom and
acceptable levels of engine noise and emissions
[11].

The following sections discuss, based on pre-
vious SBJ design studies [11, 26, 60, 12, 59, 33,
14], the early phases of the design process (pre-
conceptual/conceptual phases) for this unconven-
tional and complex vehicle, emphasizing the de-
sign challenges and enablers. In addition, these

sections illustrate how the integration of Visual
Analytics in the design process provides the an-
alyst and decision maker with the capabilities
to gain the knowledge and insight necessary to
make informed design decisions.

4.1 Design Problem and Requirements Defi-
nition

The definition of the design problem has been
recognized as a central issue in design [67]. In
particular, the design of a new air vehicle is a
challenging undertaking that requires a proper
understanding of the mission type to be per-
formed and the mission requirements to be met.
Mission requirements describe how the system
should operate for a given mission profile [4] and
represent what the user needs, the ultimate goal
of all systems to be acquired. However, as ac-
knowledged by Trainor and Parnell [80], what at
first appears to be the problem is rarely the real
problem to be addressed due to changing require-
ments or ambiguous customer needs. Hence,
it is important that significant amounts of time
and effort be directed towards diligently captur-
ing the voices and perspectives of all stakehold-
ers/customers. Ultimately, the customer require-
ments need to be translated into engineering re-
quirements (detailed technical specifications) for
the designer to be able to effectively develop and
evaluate candidate designs.

A quality system developed in the ‘60s by
Yoji Akao and Shigeru Mizuno [2] called Qual-
ity Function Deployment (QFD) provides the de-
signer with the means to truly capture the cus-
tomer needs and translate those into design re-
quirements. Its associated design tool is termed
a QFD diagram or “House of Quality”. This
tool also enables the ranking of requirements, the
identification of synergy or conflict between the
engineering requirements, and the benchmarking
of other existing products, when relevant, to help
establish engineering targets.

Once the iterative process of mapping cus-
tomer requirements to quantifiable engineering
parameters is completed, the designer needs to
provide design alternatives to be tested against
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these requirements.

4.2 Concept Space Definition

The concept space represents all possible solu-
tions of a design problem. The goal of defining
the concept space, as described by Kirby [41], is
to “identify a potential class of vehicles and pro-
vide (...) a starting point for selecting potential
solutions to satisfy the customer requirements.”
However, there exists a multitude of combina-
tions of different subsystems that may satisfy re-
quirements. Different methods such as brain-
storming and affinity diagramming [85] can be
implemented to enumerate the variety of these
subsystems and generate design alternative com-
binations. Morphological Analysis (MA), as dis-
cussed in the following section, has been par-
ticularly successful in defining a concept space
for complex system engineering problems such
as this one.

4.2.1 Morphological Analysis

MA was first developed in 1966 by Fritz Zwicky,
a Swiss astronomer and astrophysicist, who used
it to develop jet and rocket propulsion systems
and propellants [91]. This technique has since
been extensively used in a variety of scien-
tific disciplines [47, 62, 63, 86] and success-
fully implemented in complex system engineer-
ing problems [7, 41]. MA is particlualry at-
tractive for multi-dimensional, non-quantifiable,
complex problems [62] because it provides a
structured, functional, and intelligent means to
decompose the problem and generate alternatives
[41]. MA is implemented through the develop-
ment of a matrix of alternatives, or morpholog-
ical matrix, which is formed by "identifying the
major functions or characteristics of a system on
the vertical scale, and all the possible alternatives
(or system attributes) for satisfying the character-
istics on the horizontal scale” [41].

The concept of the Interactive Reconfigurable
Matrix of Alternatives (IRMA), developed by
Engler et al. [23], further extends the capabil-
ity of the matrix of alternatives by incorporating
new concepts such as filters, compatibility and

dependency matrices as well as Multi-Attribute
Decision Making (MADM) techniques into the
selection of product features. An IRMA, as il-
lustrated by Figure 5, is populated through brain-
storming and includes all possible combinations
of the brainstorming activity. The simplified ma-
trices in Figure 5, for instance, include 1.8 ∗ 109

alternatives. However, by enumerating all the
possible alternatives along with their dependen-
cies and compatibilities, the IRMA helps scope
an intractable problem space to a manageable
one. The implementation of filtering capabilities,
such as the option to eliminate alternatives with
respect to technology maturity, also contributes
in reducing the scope of the problem. Finally,
the integration of MADM techniques such as the
Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS), which allows decision
makers to rank alternatives according to the im-
portance of pre-determined criteria [23], further
supports experts in down-selecting the number of
options to be considered.

