
27
TH

 INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

The global concept of the air traffic

management (ATM) through the Next

Generation Air Transportation System

(NextGen) and the Single European Sky ATM

Research Program (SESAR) will break up with

the existing roles predicated by 50 years old

technology [1], [2]. SESAR and, similarly,

NextGen specify air traffic operations and

management for the foreseeable future which is

nowadays limited by out-of-date architecture.

Current functionality is based on historical

technical limitations. To achieve a

performance-based and most efficient approach

the further development has to be right

balanced to prevent over-optimizing one area at

the expense of others [3].

This paper describes a concept for an

Ontology-based Control Room Framework

(ONTOCOR) which allows more productive

software code usage and easier development. It

focuses on improving efficiency and increasing

the code reusability in order to achieve

SESAR’s claim for a performance-based and

cost-efficient system [2]. The main goal is to

enhance software development in the area of

ATM with semantic technologies and further, to

enable an interchange of different domains with

similar types of tasks. Therefore semantic

standards and tools are briefly examined and

the concept of the ONTOCOR project is

explained.

1 Introduction

Control rooms are typically found in the

Security, Public Safety (PS), Public Transport

(PT), and ATM domains. Today, each of these

sectors uses domain specific concepts of

operation, which result in different solutions for

every targeted environment. This limits the

potential for cost efficient software development

and increases the time-to-market. Information

management, like systems for the ATM or other

domains as mentioned before, typically consist

of many heterogeneous sub components. Those

sub components are mostly implemented with

diverse types and structures of data, which

result from the circumstance that such complex

information management systems are developed

for specific business needs. But, when the time

has come and the business scope changes, for

example to combine two existing parts, some

sort of integration is needed [4]. To win the

challenges of the data and system integration, a

framework, which defines seamless information

interchange, is needed. As described in the

European Air Traffic Management Master Plan,

“the Information Management Work Package

(…) defines the ATM Information Reference

Model and the Information Service model (…)

by establishing the framework, which defines

seamless information interchange between all

providers and users of shared ATM

information” [2]. A specific example to

implement inter domain, is the European ATM

Information Reference Model (AIRM). In

general, domain independent implementation of

components is a future goal and

EUROCONTROL defines AIRM as a model,

which contains all of the ATM information to

be shared in a semantic way [5]. Exactly within

these circumstances an ontology-based

approach could bring the break through.

Semantic structures will improve the

productivity and increase the reusability of

A CONCEPT FOR SEMANTIC-BASED INFORMATION
MANAGEMENT FOR CONTROL ROOM

DEVELOPMENT

Eduard Gringinger*, Dieter Eier**, Dieter Merkl***

*Frequentis AG, **Frequentis USA Inc., *** Vienna University of Technology

Keywords: Ontology, Semantic, ATM, Control Room Framework, Modular Architecture

E. Gringinger, D. Eier, D. Merkl

2

software through a component based

framework, which are both key goals of the

Pan-European SESAR Joint Undertaking (SJU)

[3].

Within ONTOCOR, an Ontology-based

Control Room Framework will be developed in

order to survey the potential benefits of such an

approach over traditional software development.

ONTOCOR aims to enhance software

development with semantic technologies and

further, to enable an interchange of different

domains with similar types of tasks. An

important aspect of a modular architecture is to

gain control over accumulation and utilization

of control room content. It is necessary to define

analytic methods to describe the behavior of

interfaces and to enrich the entire set of services

semantically. Therefore, an exploration of

existing ontology frameworks in the field of

software-development in context to the

ONTOCOR project is needed.

To address the identified issues, this

paper analyzes reasoner and visualization tools

that will consult with further investigation of

ONTOCOR as a methodology. Another goal is

to accentuate that ontology-based development

could have the potential to develop, from a

qualitative point of view, better software for

mission critical environments in less time and at

less cost. The paper will give an overview about

the term “ontology” in context with semantic

based-information management. Finally, the

authors will draw a concept of ONTOCOR with

focus on the methodological strategy.

2 Definitions of Ontology

A precise definition of an ontology is not a

trivial task. The difficulty lies in the fact that the

word ontology was first used in the field of

philosophy. Therefore, it is important to go back

in time. The term itself is loan from the Greek

word ὃν (being) and λογία (science, study,

theory) which has a different meaning in the

philosophical context, where it refers to the

study of being [6]. Greek philosophers from the

Platonic school stated that some categories of

being, are fundamental. Under the doctrine of

Plato, Aristotle (384-322 B.C.) hypothesized

four ontological dimensions in his Metaphysics

book Theta [7]. In the middle Ages, European

academics used ontological arguments to

explain the existence of god in a scientific

manner. The argument examines the concept of

God, and states that the greatest possible being

is on the top in a scale of terms ranging from the

bottom to an infinity form of being. These

ontological arguments are controversial in

philosophy since then [8]. From a modern

perspective this argument could be described

through an ontology language in a way that God

is the overall “Thing” class, and all other beings

are underlying subclasses of “Thing”.

2.1 Ontology in Computer Science

Computer scientists became interested into

ontologies in the 1970s as the research in the

field of Artificial Intelligence (AI) began [9].

They were tempted by the applicability to

perform certain kinds of automated reasoning

on ontologies as computational models, with

mathematical logic [10]. Such an ontology

could for example define classes, relations,

formal functions with a concept description and

axioms that constrain the interpretation. The

first definition of ontology in terms of computer

science was created by Tom Gruber in the early

90’s. He defined ontology as an explicit and

formal specification of a shared

conceptualization [11]. The word “explicit”

implies that the type of concepts and their

constraints are explicitly defined. “Formal”

connotes that the ontology is readable by a

machine. And a “shared conceptualization” is

specified to state axioms that do include the

possible interpretations for the defined terms,

which contain the knowledge of a specific

domain and were accepted by a group. This

early definition has kicked up much dust,

therefore Gruber described the essential points

of an ontology in the Encyclopedia of Database

Systems in 2009 as a definition of “concepts,

relationships, and other distinctions that are

relevant for modeling a domain” whereas “the

specification takes the form of the definitions of

representational vocabulary (classes, relations,

and so forth), which provide meanings for the

vocabulary and formal constraints on its

coherent use” [12]. But there is no all-in-one

3

A CONCEPT FOR SEMANTIC-BASED INFORMATION

MANAGEMENT FOR CONTROL ROOM DEVELOPMENT

terminology. Often ontology is defined by its

use or in context of the Semantic Web, where

the World Wide Web Consortium (W3C)

specified ontologies as “formalized

vocabularies of terms, often covering a specific

domain and shared by a community of users.

