
27TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
 

1 

 
 
Abstract  

The separation of aircraft in cruising flight in 
air corridors is based on reducing the risk of 
collision due to position inaccuracy caused by 
navigation errors, atmospheric disturbances or 
other factors. The appropriate standard is the 
International Civil Aviation Organization 
Target Level of Safety of less than      

9105 −× per flight hour. An upper bound for the 
collision probability per unit distance is the 
probability of coincidence, in the case of 
aircraft flying in parallel tracks in the same 
direction. This leads to the case of two aircraft 
flying at a constant separation, for which at 
least three probabilities of coincidence can be 
calculated: (i) the maximum probability of 
coincidence, at the most likely point; (ii) the 
cumulative probability of coincidence, 
integrated along the flight path; (iii) the 
cumulative probability of coincidence 
integrated over all space. These three 
probabilities of coincidence are applied to the 
old standard and new reduced vertical 
separations of 2000 ft and 1000 ft respectively, 
for comparison with the ICAO TLS, and also to 
assess their suitability as safety metrics. The 
results are found to be sensitive to the choice of 
probability distribution. Also several alternative 
safety metrics are considered. 

1  Introduction 
The growth in air transport requires increasing 
air traffic capacity without degrading safety    
[1-3]. Air traffic capacity is determined by 
aircraft separation. The latter is influenced by 

two types of criteria: (i) the wake vortex effects, 
e.g. for aircraft on approach to land [4-8]; (ii) 
the position errors, e.g. lateral or vertical, which 
can lead to collisions. The present paper 
addresses only the latter (ii) aspect; a simple 
safety criterion is the International Civil 
Aviation Organization (ICAO) [4] Target Level 
of Safety (TLS) specifying a probability of 
collision less than 9105 −×  per hour. A specified 
level of safety should be achievable by setting 
separation rules [5] and specifying a 
corresponding navigation accuracy [6,7]; a final 
safety net is provided by conflict resolution 
methods [8], or equipment like T-CAS. The 
models of collision probabilities [9-17] usually 
do not involve aircraft dynamics or atmospheric 
disturbances [18-22] nor stability of flight 
aspects [23-27]; the implication is that the 
navigation errors, atmospheric disturbances or 
flight manouevers, or their combination is such 
that the position error satisfies a given 
probability distribution [28-35]. Thus the choice 
of a probability distribution becomes the critical 
element to calculate collision probabilities, and 
thereby assess safety of Air Traffic 
Management (ATM). The Gaussian probability 
distribution [28] is widely used, because of the 
central limit theorem of the statistics. In 
addition, the central limit theorem depends on 
the satisfaction of Linderberg´s condition [29], 
requiring that events which large deviation from 
the mean make a small contribution to the 
variance; this condition is not directly related to 
the fact that it is precisely the large deviations 
which pose the greatest collision risk. Hence the 
main objection to the use of the central limit 
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theorem may not be the Lindeberg condition, 
but is certainly the failure of the law of large 
numbers. 
     The statistics of collisions, like other rare 
events [30], corresponds to the tail of the 
probability distribution [31]. It was been known 
for a long time that the Gaussian underestimates 
the probability of collision, and among the 
simplest probability distributions the Laplace 
distribution is a better choice [9]. Both the 
Gaussian and Laplace distributions are 
particular cases [31] of the generalized error (or 
Laplace) distribution, which has been shown to 
model the tail and or large flight path deviations 
obtained from radar tracks [10,12,14]; the 
modeling of both the core and tail, i.e. the full 
range of flight path deviations from small to 
large can be done by further extension to the 
combined Gamma and generalized error 
probability distribution [32]; the latter can be 
asymmetric relative to the mean value [33-35], 
e.g. for a crossing of climbing and descending 
aircraft [36] the probabilities may be different 
for altitude gain or loss. For the purpose of 
safety assessment, the collision probability may 
be replaced by an upper bound which is easier 
to estimate [37]. The probability of collision can 
be specified [9] as the probability of penetration 
of the safety volumes around each aircraft; it is 
not necessary to discuss here the details of the 
safety volume, because it can be replaced in the 
case of aircraft flying on parallel paths, by an 
upper bound [15] which is the probability of 
coincidence. 
     In the present paper the case of two aircraft 
on the parallel tracks with a vertical separation 
Lz taken as example (Figure 1). The probability 
of deviations from the flight path is in the first 
instance assumed to satisfy a Gaussian 
distribution [28]; the Laplace distribution has 
also been used [9], and the generalized error 
distribution [10-15] is a more accurate 
alternative. The accuracy of the generalized 
error distribution as a representation large flight 
path deviations has been shown with reference 
to aircraft radar tracks [10-15]. The maximum 
probability of coincidence, at the point of most 
likely coincidence (§2), leads to a probability 
per square nautical mile flown; the probabilities 
of coincidence are less at the other positions 

