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Abstract  

The simplest stability analysis of the 
airframe panels of up-to-date passenger and 
transport aircrafts with the cells of the skin with 
the size of 400÷500 mm into the length and 
200÷300 mm into the width, with the thickness 
from 0.8 to 1.5 mm, depending on aggregate, 
shows that the breaking stresses of their local 
stability are located in the region of 10÷20 
mPa. But it is assumed at designing, and 
practice confirms it, that the panels often 
experience membrane stress above 100 mPа. 
But it is assumed at designing, and practice 
confirms it, that the panels often experience 
membrane stresses of more than 100 mPа. As a 
result, significant parts of the airframe at some 
loadings may be in a state of nonlinear 
deformation far beyond the stability of the skin. 
In some cases, geometric nonlinearity can be 
also accompanied by nonlinearity of material 
deformation. Of course the aforesaid is not a 
discovery, but in the airframe design practice 
still prevails the linear analysis, not taking into 
account the deformation beyond stability limits. 
Nonlinear analysis remains still a challenge, but 
since the linear analysis does not appear 
sufficiently correct procedure of strength 
evaluation, solution of this problem is extremely 
actual for practice.  

The decision of the problem is restrained 
by inadequate for practice theoretical support 
and insufficient automation of the systems of 
nonlinear equations solution algorithms as well 
as large sizes of these systems. The latter is 
caused by both the sizes and structural 
complexity and by the quality of the available 
finite-element base, since the finite element 

method (FEM) is usually used for the solution of 
practical problems. And the quality of finite 
elements (FE) is determined by convergence. 
Despite the large number of studies undertaken 
so far to create efficient FE, in the manuals for 
the use of practically all known modern 
programs of the finite-element strength analysis 
quite strict requirements for the ratio of the FE 
plates and shells sizes are still contained. Non-
compliance leads to the sharp loss in the 
accuracy of results. However, the observance of 
requirements is accompanied by the increase in 
the systems of equations and not less sharp 
increase of calculation effort, which becomes an 
obstacle to the solution of many practically 
important problems. On the way to improve the 
convergence it was possible to create FE for the 
simulation of plates and shells, and also beam-
type elements to a considerable degree free 
from the typical limitations to the ratio of 
dimensions and characterizing by the improved 
convergence when solving both the linear and 
nonlinear problems. Elements in the process of 
solution of systems have six degrees of freedom 
at the nodes (three displacements and three 
rotation angles) and are able to take moments 
about the surface normal at the nodes.    

1 Linear Problem 
The limited volume of the publication 

does not allow to cover all aspects of creation of 
the mentioned FE, therefore we shall consider 
only the basic characteristic features of the 
model of a quadrilateral element of a plate in a 
hope, that the reader is familiar with the FEM 
basis and is capable to generalize the received 
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results on more complicated models. The results 
of works [1,2,3,4] show that a noticeable 
improvement of the convergence can be 
obtained by reduction of requirements for the 
FE deformation consistency. In this case the 
mathematical correctness of result suffers, 
however practical benefit proves to be 
considerably more essential. Following this 
example it is possible to act as follows. Let us 
conceive that quadrilateral FE is composed of 
four triangular ones in two layers, with the 
common nodes along the contour, as shown in 
figure 1.  

To simulate displacements within each 
triangle it is possible to use an incomplete cubic 
polynomial. If for the displacement components 
along the axes x, y, z we accept notations u, v, 
w, then for u and v, which are responsible for 
the deformation in the FE plane, polynomials 
can be represented in the form 
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Here axes x, y lie in the FE plane, the axis 
z - along normal to surface. ui, Li are nodal 
displacements and triangular coordinates [3]; 
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ai, bi, ci, Δ are coefficients and the determinant 
in expressions for triangular coordinates [3,4]; i 
is an ordinal number of the node. The direction 
of numbering is not important. 

