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Abstract  

In this study, we investigated the performance of 

our automatic grid generation code in Navier-

Stokes simulation of a transonic aircraft model. 

This was done in the form of participation in the 

4
th
 Drag Prediction Workshop (DPW4), where 

NASA Common Research Model (CRM) was 

used.  The grid generation method presented 

here is based on a hybrid of Cartesian and 

prismatic grids. The grid generator (known as 

HexaGrid) requires only a small number of 

parameters, and it can run automatically. 

Comparison with the results from tetrahedral-

based unstructured grid and multi-block 

structured grid, which we also submitted to the 

workshop, suggests that the Cartesian-prismatic 

hybrid grid method can be very competitive. 

Drag, as well as other measure of aerodynamic 

performance, was predicted within reasonable 

accuracy, even in comparison with structured 

grid generated manually. 

1  Introduction  

Grid generation is a critical step in 

Computational Fluid Dynamics, because it 

determines not only the accuracy of the result, 

but also the overall computation time and effort. 

For Navier-Stokes simulation on a non-trivial 

geometry, accuracy and computation effort are 

two competing requirements, where one must be 

sacrificed at the expense of the other. If 

computational accuracy is the primary objective, 

then one usually has to manually generate multi-

block structured grid, which takes a long time 

and requires highly skilled individuals. It is not 

uncommon for such procedure to take weeks. 

On the other hand, if saving in computation 

effort and fast turn-around cycle is the primary 

objective, then automatic grid generation 

method is used. The grid is usually either 

tetrahedral-based or hexahedral-based 

unstructured grid. The computational accuracy 

is generally lower than that of the grid generated 

manually by expert. Thus, a grid generator that 

can offer the best of both worlds will be a very 

useful tool indeed. 

 Motivated by this, Japan Aerospace 

Exploration Agency (JAXA) and Research 

Center of Computational Mechanics, Inc. 

(RCCM) have been developing a grid generator 

that is both automatic and suitable for accurate 

Navier-Stokes flow computation. The resulting 

code is called “HexaGrid,” which generates 

mainly hexahedral grid cells [1, 2]. The grid is a 

hybrid between Cartesian grid and prismatic 

grid, where the Cartesian grid fills the far-field 

region and the prismatic grid fills the region 

around solid surface to resolve boundary layer 

flow.  

Cartesian grid was chosen due to its speed 

in filling computational domain, because it does 

not follow body surface (non-body-fitted) [1-8].  

Due to the way the prismatic grid is 

generated, the grid generator tolerates small 

defects in body surface, such as small gaps and 

overlapping elements, which is not uncommon 

for geometry represented in STL (Stereo 

Lithography) format [1, 2, 8]. 

One of the computation targets presented 

here is aerodynamic force prediction of a 

benchmark aircraft model known as NASA’s 

common research model (NASA CRM) [9], first 
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introduced in the 4
th

 Drag Prediction Workshop 

(DPW4) [10].  

A flow solver known as TAS (Tohoku 

university Aerodynamic Simulation) code is 

used in this study [11]. The code solves Full 

Navier-Stokes equations on unstructured grid 

which may consist of tetrahedral, hexahedral 

and pyramid cells. It uses cell-vertex finite 

volume method. For comparison purpose, the 

computation results from other types of grid are 

used: multi-block structured grid (generated 

manually using Gridgen and solved using 

UPACS, JAXA’s in-house flow solver [19]) and 

a tetrahedral-based unstructured grid (generated 

using a code called Mixed-Element Grid 

Generator in 3 Dimensions, MEGG3D [18], and 

solved using TAS). 

2  Grid Generation Method  

We use the grid generation software, HexaGrid, 

in this study, which is a commercial software 

jointly developed by Japan Aerospace 

Exploration Agency (JAXA) and Research 

Center of Computational Mechanics, Inc. 