They specify the definitions of terms by

describing their relationships with other terms

in the ontology. [13]”

Corresponding to Benjamin, Borst and

Akkermans [14], first ontologies in technical

domains were developed as reusable knowledge

libraries. In the field of software engineering,

ontologies are often used to refer to what exists

in a system model [15]. Per default all software

applications have an underlying ontology in

form of standardized libraries, components,

documentation and files, which tell the

programmer what exists. However, often this is

not enough or the description is poor for some

reason, ontologies are precisely made for that

specific purpose [16].

Through the initial work of Gruber and

other computer scientists several markup

ontology languages were developed. Most

ontologies are based on Description Logics

(DL), which are a conglomeration of knowledge

representation formalisms [17]. Logical

statements relating to roles in form of axioms

are the fundamental of the modeling concept,

which is the big difference to frame-based

languages where a frame specification declares

and completely defines a class. DLs are used in

AI, information management and metadata

integration. Within the context of the Semantic

Web several languages based on DL were

developed, like DARPA Agent Markup

Language (DAML) [18], Ontology Inference

Layer (OIL) [19], DAML+OIL [20], Simple

HTML Ontology Extensions (SHOE) [21],

Resource Description Framework (RDF) [22],

Web Ontology Language (OWL) [23] et cetera.

OWL for example, is still in a development

phase, which means that the language is evolved

by the W3C continuously. The first W3C

recommendation of OWL came out in 2004 [24]

and with the revision of OWL 1.1 in 2007 more

expressiveness was added [25]. But OWL 1.1

was only another step to the further

development which ended up in OWL 2. In

October 2009 the W3C published a

recommendation called OWL 2 [13], which

obtains additional expressiveness through

innovative ontological axioms to solve known

problems that occur with OWL. Despite the new

extensions main goal is to facilitate ontology

development. The background logic of OWL is

the DL [24], and [26] is used in

OWL 2.

3 Semantic-based Information Management

Similar to object-oriented languages, a typical

OWL ontology consists of instances to represent

knowledge items, properties, and classes. But

thinking in object-oriented terms during

development with OWL will almost always lead

you off target. You have to keep in mind that

both modeling languages where developed

among other circumstances and so have

different semantic competence but there are

some parallels. A comparison with the Unified

Modeling Language (UML) shows that meta-

models are closely related to ontologies and

both are languages for modeling to describe and

analyze the relations between concepts.

However UML and OWL use classes in a

significant different way [27]. In UML a class

describes a set of software objects which entails

the same specifications of features, constraints

and semantics. Instance objects share their

behavior from the class definition, and all

objects in UML are general instances of titled

classes. Instances of a class also have run-time

semantics in a way that there are notions of

static values and variables [28]. Contrary to this

in OWL terms, a class is a labeled set of domain

related things. Resources (individuals in OWL

terms) are simply identifiers, not things with

run-time semantics, state or storage. If an

individual fits a criterion of the class, then it

will be within the membership of that class.

Through reasoning this could also include

individuals, from whom you don’t even know

that they are in that class. As mentioned before,

OWL has an ultimate class called “Thing”,

whereas all other classes are subclasses of it and

individuals can only be instances of “Thing”

[13].

SHOIQ SROIQ

E. Gringinger, D. Eier, D. Merkl

4

:Wind :Pilot

:MeteorologicalData

rdfs:subClassOf

isSortOf
:Storm :Risk

rdf:type
isAlertedBy

:Temperature

rdf:type

Fig. 1: A simple ontology

The real supremacy of an ontology-based

approach lies in the capability to build

relationships between instances and classes. The

properties of those relationships will then allow

reasoners to make suggestions about them.

Consider a brief example (Fig. 1), :Storm

(concept) is a specific type of :Wind (value of

property :MeteorologicalData), :Storm

could be a :Risk (relation), a :Pilot gets

alerted through a :Risk (assertion). You can

see the labeled relationships isSortOf and

isAlertedBy infer the fact that a :Pilot is

alerted by a :Storm, which is a specific :type

of :Wind which in turn is a subclass of

:MeteorologicalData (reasoning). This

reasoning is possible because of the inverse

property of isSortOf, which relates the two

instances in the reverse direction. Several facts

could be inferred from these relationships.

Instances can either belong to a set of

meteorological data or the set of risks, but only

specific kinds of meteorological data is critical.

In terms of ontology languages classes are

disjoint to each other. There are no instances

that belong to both. We can see from Figure 1

that a :Storm is some sort of :Risk, however

with the knowledge of this example we could

not conclude that some type of :Temperature

is a :Risk. That is possible because OWL

follows the open world assumption, which

defines that any assertion not stated is

indistinguishable. Individuals need not

necessarily have a unique name because OWL

does not use the unique name assumption.

Within the ONTOCOR project, different

state-of-the-art ontology languages as well as

relevant semantic environments for ontology

development were analyzed and compared to

each other [29], including languages like Frame

Logic, RDF, RDF(S), OWL, OWL 2 and

SPARQL, a standardized RDF query language.

The knowledge in ONTOCOR is captured with

OWL 2, due to the fact that it has the most

complete set to express different concepts and

relationships that occur within an ontology. As

different ontology languages have different

facilities, it was necessary to evaluate them. Of

similar importance is the right choice of

frameworks and tools. There are two different

kinds of ontology related tools.