The implementation of the aforementioned
capabilities enables the exploration of a high
number of options, as well as the identification
of potential concepts or new technological
combinations for a potential system. This
process, during which both requirements and
design configurations are considered, eventually
supports subject matter experts in determining
the baseline around which a concept space that
satisfies the customer requirements may exist
[11]. The chosen baseline aircraft concept,
shown by the shaded boxes in Figure 5, can
be further decomposed into a set of geometric
and propulsive parameters that define the design
space to be investigated. The IRMA thus greatly
helps decision makers eliminate some alterna-
tives and reduce the concept space to a defined
region that can be further investigated.

Concept space exploration, design space ex-
ploration, and feasibility identification, as dis-
cussed further in this paper, are followed by a se-
lection process in which the decision maker has
control [5, 76]. However, in the case of revo-
lutionary, unconventional concepts, this control
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Fig. 5 Example of an Interactive Reconfigurable Matrices of Alternatives (IRMA) for a SBJ

is limited by the lack of empirical data or expe-
rience of the decision maker. Additionally, be-
cause the concepts are defined by several param-
eters that must be allowed to vary concurrently,
the decision maker cannot mentally analyze them
without the aid of graphical tools. The concepts
are also often judged against multiple conflict-
ing objectives that are sensitive to the values of
the design parameters. The concept and design
spaces are thus so complex that it is exceedingly
difficult for the decision maker to identify a con-
cept with confidence [51]. It also happens that
multiple different concepts result in equally fea-
sible design. Finally, as discussed by Mavris and
Jimenez [51], small variations in requirements
and constraints can quickly change what con-
cept is most appropriate. To address these chal-
lenges, Genetic Algorithm (GA) [25], a search,
optimization and machine learning technique that
became known in the 1970s through the work
of Holland [28], can be implemented. The use
of Genetic Algorithms (GA) for concept genera-
tion [56], exploration [72] and selection [17] has

been successfully implemented [51]. In partic-
ular, GA has shown to be very efficient in sup-
porting trade-offs in the early definition of sys-
tem taxonomy [57, 17, 14, 13, 31]. While GA
can be used at different stages of the conceptual
design phase (concept space exploration, design
space exploration, feasibility identification, etc),
this paper only illustrates its applicability to con-
cept space exploration.

4.3 Concept Space Exploration

As previously discussed, the IRMA enables the
reduction of the concept space to a reduced num-
ber of alternatives. The remaining alternatives
are further decomposed into relevant geometric
and propulsive parameters. These parameters and
their associated ranges define the design space
that will be further investigated. The ranges are
chosen so as to represent the highest number of
configurations possible. These alternatives and
their parameters guide the designer in deciding
which models and codes to integrate to explore

11
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the concept space. The fidelity of these tools is
also dictated by the parameters chosen.

Many disciplinary analyses and codes are of-
ten necessary to evaluate the feasibility and via-
bility of the design. An efficient means to lessen
the design cycle time is to study many differ-
ent aspects of the design simultaneously. This
is achieved through the creation of an integrated
and parametric computational synthesis and siz-
ing environment (Figure 6) in which conceptual
and preliminary design tools and codes are linked
together, eliminating the re-keying of informa-
tion from output files to input files.

The Genetic Algorithm is then executed to
help “identify the dominant designs that may
confirm subject matter expert intuition or reveal
unexpected trends” [51]. Through the implemen-
tation of the GA, different complete design con-
cepts can be created in less than a minute, or up
to a day, depending on the level of fidelity of
the design tools and models (Figure 7). These
designs are sized for the mission requirements,
which are also scalable; a change in the required
range, for example, will change this matrix of de-
signs. Parametric design thus provides the user
with the power to test hundreds or thousands of
designs, where previously, time permitted a sin-
gle design point only.

After some number of design generations,
the dominant solutions become apparent, hence
defining the Pareto frontier and the performance
envelope of the concept space, as illustrated in
Figures 8 and 9. The Pareto frontier is a trade-

Fig. 7 Subset of SBJ Configurations

off curve on which designs cannot be improved
in one metric category without a tradeoff in an-
other [58]. By selecting any point on the Pareto
front, the designer is also able to access all the
information regarding a particular design.