across the flight path, but non-negligible, and 
three-dimensional integration over all space 
leads (§3) to a cumulative probability of 
collision in units of distance flown. If the 
integration is made in one dimension across the 
flight path, the cumulative probability of 
coincidence appears per unit distance (§4). The 
latter, when multiplied by the aircraft velocity, 
leads to a probability per unit time, which can 
be compared (§5) with the ICAO TLS standard. 
These various measures of probability of 
coincidence as a function of separation distance 
L and the r.m.s. position errors σ1 and σ2 of the 
two aircraft lead to safety metrics [1], which can 
be used in the analysis of flight data or results of 
real or fast time simulations. 

2  Maximum probability of coincidence for 
dissimilar aircraft 
Consider (Figure 1) two aircraft flying along the 
same straight flight path at a minimum 
separation distance L. It is assumed, for 
convenience of calculation, that the position 
errors satisfy Gaussian statistics [5], although 
Laplace [3] or other statistics [4,6] could be 
used. The Gaussian probability that the first 
aircraft deviates a distance 1r  from its intended 
position is: 
 

( ) ( ) ( )2

1 1 1 1 11/ 2 exp / / 2 ,P r rσ π σ⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦
G G

(1a) 
 

Fig. 1 - Two aircraft flying along the same straight flight 
path at minimum separation distance, with the first having a 
position drift r1 and the second a position drift r2 leading to 
a coincidence anywhere in three dimensions.  
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where 1σ  is the r.m.s. position error; using 
spherical coordinates ( )φθ,,r  with origin on 
aircraft 1, and polar axis along the flight path, 
the position vector 1r

G
 of the deviation of the first 

aircraft has Cartesian components: 
 

( )1 cos , sin cos , sin sin .r r θ θ φ θ φ=
G

           (1b) 
 
The second aircraft may have a distinct r.m.s. 
position error 2σ , corresponding to a 
probability of deviation to a position 2r

G : 
 

( ) { } ( )2

2 2 2 2 21/ 2 exp / / 2 ,P r rσ π σ⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦
G G

(2a) 
 
where a coincidence occurs if: 
 

( )2 cos , sin cos , sin sin ,r L r r rφ θ θ θ φ= −
G

 (2b) 
 
using a spherical coordinate system centred on 
the first aircraft with polar axis along the flight 
path. Here the size of the aircraft is omitted, by 
including it [4] either in the separation L or in 
the r.m.s. position errors 1σ  and 2σ . Assuming 
that the position errors of the two aircraft are 
statistically independent, the probability of 
coincidence is the product of (1a) and (2a): 
 

( ) ( ) ( )12 1 1 2 2, ,P r P r P rθ =
G G

   (3) 
where 
 
( ) ( ) ( )2

1 1 1 11/ 2 exp / / 2 ,P r rσ π σ⎡ ⎤ ⎡ ⎤= −⎣ ⎦⎣ ⎦
G

(4a) 
 

( ) ( )
( ) ( ){ }

2 2 2

22 2
2

1/ 2

exp 2 cos / 2 .

P r

r L rL

σ π

θ σ

⎡ ⎤= ⎣ ⎦

⎡ ⎤× − + − ⎣ ⎦

G

    (4b) 
 
The radius r appears in both expressions, the 
polar angle θ  only in (4b), and the azimuthal 
angle φ  not at all, because the probability of 
coincidence is axially symmetric. 
     From (3; 4a,b) the probability of coincidence 
depends on the position (r, θ): 
 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }

2

12 1 2 2

2 2 22
1 2 2

, 1/ 2 exp / / 2

exp / 2 cos .

P r L

r rL

θ πσ σ σ

σ σ σ θ− − −

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤× − + +⎣ ⎦  
   (5) 

 
Its extremum is specified by the first 
derivatives: 

( ) ( ) ( ) 2

12 12 2, / , sin ,P r P r rLθ θ θ σ θ−
∂ ∂ = −   (6a) 

( ) ( )

( ) ( ) ( ){ }
12 12

2 2 2

1 2 2

, / ,

cos .