Evidently, the polynomials describing the 
behavior of u and v are presented in the form of 
two components ─ linear and nonlinear. Linear 
components are determined by the nodal 
displacement values. Nonlinear components go 
to zero at nodes. To determine the first 3 
coefficients in non-linear components of each 
polynomial through nodal factors you can use 
the values of the coordinate derivatives of the 
orthogonal direction at nodes. So for un the 

defining nodal values will be 
y
un


 . 

Correspondingly, for vn ─ 
x
vn


 . It is possible 

subsequently to define the remained 4 
coefficients from stationary condition of energy, 
by considering them as internal unknowns [3], 
general for all four triangles. 

Displacement w in this case describes 
deflection and change in the surface curvature 
of the plate. Depending on what curvature it is 
necessary to simulate, polynomials for w are 
characterized by summands with the highest 

degrees. So for generation 2

2

x
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takes the form 
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It is possible to notice, that such form of 
the polynomial provides the linear law of 

variation 2

2

x
w


 . For definition of 5 coefficients 

of the polynomial wn by means of nodal factors 

it is possible to use 3 nodal derivatives 
x

wn


 . 

Another two missing conditions can be obtained 
as follows. Let us write the derivative of a 
polynomial  
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Then for 
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 Here in brackets are nodal values of the 
derivative. To obtain the first additional 
condition let us differentiate the x linear 
approximation and substitute into nodes the 

values of the derivative of a polynomial
y
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To obtain the second additional condition 
let us differentiate the y linear approximation 
and also substitute the values of the derivative 

of a polynomial 
y

wn


  into nodes 
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As a result, for the expression of 5 
coefficients of the polynomial wn via 6 nodal 

values of the derivatives 
i
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obtain a system with a nonsingular square 
matrix. 

For obtaining 2
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The algorithm of expression of the 
polynomial wn coefficients through the nodal 

values of its derivatives is similar to that 
described above, taking into account that the 
coordinates x, y and the corresponding 
coefficients should be interchanged. 

The results of numerical experiments 
show that sufficient approximation for the 

derivative 
yx

wn


2

, necessary for accounting of 

the plate  torsion, is the expression, built on the 
basis of differentiation respectively of the y, x 

linear approximations of derivatives
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The obtained expressions can be easily 
used to generate the strain energy functionals of 
triangular FE by the known way [3, 4]. In this 
case into the number of nodal kinematic factors 

will enter u, v, w,
y
un


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x
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taking into account the method of introduction 
of polynomials into examination, should be 
accomplished a passage to the derivatives of 
general polynomials from the derivatives of 
nonlinear components according to the formulas 
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As a result, into the number of nodal kinematic 

factors will enter u, v, w, 
y
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Evidently, there arose rather unusual situation 
where the angular position under deformation in 

the plane is determined by two factors: 
y
u

 ,

x
v

 .  

It is possible to get rid of it, having 
entered into consideration the rotation angle θ 
about the z-axis by the known mean: 

2
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u . Here γ is the angle 

of displacement in the node. The latter should 
either be attributed to internal unknowns or 
without significant loss of the calculation 
accuracy of displacements set equal to 0, and 
that was carried out. As a result, in the node we 

have: u, v, w, θ,
x
w

 , 

y
w

 . 
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After the described transformations the 
strain energy functional of quadrilateral FE is 
obtained by simple summation of the 
functionals of triangles. In order to avoid 
doubling of the FE stiffness, since the triangles 
form two layers, the obtained energy functional 
should be divided in 2. Then evaluation of 
internal unknowns via nodal ones [3,4] and final 
formation of the FE stiffness matrix is carried 
out. 
 