The development of a parametric, integrated
modeling and simulation environment, along
with the implementation of GA, allows the
concept space to be quickly explored, providing
the designer with additional insight and a deeper
knowledge about the design problem. It allows
the designer to better understand and quantify
the trade-offs between metrics and concepts
[22], hence leading him to the confirmation
or discovery of trends that he could not have
apprehended or visualized beforehand. Ad-
ditionally, it enables the concept space to be
reduced from a multitude of options to one
family of concepts and one M&S environment.
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This family of concepts is then further inves-
tigated, as discussed in the section below. In
particular, higher fidelity tools may be inte-
grated into the parametric M&S environment
described above to evaluate the sensibility and
feasibility of the chosen concepts and assess, in
more detail, their corresponding design variables.

These tools or codes often appear as “black
boxes” to the user. Indeed, the equations embed-
ded in them are so complex that it is impossible
for the analyst or decision maker to clearly iden-
tify or grasp the relationships between inputs and
outputs. This lack of understanding prevents any
sensitivity analyses to be conducted and thus lim-
its the insight and knowledge that the decision
maker could gain about the design problem [83].
To address this challenge, Wang and Shan [83],
as well as other practitioners, advocate the use
of surrogate modeling and visualization methods
to support the decision maker’s understanding of
the design problem. Both enablers are discussed
in the following sections.

4.4 Surrogate Modeling

As discussed in Section 2.2.2, surrogate mod-
eling techniques, by constructing approxima-
tions of analysis codes, supports the integration
of discipline-dependent and often organization-
dependent codes, and represents an efficient way
to lessen the time required for an integrated para-
metric environment to run. These techniques also
yield insight into the relationships between de-
sign variables (inputs) and responses (outputs),
hence facilitating concept exploration [71]. Ad-
ditionally, by enabling virtually instantaneous
analyses to be computed in real-time, surrogate
modeling supports the use of interactive and in-
tegrative visual environments [46]. These envi-
ronments, as described in Section 4.4.1, in turn
facilitate the designer’s understanding of the de-
sign problem. Surrogate modeling, as stated by
Wang and Shan [83], thus provides “a decision
support role for design engineers.” Among the
variety of surrogate modeling techniques that fa-
cilitate the exploration of complex design spaces
[83, 71], Response Surface Methodology (RSM),
first developed by Box and Wilson [9], is partic-
ularly well-accepted and suitable for Aerospace
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and Mechanical engineering design applications
[71].

4.4.1 Response Surface Methodology (RSM)

RSM [54] is a mathematical modeling technique
that uses a simplified representation, called
Response Surface Equation (RSE) or surrogate
model, to approximate the behavior of a response
(such as a disciplinary or system level metric) as
a function of independent design parameters or
input variables [4, 11, 85]. RSM is particularly
suitable when several input variables potentially
influence a performance measure (response),
but the underlying relationship is unknown
[54]. As shown in Equation 1, an RSE takes
the form of a polynomial approximation of
the relationships across given ranges for the
input variables and usually includes linear,
quadratic, and interaction terms between the
design parameters [11, 33]. The philosophy
behind the use of a polynomial approximation is
based on the principle of Taylor series expansion.

R = b0 +
n

∑
i=1

bixi +
n

∑
i=1

biix2
i +

n−1

∑
i=1

n

∑
j=i+1

bi jxix j + ε (1)

where:
R: response of interest
b0: intercept term
bi: regressed coefficient for first-order terms
bii: regressed coefficient for second-order terms
bi j: regressed coefficient for cross-product terms
xi,x j: design variables or factors
ε: error associated with second-order approxi-
mation
The reader is invited to consult [54, 53, 8] for a
more detailed description of RSM developments,
applications, techniques and tools.

The steps in the RSM process are as follows
[11, 71]:

1. Select design variables and their ranges.

2. Execute a 2-level Design of Experiment
(DOE) and conduct a Pareto analysis of
the significant metrics via an analysis of
variance using the results form the execu-
tion of the DOE: the Pareto analysis al-
lows the designer to “capture and visual-
ize requirement-attribute sensitivities and
leverage trade-off analyses at any level
of system decomposition” [51]. In other
words, Pareto analysis reduces the dimen-
sionality and complexity of the solution
space [85] by providing, in order of prior-
ity, the variables that contribute the most to
the variability of a given response (Figure
10).