P r r P r

r L

θ θ

σ σ σ θ− − −

∂ ∂ =

⎡ ⎤× − + +⎣ ⎦      (6b) 

The extremum of the probability of coincidence 
occurs when both derivatives vanish: 
 

( ) ( )12 12, / 0 , / ,m m m mP r r P rθ θ θ∂ ∂ = = ∂ ∂       (7a,b) 
 
which is the case on the flight path (8a): 
 

( )2

2 1, / 1/ 1 / ,m mr Lθ π σ σ⎡ ⎤= = +⎣ ⎦          (8a,b) 
 
at the position (8b), viz.: (i) for aircraft with 
equal r.m.s. position errors 1 2σ σ=  the 
maximum probability of coincidence is at a 
position / 2mr L=  half-way between them; (ii) 
for aircraft with unequal r.m.s. position errors 

2 1σ σ≠  the maximum probability of 
coincidence occurs at a position closer to the 
aircraft which has more ‘accurate’ navigation 
because it is the less accurately navigating 
aircraft which deviates most, viz. / 2mr L<  for 
if 1 2σ σ>  and / 2mr L<  if 1 2σ σ< . 
     In order to prove that the extremum (8a,b) in 
the probability of coincidence (5) is actually a 
maximum (and not a minimum, or an inflexion), 
it is necessary to consider second-order 
derivatives, i.e. one order beyond (6a,b), viz.: 
 

( ) ( ) ( )
( )

22 2
12 12 2

2 2
2

, / ,

cos sin ,

P r P r rL

rL

θ θ θ σ

θ σ θ

−

−

∂ ∂ = −

⎡ ⎤× −⎣ ⎦            (9a) 
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( ) ( ) ( )

( ) ( ) ( ){ }
22

12 12 2

2 2 22
2 1 2

, / , sin

1 cos ,

P r r P r L

rL r

θ θ θ σ θ

σ θ σ σ

−

− − −

∂ ∂ ∂ = −

⎡ ⎤× + − +⎣ ⎦ (9b) 
 

( ) ( ) ( ) ( ){
( ) ( ) ( ){ } }

2 22 2
12 12 1 2

22 2 2

2 1 2

, / ,

cos .

P r r P r

L r

θ θ σ σ

σ θ σ σ

− −

− − −

⎡ ⎤∂ ∂ = − +⎣ ⎦

⎡ ⎤− − +⎣ ⎦ (9c) 
At the position of the extremum (8a,b), the 
second-order derivatives (9a,b,c) take the 
values: 
{ }

( ) ( ) ( ){ }
2 2 2 2 2

12

2 2 2

2 1 2

/ , / , /

/ ,0, ,m m

r r P

P r L

θ θ

σ σ σ− −

∂ ∂ ∂ ∂ ∂ ∂ ∂

= − +
  (10a,b,c) 

where mP  is the value at the extremum: 
( ) ( )

( ) ( ) ( ){ }
12 1 2

2 22
1 2

, 1/ 2

exp / 2 / ;

m m mP P r

L

θ πσ σ

σ σ

⎡ ⎤≡ = ⎣ ⎦

⎡ ⎤× − +⎣ ⎦             (11) 
since: 

( ) ( ) ( ) ( ) ( ){ }
2

12

2 2 2 2 2

2 1 ,

m

m

d P P

r L d drσ σ σ σ− − −

=

⎡ ⎤× + +⎣ ⎦  (12) 
is negative for arbitrary dσ and dr, the 
extremum is actually a maximum. The 
maximum probability of coincidence (11) is 
given per unit of distance squared, i.e. per 
distance flown by each aircraft. Since the ICAO 
TLS specifies a probability of collision per 
distance (or flight hour) flown, it is necessary to 
integrate over all possible positions coincidence 
is possible anywhere, and thus integrating over 
all space specifies a three-dimensional 
cumulative probability of coincidence. 

3  Three-dimensional cumulative probability 
of coincidence 
The cumulative probability of coincidence over 
all space is given : 
 

( )
2

2
120 0 0

, sin ,P d d dr P r r
π π

φ θ θ θ
∞

≡ ∫ ∫ ∫   (13) 
using the collision probability (5) in spherical 
coordinates (Figure 2): 

( ) ( ){ }
( ) ( ) ( ){ }

2

1 2 2

2 22 2
0 1 20

1/ exp / / 2

( ) exp / 2 .