2 Nonlinear Problem 

The solution of geometrically nonlinear problem 
of deformation to a considerable degree is based 
on the ideas of the previous section. Assuming 
displacements unlimited, it is more convenient 
to pass to the vector notation. The radius-vector 
of the initial surface of triangular FE can be 

presented in the form   
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deformed surface, as in the previous section, we 
can write down the radius-vector as a sum of 
linear and nonlinear components 
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Curvature components can be written 
down in the form: 
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It is possible to note that the last 
expressions are given with the deviation from 
the classical record [5]: the vector  3

~e   and 
coefficients Al, Bl are considered constants in 
the limits of FE. However, this form does not 
contradict limit relations and ensures significant 
simplification of calculations and better 
convergence.  
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let us write down the expression of the 
plate strain energy 

       
F

dFMtU 
2
1 . Here 

   DE ,  are the matrixes of membrane and 
bending stiffness [4]. In the general case of 
nonlinear deformation the recorded functional 
has a high degree of nonlinearity relative to the 
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required unknowns. For the iterative minimizing 
of the functional by Newton's method when 
solving problems let us construct its Taylor 
expansion in increments of unknowns entering 
into    , , in the neighborhood of some initial 
value 0U . It is assumed that the increments are 
small, at least in the case of convergence 
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Here δ is a symbol of increment. 
Having fulfilled substitutions and having 

integrated over FE area we shall receive 
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2
1
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where      00 , XHXg   are the gradient and 
the Hessian matrix of functional with Х0;  X  
is the increment of nodal unknowns. 

Immediately after substitutions into the 
number of unknowns in the node will enter 
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here derivatives should be expressed in terms of 
global factors [3, 4]. Such as: 
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On computation it is possible to set 
1,0 32  kk , since the inclination of the 

deformed surface to the reference plane is 
usually small and decreases rapidly with the 
decrease of FE sizes. Here δφ is the incremental 
vector of the angle of rotation. As a result 
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After the transformations the number of 
nodal unknowns is reduced to 6: three 
increments of displacement and three 
projections of the rotation angle increment. 

The gradient and the Hessian matrix of 
quadrilateral FE result from simple summation 
of corresponding factors of triangles. Internal 
unknowns here are considered as the general 
ones. To avoid doubling of FE stiffness as 
triangles form two layers, the received gradient 
and matrix should be divided by 2. Then the 
definition of internal unknowns through nodal 
ones [3,4] and final formation of the gradient 
and Hessian matrix of FE is carried out. 

In connection with the numerical 
realization of the described algorithm it is 
necessary to note two circumstances essentially 
influencing on the process. Direct use of the 
above expressions for deformations leads to not 
quite satisfactory results. Difficulties proceed 
from underlined components which induce false 
stiffness. The situation definitely improves if 
preliminary to integrate these components over 
the area and having divided into the area to use 
at calculations as constants independent of 
coordinates. At the same time for the entering 

into these components derivatives 
y

w
x

w nn





 , it is 

possible to use linear approximations similar to 
presented in the previous section 1. 

 
3 General conclusion 

As it follows from the previous 
consideration, quadrilateral FE is not required to 
be flat. This condition applies only to triangles 
that form it. Thus quadrilateral FE itself appears 
to some extent the shell at least depressed. 
When more correct calculation of the initial 
form is necessary, the previous consideration 
remains in force. It is required only to introduce 
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clarity into the relations connecting internal 
static factors and the deformation  

         00 ,   DMEt . 
Here it is better to enter vectors    00 ,   

as a result of a preliminary deformation of the 
initially flat piece of plate. So it is easier to be 
saved from the unacceptable mistakes connected 
with approximation of calculations. 

 
4 Results 

As a test for efficiency of the developed 
FE in solving of linear problems of deformation 
the influence on results of the FE form in the 
plan at the action of elementary loadings has 
been investigated. There is very illustrative test 
in which one FE simulated overhung beam at a 
bend from a plane and in a plane under action of 
transverse force and the moment on the free 
end.  

At a bend from a plane the element at a 
large length-to-width ratio practically exactly 
simulates the beam. 

In figure 2 some results of solution of the 
problem of a bend by force in a plane are 
shown. For comparison, the results obtained 
with the help of programs ANSYS and 
NASTRAN, as well as from the polynomial 
solution of the problem [6] are given. Here, the 
plate thickness h = 1 mm, modulus of elasticity 
E = 68030 mPa, Poisson's ratio μ = 0.3. In this 
example with the growth of length-to-width 
ratio nodal displacements of the element tend to 
beam ones. 