3. Select an appropriate DOE for the number
of significant factors and number of simu-
lation cases. DOEs are a series of tests in
which purposeful changes are made to in-
put variables. By only running a limited
number of cases, predictions can be made
regarding the influences of variables and
their interactions on the responses. DOEs
provide a maximum amount of knowledge
with minimal time and computational ex-
penditures [54].

4. Run the prescribed simulation cases and
collecting the appropriate response data.
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Fig. 10 Example of Pareto Analysis for CO2 Re-
duction

5. Perform multivariate regression analysis to
build RSEs.

6. Validate the model with a confirmation test
and random sample case.

After validation, the RSEs obtained can be
used to perform rapid optimization, Monte Carlo
simulation, or design space exploration [11, 83],
as discussed in the following section.

4.5 Design Space Exploration

As previously discussed, surrogate modeling
supports the use of higher-fidelity analysis for
unconventional configurations by facilitating the
integration and automation of organizationally
disseminated tools. In particular, the creation
of physics-based approximation models (surro-
gate models) can replace the higher fidelity tools,
which are usually described as too slow for use in
the design process, cryptic in their use of inputs,
interfaces and logic, and non-transparent (lack of

proper documentation, legacy). The use of these
approximation models also enables the integrated
tools to run at a fraction of the time of original
models. Consequently, surrogate modeling also
empowers the designer to generate and collect
larger data sets, hence allowing him to capture
more of the dimensionality of the problem. How-
ever, the amounts of data generated can rapidly
become overwhelming and prevent the designer
from learning about the design problem any fur-
ther. Alleviating this issue, as discussed in Sec-
tion 1, requires that visualization capabilities be
developed to help reduce the designer’s cogni-
tive burden, foster his rapid understanding of the
design problem, and support informed decision
making. The importance of visualization-enabled
design space exploration in general, and of visu-
alization methods for multidimensional data sets
in particular, has been widely recognized as a
means to support engineering design and deci-
sion making [46]. In particular, Wong and Berg-
eron [87] mention that such techniques have for
objective the synthesis of multidimensional data
sets and the identification of key trends and rela-
tionships.

Companies such as Chrysler, Boeing, Ford,
Lockheed Martin or Raytheon, to name a few,
have invested significant efforts in the use of vi-
sualization to speed and improve product design
and development. The research community has
also worked on the development and implemen-
tation of diverse design space visualization en-
vironments. Past efforts to visualize multidi-
mensional data include programs such as Xmd-
vTool [84], Xgobi [77], VisDB[36], and Win-
Viz [44]. More recent work, such as the one
by Marsaw et al. [48], for instance, discusses
the use of an interactive visualization environ-
ment to help determine the technologies and en-
gine point designs that meet specific performance
and economic targets. In particular, this envi-
ronment features a scatterplot that allows the de-
signer to display simultaneously both design vari-
ables and responses and to filter the discrete de-
signs to determine regions of the design space
that are the most promising for further and more
detailed exploration. Additional recent interac-
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tive and multidimensional design space visual-
ization environments include, among others, the
ARL Trade Space Visualizer (ATSV) [55, 76],
Cloud Visualization [21], BrickViz [34], the Ad-
vanced Systems Design Suite [89, 90], the frame-
work introduced by Ross et al. [66], and the work
conducted by Simpson et al. [74]. These envi-
ronments incorporate diverse visualization tech-
niques (glyphs, parallel coordinates, scatter ma-
trices, 3-D scatter plots, etc.) depending on the
nature of the data and the end goal of the envi-
ronment [76]. The reader is invited to consult
[18] for a thorough review of the theory and tech-
niques used to visualize multivariate design data.

The following paragraphs and sections
discuss, in more detail, the integration of specific
design methods and visualization techniques in
support of the exploration of the design space
and the evaluation of a feasible design.

Design space exploration is a dominant ac-
tivity in conceptual design. The RSEs gener-
ated describe the overall design space and can
be visualized in a dynamic design space explo-
ration tool called a prediction profiler (Figure
11). A prediction profiler is constructed from
partial derivatives and depicts the sensitivities of
each response to the design parameters. In other
words, a prediction profiler enables the user to
evaluate how a given attribute xi varies as the
value of x j changes. Hence, when the hairlines
(dashed vertical lines in Figure 11) are moved to
indicate the changing of an input variable value,
the responses are automatically updated through
the RSE [4].