P L

r I r r dr

σ σ σ

σ σ
∞ − −

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤× − +⎣ ⎦∫  
(14) 

where the dφ-integration in (13) is trivial, and 
the θd -integration appears in: 

( ) 2

0 20
( ) exp cos sin .I r rL d

π
σ θ θ θ−⎡ ⎤≡ ⎣ ⎦∫    (15) 

This integral is elementary: 

( ) ( )2 2

0 2 2
0

( ) / exp cos ,I r rL rL
π

σ σ θ−⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ (16) 
so that only the dr-integration remains in (14). 
Substituting (16) in (14), the three-dimensional 
cumulative probability of collision is given by: 

( ) ( ) ( )21
2 1 2/ exp / / 2 ,P L L I Iσ σ σ−

+ −
⎡ ⎤= − −⎣ ⎦

                (17) 
where ±I  are the dr-integrations: 

( ) ( )2 2 2 2
1 2 20

exp / 2 .I r r rL drσ σ σ
∞

− − −
±

⎡ ⎤≡ − + ±⎣ ⎦∫
              (18a) 
The change of variable rr −→ : 

( )( )2 2 2 2
1 2 20

exp / 2 ,I r r rL drσ σ σ
−∞

− − −
±

⎡ ⎤= − +⎣ ⎦∫ ∓

              (18b) 
shows that: 

( )( )2 2 2 2
1 2 2exp / 2 ,I I r r rL drσ σ σ

+∞
− − −

+ −
−∞

⎡ ⎤− = − + +⎣ ⎦∫
                                      (19) 
so that it is sufficient to evaluate this integral. 
The latter is reducible to the well-known 
Gaussian integral: 

( )2exp ,dζ ζ π
+∞

−∞

− =∫
             (20) 

as will be shown next. 
The change of variable: 

( ) ( )
( ) ( )

1/ 22 2
1 2

1/ 22 2 2
2 1 1

/ 2 ,

/ 2 ,

r

L

ζ σ σ ξ

ξ σ σ σ

− −

−− − −

≡ + −

≡ +
       (21a,b) 

where the ξ is a constant, implies: 
( )

( ) ( )

1/ 22 2
1 2

2 2 2 2 2 2
1 2 2

2 ,

/ 2 ;

dr d

r rL

σ σ ζ

σ σ σ ζ ξ

−− −

− − −

= +

− + + = − + (22a,b) 
substitution of (22a,b) in (19) yields. 
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( )

( ) ( ) ( )

12 2
1 2

2 2

2

exp exp ,

I I

d

σ σ

ξ ζ ξ ζ ζ

−− −
+ −

+∞

−∞

− = +

× + −∫
         (23a) 

where: (i) the first term is zero, because the 
integrand ( )2exp ζ−ζ  is an odd function of ζ 
integrated over the real line; (ii) the second term 
is specified by the Gaussian integral (20), viz.: 

( ) ( )
( ) ( )

( ) ( )

12 2 2
1 2

3/ 22 2 2
2 1 2

2 4 2 2
2 1 2

2 exp

2

exp / 2 / ,

I I

L

L

π σ σ ξ ξ

π σ σ σ

σ σ σ

−− −
+ −

−− − −

− − −

− = +

= +

⎡ ⎤× +⎣ ⎦       (23b) 
 
where (21b) was used. Substitution of (23b) in 
(17) specifies the three-dimensional cumulative 
probability of coincidence: 

( ) ( ) ( )

( ) ( ) ( ){ }

3/ 22 2 2

1 2 1 2

2 22
1 2

2

exp / 2 / .L

π σ σ σ σ

σ σ

−
⎡ ⎤Ρ = +⎣ ⎦

⎡ ⎤× − +⎣ ⎦             (24) 
 
     Note that this is a probability of coincidence 
times distance flown, because it results from the 
integration in three dimensions of a probability 
of coincidence per square of distance flown. 
Thus it does not have the dimension of the 
ICAO TLS, of probability of coincidence per 
distance flown. The latter will result if the 
probability of coincidence per square of 
distance flown is integrated in one dimension, 
e.g. along the flight path. 