At a bend by the moment nodal 
displacements of the element are closer to the 
corresponding displacements obtained from the 
polynomial solutions [6] at any length-to-width 
ratios.  

According to the accepted FE generation 
algorithm its form can vary over a wide range. 
At the same time its properties change rather 
monotonically with the change of the form. So 
at a deviation from the shape of a canonical 
rectangular there is no abrupt change of its 
quality. As numerical experiments have shown 
in similar conditions for the estimation of 
displacements it is usually required by an order 
of magnitude less of developed FE, in 

comparison with similar elements of ANSYS or 
NASTRAN.  

In the nonlinear problem quality of FE is 
practically kept at a bend from a plane. At a 
bend in a plane the convergence is a little bit 
worse. In the figure 3 it is shown the initial and 
nonlinear deformed state of the final element of 
the plate circumscribing a bend of the overhung 
beam in its plane under action of moments М = 
300 Nm, applied at the nodes on the free end. 
The length of the element L = 200 mm, width b 
= 20 mm, thickness h = 2 mm, modulus of 
elasticity E = 6803 mPa, Poisson's ratio μ = 
0.33. Displacements of the end point of the FE 
middle line: -47.5 mm - horizontal; 113 mm - 
vertical. The dashed line shows the elastic line 
of the exact solution for the bar that is 
equivalent with respect to stiffness. Here, the 
corresponding displacements are: -53.45 mm, 
114.1 mm. In the problems with so significant 
deformation the limiting length-to-width ratio 
for calculations with adequate accuracy should 
not exceed 8. In the case of smaller deformation 
the ratio may be higher. 

The presence of final elements that allow 
with satisfactory accuracy take into account so 
significant deformations, can substantially 
reduce the number of FE, not going beyond the 
constructive discretization in computing the real 
products. There appears an opportunity to pass 
to the practical decision of problems of 
deformation beyond the bounds of stability of 
the real products.  

Figure 4 shows the finite-element 
schemes of the airframe units with the 
separation of panels being deformed beyond the 
limit of stability. In this case special FE are 
used, approximately considering the 
deformation beyond the limit of stability by the 
use of the additional shape function for the 
deflection  
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The latter simulates the deformation of a 
simply supported plate under the combined 
loading of tension or compression with shear. 
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NONLINEAR ANALYSIS BY STRENGTH EVALUATION AND 
FABRICATION METHOD OF THINWALLED AIRFRAMES.

Now more attention of the aircraft 
technologists is attracted by engineering 
processes concerning slow molding of integrally 
milled aviation panels in the modes of creep and 
relaxation of material. The attractiveness of 
these processes is determined by the fact that 
the material during processing in the minimal 
degree loses resource and other strength 
characteristics of the state of delivery. However, 
the design of technological equipment for these 
processes encounters certain difficulties. To 
design the form of equipment it is required to 
solve the labour-consuming problems of elasto-
plastic deformation with great displacements of 
large-sized panels of complex forms. Since 
there usually presents a significant part of 
elastic deformation in panels at molding, it is 
necessary to involve optimal control algorithms 
for taking into account the elastic ‘rebound’. On 
solving these problems the number of FE has a 
defining value. Application of the developed FE 
has allowed transference of all problems 
practically unsolvable before in the category of 
success. 

Figure 5 shows the final and predicted 
(with attachments) forms of the stabilizer panel 
surface within the limits of elasto-plastic 
molding technology in the relaxation mode. 
Figure 6 shows a typical finite-element scheme 
for the large-sized panel. 

 
Conclusion 

The model of quadrilateral FE with the 
improved convergence is offered for solving the 
problems of plate and shell deformation. It 
requires further investigations for theoretically 
correct improving of the model convergence in 
the nonlinear version. 
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