On the one hand, there are tools for the

ontology development. A relevant mix of open

source and commercial environments like

Protégé
1
, NeOn toolkit

2
, Jena framework,

OntoStudio, TopBraid Composer and Altova

SemanticWorks were already analyzed for

ONTOCOR [29]. Ontology environments like

Protégé and semantic reasoners, such as

FaCT++
3
 or Pellet

4
, are in the meantime

adopted to support the ontology development

process with OWL 2. The ONTOCOR

framework is mainly supported by Protégé 4.1

in combination with the NeOn Toolkit. The

need of selecting two environments, Protégé and

NeOn, is that both support OWL 2 and have

alternate strengths and weaknesses because of

their different purposes. Together they are

completing each other. And on the other hand,

there are tools for the productive use like

reasoner, alignment tools or visual

representations.

3.1 Semantic Reasoning

One aim of the semantic Web is to offer

machine readable metadata. Ontologies

expressed by W3C’s OWL 2 could improve

that, in the engineering field of the semantic

Web [13]. One key role of an ontology is the

possibility to be processed by a reasoning

system. To exploit such knowledge bases,

semantic reasoning is essential as part of the

ontology environment. The fact that

relationships in OWL 2 are formal defined,

1
 http://protege.stanford.edu/

2
 http://neon-toolkit.org/

3
 http://code.google.com/p/factplusplus/

4
 http://clarkparsia.com/pellet

http://protege.stanford.edu/
http://neon-toolkit.org/
http://code.google.com/p/factplusplus/
http://clarkparsia.com/pellet

5

A CONCEPT FOR SEMANTIC-BASED INFORMATION

MANAGEMENT FOR CONTROL ROOM DEVELOPMENT

offers the possibility to use a reasoner [30]. One

main service that such reasoning system can

determine, is to test whether or not one class is a

subclass of another class such as in Figure 1.

:MeteorologicalData has the subclass

:Wind. This relationship is called a necessary

implication. So we could result that because

:Storm is some sort of :Wind, and all types of

:Wind are :MeteorologicalData, then a

:Storm is also a type of

:MeteorologicalData. A reasoner can

conclude that the class of wind is a valid

subclass of meteorological data, and that it

contains at least one member. Such a test allows

a reasoner to compute the ontology’s inferred

class hierarchy and could discover if a given

class has any instances. If it cannot have any

instances you can properly conclude that a class

is inconsistent.

Protégé 4.1 enables the opportunity to take

advantage of different OWL 2 reasoners as a

plug-in. This all sounds great, but often

semantic reasoners are incomplete in order to

reach the required scalability, which means that

they could not guarantee to provide only valid

output. An excellent insight around that topic

provides a paper [31] from Giorgos Stoilos et.al.

published at the Oxford University Computing

Laboratory. This chapter compares and

describes the capabilities of some state-of-the-

art reasoners, how support OWL 2 (Fig. 2).

3.1.1 Pellet

Pellet is an open source, OWL 2 reasoning

system, written in Java. Original it was

developed inside the MINDSWAP group at the

University of Maryland, Institute for Advanced

Computer Studies. Pellet is now commercial

handled by Clark & Parsia LLC. The dual

licensing model of Pellet allows using it for

open source applications under the terms of the

GNU Affero General Public License (AGPL)
5

version 3. For commercial usage it is

recommended to get in contact with Clark &

Parsia. In the beginning of March 2010 the

release of Pellet 2.1.1 was announced and also

the Pellet reasoner plug-in for Protégé 4.1 was

updated. Pellet can be used directly via the

5
 http://www.gnu.org/licenses/agpl.html

Pellet interface in Jena. Based on the tableau

decision procedure, which was developed for

DL and Expression Language (EL), Pellet

supports reasoning with the full expressivity of

the description logic and in

order to support the OWL 2 specification. It

implements procedures for general ABoxes and

TBoxes.

The terms ABox (assertion box) and TBox

(terminological box) in context with DL are

used to describe two different types of

statements in ontologies. TBox statements

describe concept hierarchies, for example,

relations between concepts [32]. An ABox, as

compliant to a TBox, represents the statements

about relations between individuals and

concepts. Pellet also incorporates various

optimization techniques described in the DL

literature and contains several novel

optimizations for nominal, conjunctive query

answering and incremental reasoning [33].

3.1.2 FaCT++

FaCT++ is an efficient, open source DL

reasoner for compatible with OWL DL

and OWL 2. It was initially developed within

the WonderWeb project together with Ian

Horrocks [30] and is now supported by the

SEALIFE research project. It is implemented

using C++ and licensed under the GNU Lesser

General Public License (LGPL)
6
. Just as Pellet,

FaCT++ implements optimized tableaux

algorithms for ABoxes and TBoxes. One

functionality of the tableaux calculus is, to

check the consistency of an ontology.

According to W3C’s definition of OWL’s

semantic, a collection of ontologies “[…] is

consistent with respect to datatype map D if

there is some interpretation I with respect to D

such that I satisfies each ontology and axiom

and fact in the collection” [24]. FaCT++ can be

used as back-end reasoner with the OWLAPI or

as standalone via the DL Implementation Group

(DIG) interface. As Protégé 3 uses DIG and

Protégé 4 the OWLAPI, both are supported. The

latest available version is 1.4.0, which was

released in April 2010. Protégé 4.1 uses the

6
 http://www.gnu.org/licenses/lgpl.html

SHOIN

SROIQ

SROIQ

http://www.gnu.org/licenses/agpl.html
http://www.gnu.org/licenses/lgpl.html

E. Gringinger, D. Eier, D. Merkl

6

Affiliation Version License API Expressiveness Semantics Rule Support Conformance

A comparison of semantic reasoning systems

R
ea

so
ne

r

SWRL

SWRL, not full

SWRL full

not full

except keys and

some datatypes

fullSROIQ(D)

SROIQ(D)

SHIQ(D-)

SROIQ(D) direct

direct

direct

direct

fullOntotext AD

OWLAPI,

DIG, JENA

-

OWLIM

LGPL

commercial, time-

limited for education

LGPL OWLAPI 3.0

OWLAPI,

DIG, JENA

OWLAPI,

DIG
1.4.0.1

pre-

release

2.0

1.2.4

3.3 LPGL, commercial

Pellet

FaCT++

RacerPro

HermiT
University of

Oxford

Clark & Parsia

LLC
2.1.1 AGPL

University of

Manchester

Racer Systems

GmbH&Co.KG

SAIL OWL 2 RL RDF-based TRREE

Fig. 2: A comparison of semantic reasoning systems

plug-in version 1.4.0.1 of FaCT++ as default

reasoner. Nevertheless OWL 2 is only partially

supported. No support for keys or partial data

types, are some of the missing things.