4  Cumulative probability of coincidence 
along the flight path 

The probability of coincidence along the flight 
path is obtained by setting θ = 0 in (5), viz:  
 

( ) ( ) ( )

( ) ( )

2

12 1 2 2

2 2 2 2
1 2 2

,0 1/ 2 exp / / 2

exp / 2 .

P r L

r rL

πσ σ σ

σ σ σ− − −

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦
⎡ ⎤× − + +⎣ ⎦ (25a) 

 
The cumulative probability of coincidence along 
the flight path is obtained by a single dr-
integration over the real line: 

( )12 ,0 ,P P r dr
+∞

−∞

≡ ∫
            (25b) 

 
and is thus specified by evaluation of the 
integral 

( ) ( )

( ) ( )

2

1 2 2

2 2 2 2
1 2 2

1/ 2 exp / / 2

exp / 2 ;

P L

r rL dr

πσ σ σ

σ σ σ
+∞

− − −

−∞

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤× − + +⎣ ⎦∫
(26) 

 
use of the same change of variable (21a,b) leads 
as before (22a,b) to: 

( ) ( )

( ) ( ) ( )

1/ 22 2
1 2 1 2

2 2 2
2

1/ 2

exp / / 2 exp exp ;

P

L d

πσ σ σ σ

σ ξ ζ ζ

−− −

+∞

−∞

⎡ ⎤= +⎣ ⎦

⎡ ⎤× − −⎣ ⎦ ∫
 

(27) 
using the Gaussian integral (20), and 
substituting (21b) simplifies (27) to 

( ) ( ) ( )

( ) ( ) ( ){ }

2 2 1/ 2
1 2

2 22
1 2

1/ 2

exp / 2 /

P

L

π σ σ

σ σ

−⎡ ⎤ ⎡ ⎤= +⎣ ⎦⎣ ⎦

⎡ ⎤× − +⎣ ⎦       (28) 
 
which is the final expression for the one-
dimensional cumulative probability of 
coincidence along the flight path. 
     In the case of aircraft with identical r.m.s. 
position errors, (28) simplifies to: 

( ) ( ){ }21/ 2 exp / 2 .P Lσ π σ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦ (29) 
 

Fig. 2- Using spherical coordinates (r,θ,ϕ) with origin on 
aircraft one, and polar axis along the flight path, the 
probability of coincidence depends on (r, θ) but not on ϕ, 
because the configuration is axisymetric around the flight 
path. 
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     In the general case (2b) of aircraft with 
dissimilar r.m.s. position errors 1σ  and 2σ , or 
variances ( )21σ  and ( )22σ , the arithmetic mean:  

( ) ( )2 22
1 22 ,σ σ σ≡ +             (30a) 

appears in (28): 

( ) ( ){ }21/ 2 exp / 2 ,P Lσ π σ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦        (30b) 
instead of σ in (29). The maximum probability 
of collision (11) simplifies, for aircraft with 
identical r.m.s. position errors, to: 

( ) ( ){ }2 21/ 2 exp / 2 .mP Lπσ σ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦    (31) 
In the general case of aircraft with dissimilar 
r.m.s. position errors 1σ  and 2σ , or variances 
( )21σ  and ( )22σ , the maximum probability of 
coincidence (11), involves not only the 
arithmetic mean of variances (30a), but also the 
geometric mean of variances: 

( ) ( )2 2 2
1 2 1 2 / ,fσ σ σ σ σ= ≡

          (32a) 
and thus can be written in the form: 

( ) ( ){ }221/ 2 exp / 2 ,mP f Lπσ σ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦      (32b) 

where f is a dimensionless factor. 
The function f defined by (32a) is the 

ratio of the arithmetic (30a) to the geometric 
mean of variances: 

( ) ( ) ( )
( )

2 2
1 2 1 2

1 2 2 1

/ 2

/ / / 2,

f σ σ σ σ

σ σ σ σ

⎡ ⎤= +⎣ ⎦
= +

          (33a) 

and may be called the dissimilarity factor, since 
in general it depends only on the ratio of r.m.s. 
position errors: 
( ) ( ) ( ) 1 21/ / 2 1/ , /f fλ λ λ λ λ σ σ= + = ≡ ,  

     (33b,c) 
and in particular case of identical aircraft 
reduces to unity which is its minimum value for 
all λ: 

( ) ( )1 2 min: 1, 1 1f f fσ σ σ λ λ= = = ≥ = = .  
    (34a,b) 