(RCCM). It is capable of automatically 

generating hexahedra grid around solid surface 

discretized in triangles, in STL format. Virtually 

all CAD software can output surface geometry 

in STL format. The procedures of the grid 

generation are outlined below.  

2.1 Cartesian Grid Generation 

Cartesian grid is generated by means of 

successive local refinement. This step starts 

with one cell that covers the whole 

computational domain, whose size is set by user. 

In three-dimensional space, each refinement 

divides a cell isotropically into eight child cells 

of equal size and shape. At the beginning, the 

grid is locally refined until the size of cells 

intersecting solid surface is smaller than a 

maximum grid size set by user. Then the grid is 

further refined until the size of cells intersecting 

the solid surface with large curvature reaches a 

minimum grid size. In addition, we can also 

control grid size anywhere using “Refinement 

Box” with HexaGrid GUI. For simplicity, we 

did not use the Refinement Box in this study.  

 
Fig. 1. Cartesian grid refinement 

2.2 Removal of Cells near Solid Surface 

The purpose of this step is to create sufficient 

space for prismatic grid around the solid surface 

as well as to form a base for prismatic grid 

generation. In Navier-Stokes computation, 

ideally the boundary layer can fit into this space.  

Removal of cells is carried out for those 

intersecting the solid object and those around 

the solid surface. The size of Cartesian grid cells 

removed is in the same order as the total 

thickness of prismatic grid. Note that, due to the 

shape of Cartesian grid cells, the resulting grid 

is non-body-fitted. 

2.3 Snapping to Solid Surface 

To form a body-fitted grid, the surface of 

Cartesian grid is then snapped onto the solid 

surface (Fig. 2). This is done by moving a node 

on Cartesian grid surface to the closest location 

on the solid surface. Note that snapping always 

finds a unique location closest to the present 

position. This is a very important property, 

because it means that the method works even 

when there is a small gap between triangles that 

form a solid surface, and also when the triangles 

overlap or intersect each other. This may result 

in lower cost in preparing the CAD data.  

The weakness of the snapping method is 

that it cannot capture highly concave geometry, 

because it will always move to the closest 

location. Thus this method is supplemented with 

feature capturing method, which forces the 

Cartesian grid surface to move into the 

concavity. 
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Fig.2. Grid snapping to solid surface 

2.4 Prismatic Grid Generation 

A number of prismatic grid layers are 

constructed on the snapped surface, where each 

layer consists of the same number of cells as 

shown in Fig. 3. User defines the thickness of 

the first grid layer, and the expansion factor of 

thickness. Note that the total thickness of 

prismatic grid is already determined during 

removal of Cartesian grid. The number of 

prismatic grid layers can thus be computed. 

This stage is very important for Navier-

Stokes computation, because the prismatic grid 

is responsible for resolving the boundary layer.  

 

 
 

Fig. 3. Prismatic grid generation 

 

 

 

2.5 Quality Improvement 

Independently, the quality of the Cartesian and 

prismatic grids is already very good. When they 

are used together, the only region that needs 

major improvement is the interface between the 

two grids, so that they blend smoothly (Fig. 4). 

A smooth transition of grid cell’s size and shape 

is very important in Navier-Stokes computation. 

For our study, a Laplacian smoother is found to 

give a satisfactory result. 

In this study, we used grid face flatness and 

convexity as a measure of grid quality. 

 

 
 

Fig. 4. Grid smoothing 

3  Flow Computation Method  

A flow solver for unstructured grid known as 

TAS (Tohoku university Aerodynamic 

Simulation) code [11], is used in this study. It is 

a well-validated code and used in a variety of 

aerospace applications [12]. In TAS, full 

Navier-Stokes equations are solved on the 

unstructured grid by a cell-vertex finite volume 

method. The HLLEW (Harten-Lax-van Leer-

Einfeldt-Wada) method is used for the 

numerical flux computations [13]. The LU-SGS 

(Lower/Upper Symmetric Gauss-Seidel) 

implicit method is used for time integration [14]. 