3.1.3 RacerPro

RACER
7
 stands for Renamed ABox and

Concept Expression Reasoner and was first

introduced in 1997 within a cooperation of the

Concordia University Montreal and the

Hamburg University of Technology. RacerPro

is the commercial derivate distributed by the

Racer Systems GmbH & Co. KG. In addition to

the commercial license, there are also a trail and

a discounted license for time-limited

educational purposes available. The current pre-

release version 2.0 supports OWL 2 and uses

tableau algorithms as inference engine. OWL 2

is only supported on syntactic level but is

internally parsed as SHIQ(. RacerPro

implements ABoxes for instance data and

TBoxes to represent the knowledge axioms. It

allows proving the consistency of these two

boxes individually, computation of the

subsumption hierarchy, finding inconsistent

concepts, etc [34]. As the kernel operates with

SHIQ(, new inventions of OWL 2 like axiom

anti-reflexivity are not supported for reasoning.

RacerPro could be exploited via DIG to use it

with Protégé 3 and relies on the OWLAPI to use

it with a RacerPro adapter
8
 for Protégé 4.

RacerPro embraces an own semantic query

language for knowledge reasoning called new

Racer Query Language (nRQL) [35].

Furthermore it offers the possible to perform

queries in SPARQL syntax, whereas it is

7
 http://www.racer-systems.com/

8
 http://www.uni-ulm.de/in/ki/semantics/owltools

internally mapped to nRQL rules. Plug-ins

allow extending RacerPro and with its own

extension language called MiniLisp to define

server functions.

3.1.4 HermiT OWL Reasoner

HermiT
9
 was designed to process OWL

and it offers the possibility to identify

subsumption relationships between classes and

determine whether an ontology is consistent or

not. It is open source software under the terms

of the LGPL version 3 and distributed by the

Free Software Foundation. HermiT implements

a novel hypertableau reasoning calculus for

efficient reasoning, using the DL SROIQ with

OWL 2 data type support. This approach allows

a freer handling with nominals in the presence

of number restrictions and inverse roles. The

most important aspect is that the algorithm has

much less non determinism than the previous

tableaux algorithms [36]. To reduce the size of

the models which are constructed, they are

blocked anywhere. HermiT is pre-installed in

Protégé 4.1 and the actual release is version

1.2.4, which makes use of OWLAPI 3.0. The

semantic itself is processed directly as well as

all conformance tests for OWL 2.

3.1.5 OWLIM

There are two different editions of OWLIM
10

,

SwiftOWLIM and BigOWLIM. They differ on

separate Triple Reasoning and Rule Entailment

Engines (TRREE
11

) and in terms of semantics,

SwiftOWLIM does not support OWL 2. The

different TRREE implementations have impact

9
 http://www.hermit-reasoner.com/

10
 http://www.ontotext.com/owlim/

11
 http://www.ontotext.com/trree/

SROIQ

SHIQ

SHIQ

http://www.racer-systems.com/
http://www.uni-ulm.de/in/ki/semantics/owltools
http://www.hermit-reasoner.com/
http://www.ontotext.com/owlim/
http://www.ontotext.com/trree/

7

A CONCEPT FOR SEMANTIC-BASED INFORMATION

MANAGEMENT FOR CONTROL ROOM DEVELOPMENT

on performance and scalability [37]. Both are

not open source, however SwiftOWLIM is free

software under the LGPL version 2 and

BigOWLIM requires a commercial license

which is distributed by Ontotext. An exception

is the usage in scientific environments, where

the usage is free. The development of OWLIM

is partly supported by the EU IST integrated

project Semantic Knowledge Technologies

(SEKT) and several other European research

programs like the EU Sixth Framework

Program (FP6). OWLIM is packaged with

Sesame
12

 and so benefits from the variety of

supported query languages and ontology

syntaxes (e.g. SPARQL, N3, Turtle, etc). The

native rule-entailment engine of BigOWLIM

can be configured through rule-set definitions.

The rule-sets embrace RDF(S), OWL Lite and

the OWL 2 RL profile. An OWL 2 profile is a

synonymous for an OWL sublanguage. To

improve the efficiency of reasoning, the W3C

trimmed OWL 2 down to three different profiles

with less expressiveness. Each one of them is

made for different purposes [38]. OWL 2 RL

focuses on scalability instead of expressive

power.

3.2 Visual Representations

Visualization often deals with abstract data and

offers a bundle of techniques to represent

hierarchical or semi-structured data. There are

several numbers of studies where different

ontology visualization tools are compared [39],

[40]. Considering the variety of methods and

approaches to visualize ontologies, such tools

can be separated into two big groups. One

category uses variations of simple lists, the

other uses simple types of visualizations like

two-dimensional trees, node-links or even offers

3D information. As Protégé and the NeOn

Toolkit were picked out to use within

ONTOCOR, the following visualization tools

are chosen to fit in that concept and therefore

are compatible with Protégé 4.1 (Fig. 3).