The three-dimensional probability of 
coincidence (24) simplifies for aircraft with 
identical r.m.s. position errors to: 

( ) ( ){ }2

1 2 : / 2 exp / 2 .P Lσ σ σ σ π σ⎡ ⎤= ≡ = − ⎣ ⎦
                (35) 

In the general case (24) of aircraft with 
dissimilar r.m.s. position errors, using the 
arithmetic (30a) and geometric (32a) means of 
variances, leads to: 

( )( ) ( ){ }22/ 2 / exp / 2 .P f Lπ σ σ⎡ ⎤= − ⎣ ⎦       (36) 

In conclusion: (i) the maximum Pm, one-
dimensional P  and three-dimensional P  
probabilities of coincidence all feature the 
exponential term ( )[ ]{ }22/exp σL−  for identical 
aircraft, respectively in (31; 29; 35); (ii) in the 
case of aircraft with dissimilar r.m.s. position 
errors σ is replaced in the exponential term 

( ){ }2
exp / 2L σ⎡ ⎤− ⎣ ⎦ , respectively in (32b; 30b; 

36), by σ  defined from (30a) the geometric 
mean of variances; (iii) in the case of the one-
dimensional cumulative probability of collision 
along the flight path P , the factor multiplying 
the exponential in (30b), involves only the 
arithmetic mean of variances (30a); (iv) the 
geometric mean of variances (32a), appears 
through the dissimilarity function (33a, b, c), in 
the factor of the exponential in (32b) and (36), 
respectively for the maximum probability of 
coincidence Pm and the three-dimensional 
cumulative probability of coincidence P  

5  Application to vertical separation at higher 
flight levels  

Taking the general case of two aircraft with 
arbitrary or dissimilar r.m.s. position errors, 
three results have been obtained in the present 
paper: (i) the one-dimensional cumulative 
probability of coincidence (30b) along the flight 
path: 

( )210.282095 exp 0.25 / ;P Lσ σ− ⎡ ⎤= −⎣ ⎦         (45) 

(ii) the maximum probability of coincidence 
(32b), which occurs vat the position (8a, b): 

( ) ( )220.159155 / exp 0.25 / ;mP f Lσ σ⎡ ⎤= −⎣ ⎦ (46) 

(iii) the three-dimensional cumulative 
probability of coincidence (36) over all space: 

( ) ( )220.886227 / exp 0.25 / .P f Lσ σ⎡ ⎤= −⎣ ⎦  (47) 

The last two expressions (46, 47) involve the 
aircraft dissimilarity function (33a, b, c).  
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Table I - Aircraft dissimilarity function and 
factor.  

λ≡ σ1/σ2 1 3 9 
f (λ) 1 5/3 41/9 
1/λ= σ2/σ1 1 1/3 1/9 

 
     The Table I confirms that the aircraft 
dissimilarity function is unchanged f(λ)=f(1/λ) 
interchanging the two aircraft, i.e. exchanging 
σ1 and σ2, or λ and 1/λ. Thus all three 
probabilities of coincidence (45,46,47) are 
unaffected by interchange of the two aircraft. 
Note that aircraft dynamics has been taken into 
account in the calculations; dynamics would 
limit the possible collisions, and thus the 
probabilities given here are uppers bounds. 
     As an example of application to ATM, the 
vertical separation of L= 2000ft = 0.329nm is 
considered, as specified by ICAO for higher 
flight levels. It is assumed that these altitudes 
are not limited either by ground obstructions or 
the service ceiling of the aircraft. This leads to 
the following probabilities of coincidence: (i) 
one-dimensional cumulative (45), per nautical 
mile flown: 

( )1 2 2

2000ft:            

0.282 exp 2.705 10 / ,
a

a

L

P σ σ− −

=

= − ×
         (41a) 

( )1 3 2

1000ft:           

 0.282 exp 6.763 10 / ;
b

b

L

P σ σ− −

=

= − ×
        (41b) 

 
(ii) maximum (46), per square nautical mile 
flown: 

( ) ( )2 2 2

2000ft:            

0.159 / exp 2.705 10 / ,
a

ma

L

P f σ σ−

=

= − ×
 (42a) 

( ) ( )2 3 2

1000ft:            

0.159 / exp 6.763 10 / ;
b

mb

L

P f σ σ−

=

= − ×
 (42b) 

 
(iii) three-dimensional cumulative (47), times 
nautical miles flown:. 