The second-order spatial accuracy is realized by 

a linear reconstruction of the primitive variables 

with Venkatakrishnan’s limiter [15] and 

Unstructured MUSCL-scheme (U-MUSCL) 

[16]. As for turbulence model, the Spalart-

Allmaras model is used [17]. The equations for 
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the turbulence model are also solved using the 

second-order scheme. Turbulent transition is not 

taken into account. 

4  Computations 

4.1 Model Geometry  

The model is NASA Common Research Model 

(NASA CRM) [9] shown in Fig. 5. It is a 

wing/body/tail configuration with a wing-body 

fairing. The supercritical wing is employed for 

the main wing. The fuselage is representative of 

a wide-body commercial transport aircraft. 

Shown here is one of four configurations 

provided by DPW4, where it has horizontal tail 

oriented at 0 degree.  

 

 
 

Fig. 5. NASA Common Research Model (CRM) 

4.2 Grids  

Three types of grid are shown here. The first is 

Cartesian-prismatic hybrid grid, which is the 

subject of this study. For comparison, we also 

used tetrahedral-prismatic hybrid grid, and 

multi-block structured grid.  

4.2.1 Unstructured Cartesian-Prismatic Hybrid 

Grid Generated with HexaGrid 

Three different grids (coarse, medium, and fine 

grids) are generated with HexaGrid. The 

medium grid is shown in Fig. 6 and 7. These 

parameters are the same for all grids: maximum 

cells size on solid surface of 5 inch, domain size 

of 100 times reference chord length (Cref), first 

prism layer thickness of 9.85E-4, and prism 

layer expansion ratio of 1.25.  The difference 

between the grids is the minimum cell size on 

solid surface: 5in, 1.25in, and 0.625in for coarse, 

medium, and fine grids, respectively. 

Figure 8 shows the grids of main wing at 

the cross-section of η=0.50, where η is a ratio 

of distance between the body axis and the cross-

section on the span. The total thickness of prism 

layer depends on the Cartesian grid size. Hence, 

the prism layer is relatively thin around the 

trailing edge for medium and fine grids. 

Similarly, the number of prism layer decreases 

with increasing total number of grid (Table 3). 

Gridding guidelines are provided by DPW4 

[10]. Although we tried to follow them as 

closely as possible, restrictions of HexaGrid has 

forced us to deviate slightly.  

Number of grid nodes is defined as 3.5 

million, 10 million, and 35 million for coarse, 

medium, and fine grids, respectively. We 

generated 3.2 million, 11million, and 37 million, 

respectively, which is quite close (Table 1).  

Grid sizing in the direction perpendicular 

to body surface can be achieved by setting the 

thickness of the first prism layer and the growth 

rate of prism layers. Thus these sizes are in 

compliance with the guideline. However, 

controlling grid cell size in the direction along 

body surface is difficult under present method. 

This is because the Cartesian grid method used 

here can only generate isotropic grid. Some 

stretching effect is achieved when snapping the 

Cartesian grid surface to body surface. For 

example, when Cartesian grid around leading 

edge is snapped, the result is elongated grid 

faces along the body edge. However, there is no 

direct control of grid face’s aspect ratio as in 

structured grid. Thus, the required minimum of 

12 cells across the trailing edge base for the 

medium mesh had to be neglected here.  

We need to emphasize here that, due to the 

ease of use of HexaGrid, even CFD beginners 

with little experience in grid generation can 

generate grids easily and the time needed for 

training is short. 
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Fig. 6. Cartesian grid  around the model 

 

 

 

 
Fig. 7. Top to bottom: coarse, medium and fine 

grids on fuselage and wing junction 

 

 
 

 
 

 
Fig. 8. Top to bottom: coarse, medium and fine 

grids on main wing’s cross section 

 

Table 1. Grid generation results from HexaGrid 

 