12

 http://www.openrdf.org/

3.2.1 OWLViz

For instance OWLViz
13

 is a simple visual

representation tool to view class hierarchies in

an ontology and is one of the further explained

node-link and tree tools. OWLViz was

established during the CO-ODE
14

 project at the

University Of Manchester. The visualization

displays an ontology as a set of interconnected

nodes, which is sometimes disturbing, namely if

the number of nodes is very high. OWLViz

hides role relationships, which is very useful.

The color scheme is the native one from

Protégé, so it is easy to distinguish primitives

and classes. Inconsistent concepts are

highlighted in red. A specific icon next to a

class, signals if it is disjoint with the selected

class. Particular views can be saved as image

files including jpeg, png and svg. OWLViz is

bundled with Protégé 4.1 and is licensed under

the LGPL. OWLViz uses the GraphViz
15

algorithms delivered by AT&T, and take

advantage of the Batik SVG Toolkit
16

 from the

Apache Software Foundation.

3.2.2 OntoGraf

OntoGraf
17

 was invented at the Stanford

University and is in a very early development

stage. OntoGraf makes use of the visualization

library from the Protégé 3 plug-in Jambalaya
18

.

OntoGraf allows navigating through

relationships of an OWL ontology. You can

simple search or select a term in the tree.

Hovering of edges shows the relationships

between the terms and they can be explored

through incremental expansion of the graph.

Various layouts are supported and OntoGraf

also allows zooming. Relationships can be

filtered in order to help reducing graph

complexity. For example you can narrow the

focus by just showing the neighborhood of a

term. Within the spring layout, which is a force-

directed non-deterministic layout, each

expansion re-orders the graph. OntoGraf can

save a graph as a jpeg, gif, or png image.

13

 http://protegewiki.stanford.edu/wiki/OWLViz
14

 http://www.co-ode.org/
15

 http://www.graphviz.org/
16

 http://xmlgraphics.apache.org/batik/
17

 http://protegewiki.stanford.edu/wiki/OntoGraf
18

 http://www.thechiselgroup.org/jambalaya

http://www.openrdf.org/
http://protegewiki.stanford.edu/wiki/OWLViz
http://www.co-ode.org/
http://www.graphviz.org/
http://xmlgraphics.apache.org/batik/
http://protegewiki.stanford.edu/wiki/OntoGraf
http://www.thechiselgroup.org/jambalaya

E. Gringinger, D. Eier, D. Merkl

8

Affiliation Version License Visualization Application

A comparison of visualization tools for protégé 4

Matrix
University Of Manchester,

CO-ODE Project
1.1.1 LPGL list, matrix Protégé 4.1

V
is

ua
liz

at
io

n
T

oo
ls

OWLViz

OntoGraf

SOVA

Cloud View

OWLDiff

0.0.3

alpha

version

1.1.1

-

LGPL

LGPL list, tag cloud

tree, node

tree, node

0.1.4 LPGL
Technical University in

Prague

tree, node Protégé 4.1

Protégé 4.1

Protégé 4.1

Protégé 4.1

comparison list
Protégé 4.1, NeOn

Toolkit, standalone

University Of Manchester,

CO-ODE Project
4.1.1 LGPL

Stanford University

Gdansk University of

Technology

University Of Manchester,

CO-ODE Project

Fig. 3: A comparison of visualization tools

3.2.3 Simple Ontology Visualization API

SOVA
19

 stands for Simple Ontology

Visualization API and is a brand new ontology

visualization tool, which is developed at the

Gdansk University of Technology. It is licensed

under the terms of the LGPL and is made as a

plug-in for Protégé 4.1. In this developmental

stage, unfortunately it is still an alpha version,

some bugs appear. But the ability to show

ontology elements like (anonymous) classes,

properties, individuals and relations between

these objects, is very promising.

3.2.4 Cloud Views

In contrast to the previous tools, Cloud View
20

is not a standard visualization tool. It enables

Protégé 4.1 to visualize an ontology as set of

related tags with corresponding ratings, whereas

the importance of a tag is shown with its font

size. This type of visualization is called tag

cloud [41]. The weight of a tag is based on the

class usage, depth in the hierarchy and other

criteria. The bigger the name, the higher is the

rating. Cloud Views can easily filter out low

ranking entities. It is available under the license

of LGPL as plug-in for Protégé 4.1.

3.2.5 OWLDiff

OWLdiff
21

 is one of the tools, which fall into

the category of tools for list representation. The

objective for OWLdiff is to compare OWL 2

ontologies and provide merging functionality

for ontologies. It is developed under the LGPL

19

 http://protegewiki.stanford.edu/wiki/SOVA
20

 http://protegewiki.stanford.edu/wiki/Cloud_Views
21

 http://krizik.felk.cvut.cz/km/owldiff/index.html

at the Technical University in Prague. During

the ontology development process, OWLdiff

might help to maintain the overview. Similar to

a versioning system OWLdiff provides abilities

to compare changes and commit the resulting

file. In combination with the Pellet reasoner,

OWLdiff can show two ontologies, which are

not semantically equivalent, in two separate

trees. There are two algorithms in the

background representing dissimilarities between

two ontologies. To find axiom modifications,

which are not visible in class hierarchies,

OWLdiff uses CEX [42]. The second algorithm

is much more trivial and finds simple added,

missing, or changed axioms, but cannot expose

complex dependencies. OWLdiff is offered as a

standalone application and as plug-in for

Protégé 4.1 and the NeON toolkit.

3.2.6 Matrix

Just like OWLdiff, Matrix
22

 belongs to the

category of list tools and was designed at the

University Of Manchester within the CO-ODE

project. It is available as plug-in for Protégé 4.1

under the LGPL. Matrix allows a tabular view

for individuals, properties and classes. So it is

possible to see either an item is in the same

domain, range or if it is the inverse. Columns

and values can be easily added by drag and

drop.