Such capability is important to investigate
the overall design space and determine which
attributes have the greatest impact on the re-
sponses. By being able to explore trends and sen-
sitivities in a highly visual, dynamic, interactive,
transparent, and collaborative environment, the
designers are provided with the capability to con-
duct and document trade-off analyses and there-
fore gain valuable insight and knowledge about
the design problem. Such an environment also
brings the world of the analyst and the world of
the decision maker together by fostering commu-

nication and informed discussions between the
different actors.

Baker et al. [4] and Baker and Mavris [3]
have recommended partitioning the design space
model into three design spaces: a mission re-
quirement space, a vehicle space, and a tech-
nology space. The simultaneous assessment and
rapid tradeoff between the three design spaces
can be conducted in a Unified Trade-off Environ-
ment (UTE) to investigate the interactions among
input variables, as well as the impact of the vari-
ability of the requirements, vehicle attributes, and
technologies on the complex design space.

Once the major attributes have been identi-
fied and their sensitivities assessed, the follow-
ing step consists of identifying if a solution exists
that meets the requirements and satisfies the con-
straints. However, depicting a solution space re-
quires that the uncertainty that plagued the design
problem be considered. Uncertainty in design
is present in the requirements, vehicle attributes,
and technologies that define the design concept.
The use of probability theory and probabilistic
methods in conjunction with surrogate models, as
described in the following section, have been par-
ticularly successful in allowing the designers to
quantify and assess risk, and explore huge com-
binatorial spaces.

4.6 System Feasibility Evaluation

The main objective of design space exploration
is the determination of feasibility [22] and the
creation, when necessary, of a feasible design
space. A Monte Carlo Simulation (MCS) is run
on each RSE assuming a uniform distribution on
the ranges of all the design variables as a means
to map all the possible outcomes. This leads to
the generation of Probability Density Functions
(PDFs) and corresponding Cumulative Distribu-
tion Functions (CDFs). Using probability dis-
tributions along with surrogate modeling enables
thousands of designs across a user-specified dis-
tribution (uniform or other) to be quickly gener-
ated and analyzed, hence allowing a designer to
assess technical feasibility and economic viabil-
ity.
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Fig. 11 Dynamic Interactive Design Space Trade-off Environment (all values have been normalized)

By simultaneously representing specific con-
straints and their associated CDFs in a single plot,
as illustrated in Figure 12, the designer can then
evaluate how feasible the design space is and
quickly identify any “show-stoppers”, constraints
inhibiting acceptable levels of feasibility. In ad-
dition, he is provided with information regard-
ing the magnitude and direction of the needed
improvements to obtain an acceptable feasible
space. However, a design is feasible if it meets
all requirements concurrently. The requirements
associated with two metrics of interest can be
evaluated simultaneously using joint probability
distributions. Joint distributions can be repre-
sented, along with both future target values and
Monte Carlo Simulation data, to quickly identify
any points that meet the constraints (Figure 13).
Technology metric values can then be extracted
for any of the points that satisfy these constraints.
Finally, these points can be further queried and
investigated in other dimensions, through brush-
ing and filtering, as illustrated in Figure 14.

As stated by Marsaw et al. [48], the ana-
lyst or decision-maker, in order to explore and
understand the overall design space, should be

able to compare any input or response charac-
teristic of the point design to any other input
or response in the design space. This can be
achieved by generating and representing multi-
ple plots of input vs. input, input vs. output, and
output vs. output combinations in a multivari-
ate scatterplot. In particular, such visualization
technique allows the designer to visualize the to-
tal variability of a response metric as a function
of the collective variability of the design param-
eters. It can also represent the locus of bound-
ary points of the response metrics, hence allow-
ing the designer to quickly identify the “best”
and “worst” designs achievable within the design
space for each metric [48]. Additionally, differ-
ent concepts or architectures can be color-coded
to make their impact on the design space immedi-
ately visible, hence informing the analyst or deci-
sion maker about the effect of concepts or archi-
tectures, and specific technologies, on the avail-
able design space [48]. A multivariate scatter-
plot showing all the potential output vs. input
plots simultaneously can also provide essential
insight regarding trends and correlations, while
plots of outputs vs. outputs provide covariances
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Fig. 12 Design Feasibility Assessment Enabled
by Surrogate Modeling