( ) ( )2 2 2

2000ft:            

0.886 / exp 2.705 10 / ,
a

a

L

P fσ σ−

=

= − ×
  (43a) 

( ) ( )2 3 2

1000ft:            

0.886 / exp 6.763 10 / .
b

b

L

P fσ σ−

=

= − ×
  (43b)  

It has been found before in other applications 
[5] that the ICAO target level of safety (52a): 
 

9 15 10 , / ~10 12,S h L σ− −= × −        (52a,b) 
 
is obtained for r.m.s. position error about one 
order-of-magnitude less than the minimum 
separation distance. Since L=2000ft this 
suggests considering values of σ  around 200ft, 
below and above up to less than L, in Table II. 
     The ICAO TLS (52a) can be applied to the 
one-dimensional cumulative probability of 
coincidence, e.g. 133.76 10P −= ×  per nautical 
mile for 180σ = ft from Table II. The 
probability of coincidence per hour flown 
PV S≤  does not exceed the ICAO TLS 
standard for speeds 4/ 1.33 10V S P kt≤ = × , 
which includes all existing aircraft; for a great 
circle tour of the earth 

4 44 10 2.16 10D km nm= × = × , the probability of 
coincidence would not exceed 98.12 10PD −= × . 
Concerning the maximum probability of 
coincidence, from Table II it is 152.49 10mP −= ×  
per nautical mile squared for 160σ = ft. The 
modified ICAO TLS standard 95 10R −= ×  per 
hour squared would be satisfied 2

mR P V≥ , for 

speeds up to 3/ 1.42 10mV R P kt≤ = × , which 
covers all current aircraft, including Concorde; 
for an aircraft dissimilarity factor λ=3 or 9, the 
maximum probability of coincidence would 
increase to 151015.4 −×=mP  and 141.13 10−× , 
and the modified ICAO TLS standard would be 
satisfied for speeds up to 31.10 10V kt≤ ×  and 

26.65 10V kt≤ ×  which include all subsonic 
transports. For a great circle tour of the earth, 
the maximum probability of coincidence would 
be ( )2 61.16,1.93,5.27 10mP D −= ×  respectively in 
the cases λ=1, 3, 9. The three-dimensional 
cumulative probability of coincidence is 

41.13 10P −= ×  times nautical mile for 
400 ftσ =  for 5λ =  in Table II. A modified 

ICAO TLS standard 95 10Q −= ×  times hour 

would be satisfied /Q P V≤  for velocities up to 
4/ 2.26 10V P Q kt≤ = × ; for λ=3,9 the 
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corresponding values 54.07 10 ,P −= ×  
61.96 10 nm−×  would be 38.14 10 ,V ≤ ×  

23.92 10 kt× . The three-dimensional probability 
of collision for a great circle tour of the earth 
would be 9/ 5.23 10 ,P D −= × 91.88 10 ,−×  

119.08 10−× respectively for λ=1, 3, 9. 

6  Discussion 
The ICAO target level of safety specifies a 
probability of collision 95 10S −= ×  per hour 
flown, which may be converted into: (i) 
probability of collision S/V per nautical mile 
flown at a speed V in knots; (ii) probability of 
collision S.T for a flight of duration T in hours; 
(iii) probability of collision S.D/V for a flight at 
speed V knots over a distance D in nautical 
miles. The ICAO TLS is applicable to the one-
dimensional cumulative probability of 
coincidence, which is (45) a probability of 
coincidence per unit of distance flown; the unit 
of distance, e.g. nautical mile, should be the 
same for the separation distance L and r.m.s. 
position error σ , calculated from (30a) the 
arithmetic mean of variances of the position 
errors of the two aircraft. 
     When using the maximum probability of 
coincidence (46) the latter appears as per square 
of the distance flown. In the examples a 
modified ICAO TLS level 95 10R −= ×  per hour 
flown squared was used; this value is more 
restrictive than the original ICAO TLS standard 

95 10S −= ×  per hour flown, in that it specifies a 
smaller position error σ . However, it is not 
necessary to specify the same value 9105 −×  for 
R; another value could change the conclusion 
concerning σ . In contrast, the three-
dimensional probability of coincidence (47) is 
specified times distance flown; a modified 
ICAO TLS standard 95 10Q −= ×  times hour, is a 
less severe restriction, in that it leads to larger 
r.m.s. position error σ . The conclusion could be 
changed for another value of Q, thus there 
remains the open question of whether the 
original ICAO TLS standard 9105 −×  per hour, 
which is suitable for the cumulative probability 
of collision, should be supplement by two 

additional modified standards: (i) one per hour 
flown squared, suitable for comparison with 
maximum probabilities of collision; (ii) another 
times hour flown, for comparison with three-
dimensional probabilities of collision. All of 
these could be used as alternative or 
complementary safety metrics. 
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TABLE II - Upper bound to probabilities of collision assuming Gaussian probability distribution 

with vertical separation La = 2000 ft. 