22

 http://protegewiki.stanford.edu/wiki/Matrix

http://protegewiki.stanford.edu/wiki/SOVA
http://protegewiki.stanford.edu/wiki/Cloud_Views
http://krizik.felk.cvut.cz/km/owldiff/index.html
http://protegewiki.stanford.edu/wiki/Matrix

9

A CONCEPT FOR SEMANTIC-BASED INFORMATION

MANAGEMENT FOR CONTROL ROOM DEVELOPMENT

4 ONTOCOR Concept

Through the static growth of data, which is

processed within a control room, overlapping

software components for different domains have

been developed. It is often the case that the

descriptive name is different, but the

functionality of such components is quite the

same. The motivation of this project is to show

that the improvement of an ontology-based

framework can be approved as a real business-

case. Therefore, it is necessary to find the best

fitting domains. For example, Maritime and

ATM could be matched together because of

their similar interfaces, or Rail and ATM,

because of their comparable procedural

architecture [43]. Communication, weather data,

geographic information, tracking and tracing,

network management and automatic

identification systems are all together systems

which have approximately the same

requirements for different domains.

Nevertheless, these components are often

developed twice for each domain. The use of

ontologies provides high flexibility for the

future integration of new legacy applications,

systems and services. Unified and open

standards can raise the reuse of components for

different applications in different domains.

Ontologies, semantic annotation of content and

semantic search are technologies, addressing the

problems outlined above. They open up new

ways of benefitting of already developed

systems. The accessibility of knowledge and the

contribution of reused software will increases

the probability to deliver a project in time, in

budget and with the specified capabilities.

According to Dillon, “this use of ontologies

particularly when coupled with the philosophy

of Web 2.0 is likely to have a profound effect on

the nature of, consumption of and development

of software. It is therefore important that the

software engineering community takes this on

board and plays a leading role in the

developments that are taking place” [44].

The fundamental concept underlying the

ONTOCOR project is the Ontology-Based

Software Development (OBSD) as you can see

in Figure 4. OBSD covers various areas of

software engineering like deployment, the

definition of requirements, modeling,

architecture and specification, reuse and

reengineering and quality management.

Ontology-Driven
Development

Ontology-Based
Architecture

Ontology-Enabled
Development

Ontology-Enabled
Architecture

OBSD

 Design Time Run Time

O
n
to

lo
g
y
 M

o
d
e
l

In

fr
a
s
tr

u
c
tu

re

 S

o
ft
w

a
re

Fig. 4: Ontology-based software development

The four categories in the context of ontology-

based software engineering are claimed by

Happel et al [45]. OBSD extends the matrix

above (Fig. 4) in order to exploit all four

software engineering lifecycles. On the one

hand there are two different ontology models,

one for the infrastructure and one on software

side, and on the other hand there are processes

during design time and run time. The essential

key of OBSD is to build software from reusable

software components.

4.1 Methodology

In order to examine the ONTOCOR concept, a

prototype has to be built. An important aspect to

guarantee the success of ONTOCOR is a well-

structured methodology and a detailed planned

architecture of the project. The underlying

architecture was already presented in a prior

paper [29]. The choice of the right methodology

depends on the needs of the particular ontology

development. There exist a whole series of

methodologies [46], [47], [48] and [49]. An

important aspect is the granularity of such

ontologies. To describe each and every detail is

as useless as an imprecise and general

description. All of the mentioned methodologies

above have their pros and cons but most of them

miss the ability to proof the captured knowledge

against accuracy and consistency. Also very

often spread is the fact that lessons learned are

not even recorded or provide others as disposal.

Based on the Domain Knowledge Acquisition

Process (DKAP) [50], which covers most of

E. Gringinger, D. Eier, D. Merkl

10

those issues, the methodology of ONTOCOR

has slightly different steps built in. But most of

all it covers the nine major steps of DKAP:

 Determine the purpose, domain and

scope of the ontology

 Check availability of existing ontologies

 Organize the project

 Collect and analyze data

 Develop initial ontology

 Refine and validate ontology

 Check consistency and accuracy of

ontology

 Collect additional data

 Incorporate lessons learned and publish

ontology

As the ONTOCOR project is still in an early

stage the definition of knowledge layers is

needed. The project is separated up into

different layers. It offers a primary version of a

generic infrastructure for highly reliable

information models between heterogeneous

domains. ONTOCOR has an integrated

infrastructure for a domain-specific layer, which

defines patterns and configurations in any

specific domain, such as Air Traffic

Management. The main components of the

ONTOCOR framework are split into design

time and run time phase (Fig. 4). It also

provides a layer for re-usable components, a

layer for the domain knowledge model, and

another layer for domain requirements.

The ONTOCOR framework relies on

open source solutions only. Protégé 4.1 in

complement with the NeOn Toolkit were

selected [29] to develop the needed ontologies.

In addition, the reasoner FACT++ and Pellet are

selected for reasoning. The decision was based

on the fact that both can get around with OWL 2

and are well supported. OWL 2 is currently the

best choice, especially for building complex

ontologies. It is also necessary to select

visualization tools, which support OWL 2.

OWLViz in combination with OWLdiff, Matrix

and Cloud View will complete the list of tools

which are used within the ONTOCOR project.

5 Conclusion

In order to meet the challenges of future

aviation, new tools and methodologies for

software development are presented in this

paper. In future’s environment, software

development will profit from the reuse of code

to improve the economic benefit. Modular

architectures will be able to establish one

approach for all control room environments. An

Ontology-based approach will make possible

advances in software-development, but to really

achieve those benefits, specific Information

Models for different ATM domains have to be

developed. This not only requires simple UML-

descriptions, but semantic logic to design and

develop within a component based architecture.

Such a venture has far reaching effects on

systems, elements, procedures and regulations,

but is necessary to achieve the benefits of an

Ontology-based Framework to fulfill the key

goals of NextGen and SESAR.

References

[1] Ulfbratt E, McConville J. Comparison of the SESAR

and NextGen - Concepts of Operations. NCOIC

Aviation IPT, 2008.