of the relevant responses. Using a multivariate
scatterplot along with filtered Monte Carlo anal-
ysis, a technique for performing “inverse design”
that combines Monte Carlo simulation with sur-
rogate models, the designer can also quickly in-
teractively filter in all dimensions simultaneously
and identify the solutions that concurrently meet
all of the constraints placed on the output param-
eters [6]. Hence, filtered Monte Carlo, a method
first introduced by Kuhne et al. [42], can help
find all the design combinations that meet the
constraints and thus present the decision maker
and analyst with more than one feasible option.
In particular, the interactive and visual capabil-
ities illustrated in Figure 14 allows the analyst,
through brushing and filtering, to query a com-
plex, multidimensional design space graphically,
reduce the number of solutions to a handful of
points by excluding undesirable ones, and iden-
tify feasible concepts quickly.

A feasible design space, if it exists, can also
be identified by plotting both constraint contours
and design points on a bivariate graph, as illus-

Fig. 13 Selecting Potential Solutions to Meet Fu-
ture Goals

trated in Figure 15. When no feasible design
space exits, as it is often the case for unconven-
tional designs, or if the extents of the feasible de-
sign space is unacceptable, the designer has the
options to:

• Open design variable ranges: the ranges
considered being wide, as discussed in
Section 4.3, this does not represent a viable
option.

• Relax constraints: this may or may not be
an option, depending if the constraints are
rigid or not.

• Select a different concept space: this is
already investigated with the requirements
aspects of the method.
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Fig. 14 Scatterplot Matrix of Outputs

• Infuse new technologies: this is discussed
in more details in Section 4.7.

Being able to identify the constraints that
overlap with the design space is thus paramount
as it helps the designer gain valuable insight
regarding the constraints to relax or the type of
technology to infuse. A parametric, dynamic,
and interactive environment such as the one
depicted in Figure 15, hence allows the designer
to rapidly explore hundreds or thousands of
potential design points for multiple criteria,
while giving him the freedom to change the
space by moving both the design point and the
constraints. The designer is thus able to visualize
the active constraints and identify the ones that
most prevent him from obtaining the largest
feasible space possible and, consequently, from
gaining the full benefits of the design concept.
Additionally, the response surface equations

generated from the design space exploration can
also be shown as three dimensional contours to
which constraints can be applied (Figure 16).
Using the sliders, the surface can be reshaped in
real time, hence enabling trade studies to be per-
formed and visualized instantaneously. In fact,
this capability enables the designer and decision
maker to uncover trends or solutions that have
never been examined in a transparent, visual,
and interactive manner. This interaction between
the designer and the exploration environment
allows the designer to constantly reformulate
constraints and variables as he gains new insight
about the design problem, thereby facilitating the
formulation of informed decision [68, 1].

As previously discussed, an unconventional
design will likely, at first, not have a feasible
design space. The creation of a feasible de-
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sign space is thus the main objective in the early
phases of design. The techniques and visualiza-
tion described above allow the designer to iden-
tify the most limiting constraints, hence guiding
him in the choice of concepts or technologies to
be further investigated or infused.

4.7 Refinement of the Design Space

Refining and opening the feasible space entail
pushing the state-of-the-art and identifying, eval-
uating, and selecting technologies that are under
development or close to maturity. These steps
are part of methodologies such as the Technology
Identification, Evaluation, and Selection (TIES)
methodology [41], which provides a process by
which requirements can be met and a feasible de-
sign space identified. These steps are briefly de-
scribed in the following sections.

4.7.1 Identify Technologies

Technologies are identified according to their
compatibility with respect to one another, as well
as their effects on the system. In TIES, technol-
ogy impacts are captured by k-factors and mod-
eled as vectors of k-factors. k factors are, in
essence, scale factors added within a M&S en-
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vironment to model changes introduced by new
technologies on particular metrics. Vectors of k-
factors, or technology vectors, are then defined
for each technology whose elements consist of
the benefits and degradations associated with the
technology

4.7.2 Evaluate Technologies

RSM is then used to create surrogate models of
the responses as a function of k-factors. How-
ever, because the technologies considered are of-
ten under development, there exists some uncer-
tainty regarding their impact on the system. In
TIES, uncertainty is modeled by treating each k-
factor as a random variable with a specified PDF.
Monte Carlo simulation is then run for each set
of k-factors sampled.