 
 

 
Maximum probability 
of coincidence maP  

(per square nm) 
 

 
Three-dimensional 

probability of coincidence aP  
(times nm) 

 
Arithmetic 
Mean of 

Variances 
σ (ft) 

9/1,9=λ  3/1,3=λ  1=λ  

 
1-A 

cumulative 
probability 

of 
coincidence 

aP  (per nm) 1=λ  3/1,3=λ  9/1,9=λ  

1000 9.85 3.60 2.16 6.31×10-1 5.37×10-2 1.93×10-2 2.59×10-3 

500 1.96 7.17×10-1 4.30×10-1 6.28×10-2 1.34×10-3 4.80×10-4 6.43×10-5 

400 3.23×10-1 1.18×10-1 7.09×10-2 8.27×10-3 1.13×10-4 4.05×10-5 5.43×10-6 

300 4.44×10-3 1.63×10-3 9.76×10-4 8.54×10-5 6.54×10-7 2.35×10-7 3.15×10-8 

200 9.29×10-9 3.40×10-9 2.04×10-9 1.19×10-10 4.05×10-13 1.46×10-13 1.95×10-14 

180 3.26×10-11 1.19×10-11 7.15×10-12 3.75×10-13 1.04×10-15 3.73×10-16 4.99×10-17 

160 1.13×10-14 4.15×10-15 2.49×10-15 1.16×10-16 2.53×10-19 9.11×10-20 1.22×10-20 

140 9.50×10-20 3.47×10-20 2.08×10-20 8.51×10-22 1.42×10-24 5.11×10-25 6.84×10-26 

120 1.29×10-27 4.71×10-28 2.83×10-28 9.90×10-30 1.21×10-32 4.37×10-33 5.84×10-34 

100 9.96×10-41 3.64×10-41 2.19×10-41 6.38×10-43 5.43×10-46 1.95×10-46 2.61×10-47 
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TABLE III - Upper bound to probabilities of collision assuming Gaussian probability distribution 

with vertical separation Lb = 1000 ft.  

 
 

 
 
 
 
 
 

 
Maximum probability 

of coincidence mbP  
(per square nm) 

 

 
Three-dimensional 

probability of coincidence bP  
(times nm) 

 
Arithmetic 
Mean of 

Variances 
σ (ft) 

9/1,9=λ  3/1,3=λ  1=λ  

 
1-A 

cumulative 
probability 

of 
coincidence 

bP  (per nm) 1=λ  3/1,3=λ  9/1,9=λ  

1000 20.85 7.63 4.58 1.33 1.14×10-1 4.09×10-2 5.47×10-3 

500 39.39 14.4 8.65 1.26 2.68×10-2 9.66×10-3 1.29×10-3 

400 35.07 12.83 7.70 8.98×10-1 1.22×10-2 4.40×10-3 5.89×10-4 

300 18.49 6.77 4.06 3.55×10-1 2.72×10-3 9.79×10-4 1.31×10-4 

200 1.29 4.73×10-1 2.84×10-1 1.65×10-2 5.63×10-5 2.03×10-5 2.71×10-6 

180 3.68×10-1 1.35×10-1 8.08×10-2 4.24×10-3 1.17×10-5 4.21×10-6 5.64×10-7 

160 6.00×10-2 2.20×10-2 1.32×10-2 6.15×10-4 1.34×10-6 4.82×10-7 6.45×10-8 

140 3.94×10-2 1.44×10-3 8.66×10-4 3.53×10-5 5.90×10-8 2.12×10-8 2.84×10-9 

120 5.36×10-5 1.96×10-5 1.18×10-5 4.12×10-7 5.05×10-10 1.82×10-10 2.43×10-11 

100 3.72×10-8 1.36×10-8 8.16×10-9 2.38×10-10 2.03×10-13 7.29×10-14 9.76×10-15 