[2] SESAR Joint Undertaking. European Air Traffic

Management Master Plan. 1
st
 edition, 2009.

http://www.sesarju.eu/sites/default/files/documents/re

ports/European_ATM_Master_Plan.pdf

[3] Joint Planning and Development Office. Operational

Concept for the Next Generation Air Transportation

System (NextGen). 2
nd

 edition, 2008.

http://www.jpdo.gov/library/NextGen_v2.0.pdf

[4] Halevy A. Why Your Data Won't Mix. Queue,

Volume 3, Issue 8, pp 50-58, 2005.

[5] EUROCONTROL. Strategic Guidance in Support of

the Execution of the European ATM Master Plan. 1
st

edition, 2009.

[6] Wikipedia contributors. Ontology. Wikipedia, The

Free Encyclopedia, Retrieved June 26, 2010.

http://en.wikipedia.org/w/index.php?title=Ontology&

oldid=369547074

[7] Aristotle. The Metaphysics: Book Theta. Cosimo Inc.,

2008.

[8] Oppy G. Ontological Arguments. Stanford

Encyclopedia of Philosophy, 2007.

[9] McCarthy J. Circumscription -- A Form of Non-

Monotonic Reasoning. Artificial Intelligence,

Volume 5, Issue 13, pp 27-39, 1980.

http://www.sesarju.eu/sites/default/files/documents/reports/European_ATM_Master_Plan.pdf
http://www.sesarju.eu/sites/default/files/documents/reports/European_ATM_Master_Plan.pdf
http://www.jpdo.gov/library/NextGen_v2.0.pdf
http://en.wikipedia.org/w/index.php?title=Ontology&oldid=369547074
http://en.wikipedia.org/w/index.php?title=Ontology&oldid=369547074

11

A CONCEPT FOR SEMANTIC-BASED INFORMATION

MANAGEMENT FOR CONTROL ROOM DEVELOPMENT

[10] Hayes P J. The Second Naive Physics Manifesto,

Formal Theories of the Common-Sense World.

Norwood: Ablex, 1985.

[11] Gruber T. Toward Principles for the Design of

Ontologies Used for Knowledge Sharing.

International Journal Human-Computer Studies,

Volume 43, pp 907-928, 1995.

[12] Gruber T. Ontology (Computer Science) – definition.

Encyclopedia of Database Systems, Springer-Verlag,

2009.

[13] Motik B, Patel-Schneider P F, Parsia B. OWL 2 Web

Ontology Language - Structural Specification and

Functional-Style Syntax. World Wide Web

Consortium (W3C), 2009.

[14] Benjamin J, Borst P, Akkermans J M, Wielinga B J.

Ontology Construction for Technical Domains. In

Proceedings of the 9th European Knowledge

Acquisition Workshop on Advances in Knowledge

Acquisition, pp 98-114, 1996.

[15] Wongthongtham P, Chang E, et al. Development of a

Software Engineering Ontology for Multisite

Software Development, Knowledge and Data

Engineering. IEEE Transactions, Volume 21, Issue 8,

pp 1205-1217, 2009.

[16] Chandrasekaran B, Josephson J R, et al. What Are

Ontologies, and Why Do We Need Them? IEEE

Intelligent Systems, Volume 14, Issue 1, pp 20-26,

1999.

[17] Baader F, Calvanese D, McGuinness D, Nardi D,

Patel-Schneider P. The description logic handbook:

theory, implementation, and applications. Cambridge

University Press, Edition 2, 2007.

[18] Hendler J, McGuinness D L. The DARPA Agent

Markup Language. IEEE Intelligent Systems, Volume

15, pp 67-73, 2000.

[19] Fensel D, et al. OIL: An Ontology Infrastructure for

the Semantic Web, IEEE Intelligent Systems, 2001.

[20] Harmelen F van, Horrocks I. Reference Description

of the DAML + OIL Ontology Markup Language.

2001.

[21] Heflin J, Hendler J, Luke S, Qin Z. SHOE: A

Knowledge Representation Language for Internet

Applications. Institute for Advanced Computer

Studies, University of Maryland at College Park,

1999.

[22] Klyne G, Carroll J. Resource Description Framework

(RDF): Concepts and Abstract Syntax. World Wide

Web Consortium (W3C), 2004.

[23] Horrocks I, Patel-Schneider P F. From SHIQ and

RDF to OWL: the making of a Web Ontology

Language. Web Semantics: Science, Services and

Agents on the World Wide Web 1, pp 7-26, 2003.

[24] Patel-Schneider P F, Hayes P, Horrocks I. OWL Web

Ontology Language Semantics and Abstract Syntax.

World Wide Web Consortium (W3C), 2004.

[25] Motik B, Patel-Schneider P, Horrocks I. OWL 1.1

web ontology language structural specification and

functional-style syntax. World Wide Web

Consortium (W3C), 2006.

[26] Horrocks I, Kutz O, Sattler U. The Even More

Irresistible SROIQ. In Proceedings of the 10th

International Conference on Principles of Knowledge

Representation and Reasoning (KR2006), pp 57-67,

2006.

[27] Wongthongtham P, Dillon D, Dillon T, Chang E, Use

of UML 2.1 to Model Multi-Agent Systems based on

a Goal-driven Software Engineering Ontology.

Fourth International Conference on Semantics,

Knowledge and Grid (SKG), 2008.

[28] Hesse W. Engineers Discovering the “Real World” -

From Model-Driven to Ontology-Based Software

Engineering. Information Systems and e-Business

Technologies, pp 136-147, 2008.

[29] Gringinger E, Eier D, Merkl D. Ontology-based CNS

Software Development. Integrated Communications

Navigation and Surveillance (ICNS) Conference,

2010.

[30] Tsarkov D, Horrocks I. FaCT++ description logic

reasoner: System description. Lecture Notes in

Artificial Intelligence, Volume 4130, pp 292-297,

2006.

[31] Stoilos G, Grau B C, Horrocks I. How incomplete is

your Semantic Web Reasoner? In Proceedings of the

20th National Conference on Artificial Intelligence

(AAAI 10), 2010.