4.7.3 Technology Selection

A technology space exploration is then con-
ducted, analogous to the design space explo-
ration described in Section 4.5. A prediction
profiler illustrating the impact of independent ef-
fect of each technology on the responses can be
built. Similar filtering and visualization capabili-
ties can be implemented to determine which tech-
nology enables a baseline that meets the require-
ments. However, for any multi-attribute, multi-
constraint, multi-objective problem, the selection
of the “best” alternative is inherently subjective.
The techniques proposed by the TIES methodol-
ogy are aimed at providing the decision maker
with the necessary knowledge and justification
for selecting the appropriate set of technologies.
These techniques include:

• MADM Selection Techniques: MADM
techniques, such as TOPSIS, are used to
identify the best mix of technologies for the
stated evaluation criteria.

• Technology Frontiers: Technology fron-
tiers allow the analyst and decision maker
to visualize the limiting threshold effective-
ness parameters attainable from any com-
bination of technologies (Figure 17). Effec-
tiveness parameters, such as performance

and economics, can be utilized to compare
various technology alternatives and may
be constructed from a user defined utility
function for which maximization is desired.

• Resource Allocation: Resource allocation
allows the analyst and decision maker to
quickly and efficiently identify the tech-
nologies that have the strongest impact on
the baseline metrics.

Fig. 17 Example of Technology Frontier

The selection of the final concept alternative
is highly dependent on the people present in the
room when a decision has to be made. To mini-
mize this effect, one of the purposes of the tech-
niques and capabilities described throughout this
paper is to allow the analyst to run cases and
conduct some analysis ahead of time to be able
to provide the decision maker with the justified
means of making an informed decision. In par-
ticular, providing some degrees of freedom on the
variables with which the decision maker is famil-
iar with will eventually help him gain valuable
insight and optimally direct program resources.

5 Concluding Remarks

Design is a problem-solving process during
which data, information, and knowledge are ex-
changed to foster the formulation of appropriate
conclusions and actions. In the case of unconven-
tional design, historical data are nonexistent, ex-
pertise is limited, and new technologies must be
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Fig. 18 The Visual Analytics Process applied to an unconventional Design Problem

considered in order to satisfy the constraints and
create a feasible design space. A brief review of
the challenges faced by the designer during the
conceptual design phase has highlighted the fact,
that, independent of the methods and techniques
proposed, the real need is to reduce the designer’s
cognitive burden, and to support the analytical
reasoning process that eventually leads to a better
understanding of the design problem.

Figure 18 illustrates, in the context of the Vi-
sual Analytics and enabled reasoning processes,
how the tools and methods described in Section 4
are implemented and integrated to foster knowl-
edge and the formulation of informed decisions.
This integration of Visual Analytics in the de-
sign process offers a valuable answer to the needs
discussed above, while strongly supporting both
qualitative exploration and quantitative decision

making. In particular, it allows the analyst and
decision maker to

• Rapidly explore huge combinatorial
spaces,

• Identify potentially feasible concepts or
technology combinations,

• Formulate and test hypotheses,

• Steer the analysis by requesting additional
data as needed (data farming),

• Integrate their background, expertise and
cognitive capabilities into the analytical
process,

• Understand and quantify trade-offs be-
tween metrics and concepts,
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• Study correlations, explore trends and sen-
sitivities,

• Provide interactive feedback to the visual-
ization environment,

• Synthesize and share information,

• Investigate the design space in a highly vi-
sual, dynamic, interactive, transparent and
collaborative environment, and

• Document and communicate findings and
decisions.

However, it is important to acknowledge that
although enablers such as response surface
methodology or probability theory are essen-
tial to the investigation of unconventional design
problems, their benefits to the analyst and deci-
sion maker are limited if they are not integrated
with the visualization, interaction, and analytical
reasoning capabilities provided by Visual Analyt-
ics.

Finally, while the conceptual design phase is
the most important phase of design in terms of the
number of concepts to be examined, technologies
to be considered, and mappings that need to oc-
cur between requirements and configurations, we
believe that the design methods and solutions de-
scribed in this paper could, in principle, apply to
all the phases of the design process.
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