[32] Wikipedia contributors. Ontology. Wikipedia, The

Free Encyclopedia, Retrieved June 26, 2010.

http://en.wikipedia.org/w/index.php?title=Description

_logic&oldid=367053569

[33] Sirin E, Parsia B, Grau B C, Kalyanpur A, Katz Y.

Pellet: A practical OWL-DL reasoner. Web

Semantics, Volume 5, pp 51-53, 2007.

[34] Guohua S. Using Description Logics Reasoner for

Ontology Matching. Workshop Intelligent

Information Technology Application, 2007.

[35] Haarslev V, Möller R, Wessel M. Querying the

Semantic Web with Racer + nRQL. In Proceedings

of the KI-2004 International Workshop on

Applications of Description Logics, 2004.

[36] Motik B, Shearer R, Horrocks I. Optimized

Reasoning in Description Logics Using

Hypertableaux. Proceedings of the 21st international

conference on Automated Deduction: Automated

Deduction, Springer-Verlag, 2007.

[37] Kiryakov A, Ognyanov D, Manov D. OWLIM - A

Pragmatic Semantic Repository for OWL. Web

Information Systems Engineering - WISE 2005

Workshops, pp 182-192, 2005.

[38] Motik B, Cuenca Grau B, Horrocks I, Wu Z, Fokoue

A, Lutz C. OWL 2 Web Ontology Language Profiles.

World Wide Web Consortium (W3C)

Recommendation, 2009.

[39] Catenazzi N, Sommaruga L, Mazza R. User-Friendly

Ontology Editing and Visualization Tools: The

OWLeasyViz Approach. 13th International

Conference of Information Visualisation, pp 283-288,

2009.

http://en.wikipedia.org/w/index.php?title=Description_logic&oldid=367053569
http://en.wikipedia.org/w/index.php?title=Description_logic&oldid=367053569

E. Gringinger, D. Eier, D. Merkl

12

[40] Lanzenberger M, Sampson J, Rester M. Visualization

in Ontology Tools. International Conference on

Complex, Intelligent and Software Intensive Systems

(CISIS), pp 705-711, 2009.

[41] Seifert C, Kump B, Kienreich W, Granitzer G,

Granitzer M. On the Beauty and Usability of Tag

Clouds. 12th International Conference in Information

Visualisation (IV '08), pp 17-25, 2008.

[42] Konev B, Lutz C, Walther D, Wolter F. Logical

difference and module extraction with CEX and

MEX. Description Logic Workshop, 2008.

[43] Allmer G. Control Systems: Are Rail and Air so

different? IRSE News, Issue 153, 2010.

[44] Dillon T S, Chang E, Wongthongtham P. Ontology-

Based Software Engineering- Software Engineering

2.0. Proceedings of the 19th Australian Conference

on Software Engineering, IEEE Computer Society,

2008.

[45] Happel H J, Seedorf S. Applications of Ontologies in

Software Engineering. In the Proceedings of the 2nd

International Workshop on Semantic Web Enabled

Software Engineering (SWESE), 2006.

[46] Uschold M, Gruninger M. Ontologies: Principles,

methods and applications. Knowledge Engineering

Review, Volume 11, pp 93-136, 1996.

[47] Corcho O, Fernandez L M. Methodologies, tools and

languages for building ontologies: where is their

meeting point? Data Knowledge Engineering,

Volume 46, pp 41-64, 2003.

[48] Luczak-Rösch M, Heese R. Managing Ontology

Lifecycles in Corporate Settings. Networked

Knowledge - Networked Media, pp 235-248, 2009.

[49] Simperl E, Mochol M, Bürger T, Popov I. Achieving

Maturity: The State of Practice in Ontology

Engineering in 2009. On the Move to Meaningful

Internet Systems: OTM 2009, pp 983-991, 2009.

[50] Sarder B, Ferreira S. Developing Systems

Engineering Ontologies. IEEE International

Conference on System of Systems Engineering (SoSE

'07), pp 1-6, 2007.

About the Authors

Eduard Gringinger, SESAR Project Member, Executive

Assistant to the CEO at FREQUENTIS and Ph.D. Student

at the Vienna University of Technology, Institute of

Software Technology and Interactive Systems. He

finished his master studies in media and computer science

in October 2007 and his master studies in management

and computer science in March 2008. In both studies he

received distinction. His major research interests are in

the areas of information processing, software

development and new media. Mr. Gringinger works

actively to apply modern technologies to SESAR, in areas

of information modeling and flight data management,

especially in the meteorological domain.

eduard.gringinger@frequentis.com

Dieter Eier is the Vice President, Business Development

for FREQUENTIS USA. Mr. Eier has 18 years of

experience in engineering analysis and product strategy in

communications systems for mission critical applications.

He was instrumental in the design of the groundbreaking

new IVSR digital voice switching system for the NAS as

well as the large scale MOVE voice conferencing system

for all NASA space operations centers. As a proponent of

networked operation Mr. Eier works actively to bring new

technologies into the NAS.

dieter.eier@frequentis.com

Dieter Merkl is Associate Professor of Applied

Computer Science at the Department of Software

Technology and Interactive Systems, Vienna University

of Technology. He received his master’s and doctoral

degrees in Social and Economic Sciences from the

University of Vienna. His major research interests are in

the areas of multi-user virtual environments, data mining

and machine learning. He has published more than 140

papers in conference proceedings and journals.

dieter.merkl@ec.tuwien.ac.at

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they

have obtained permission, from the copyright holder of

any third party material included in this paper, to publish

it as part of their paper. The authors confirm that they

give permission, or have obtained permission from the

copyright holder of this paper, for the publication and

distribution of this paper as part of the ICAS2010

proceedings or as individual off-prints from the

proceedings.

mailto:eduard.gringinger@frequentis.com
mailto:dieter.eier@frequentis.com
mailto:dieter.merkl@ec.tuwien.ac.at