 Coarse Medium Fine 
Cartesian 

grid finest 

level 
13 15 16 

No. of 

prism 

layers 
35 29 26 

Total node 

count 
3,213,783 11,055,602 36,601,899 

Total cell 

count 
3,644,942 12,654,764 41,630,191 

Boundary 

node count 
105,686 295,394 757,593 

Boundary 

face count 
106,272 297,697 762,131 
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4.2.2 Unstructured Tetrahedra-Prismatic 

Hybrid Grid generated with MEGG3D 

A hybrid unstructured grid is generated using an 

unstructured surface/volume mesh generator, 

MEGG3D [18]. First, edges (feature lines) of 

the STL data are set manually with GUI of 

MEGG3D. The surface grids are triangulated 

with the direct advancing front method based on 

the edges and STL data. Then isotropic 

tetrahedral volume grids are generated using the 

method of Delaunay tetrahedral meshing. 

Finally, prismatic layers are added. This grid 

generator has been well-validated and used for 

many applications such as drag prediction.  

A medium grid generated with MEGG3D 

is shown in Fig. 9. The grid is well clustered 

near the leading edge and trailing edge 

compared with that generated with HexaGrid. 

However, it is difficult to generate fine mesh 

across the trailing edge base since the grid is 

also basically isotropic. The MEGG3D grid in 

the middle of wing is relatively coarse, whereas 

HexaGrid is uniformly fine. The grid 

information is shown in Table 4. The TAS flow 

solver is also used for this grid. 

 

 
Fig. 9. Tetrahedra-prismatic hybrid grid 

 

4.2.3 Multi-block Structured Grid generated 

with Gridgen 

A multi-block structured grid was also prepared 

for comparison using a commercial software, 

Gridgen. A medium grid generated with 

Gridgen is shown in Fig. 10. The grid is well 

clustered near the leading edge and trailing edge 

compared with those generated with HexaGrid 

and MEGG3D. The grid is fine in the chord-

wise direction, whereas it is coarse in the span-

wise direction. The grid information is shown in 

Table 4.  

As for a flow solver, UPACS is used for 

this grid [19]. This flow solver is based on a 

cell-centered finite volume method. In this study, 

the second-order scheme of the Roe’s flux 

difference splitting for convection terms is used 

with the MUSCL extrapolation and the van 

Albada’s limiter. The viscous terms are 

discretized using a scheme based on 2nd-order 

central difference. Time integration is carried 

out using the MFGS implicit method. The 

Spalart-Allmaras model17 is used for a 

turbulence model.  

 

 
Fig. 10. Multi-block structured grid 

 

Table 2. Grid generation results from MEGG3D 

and Gridgen 

 

 MEGG3D Gridgen 

Zones 1 283 

No. of prism layers 34 40 

Node count 13,490,678 9,903,509 

Cell count 36,250,881 9,006,808 

Boundary node count 369,541 294,408 

Boundary face count 798,336 275,608 

5  Results 

In general, results from the three types of grid 

discussed above compare very well with the 

average band of results of all participants in the 

workshop [20].  

5.1 Comparison of Cp and Cf distribution 

Here, we compare the medium grid results at 

CL=0.500, which are the same results used in 
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the grid convergence study. The Cp distribution 

over the whole surface is shown in Fig. 11. The 

Cp and Cf distributions at η=0.50 of the main 

wing are shown in Figs. 12 and 13. Generally, 

HexaGrid+TAS results agree well with the other 

results except for the cross-section near wing tip, 

though the grid generated with HexaGrid is 

coarser near the leading edge than those 

generated with MEGG3D and Gridgen. The 

shock wave in the middle of wing is well 

captured in the case of HexaGrid, where the grid 

generated with HexaGrid is isotropic and 

relatively fine compared to the other. The 

friction coefficient of HexaGrid becomes less 

than the others behind the shock wave location, 

since the boundary layer is affected by the 

larger pressure gradient. The difference of shock 

strength and the related friction may cause the 

difference of friction drag. 

The solutions in the middle of wing are all 

different. The grid of HexaGrid is isotropic and 

uniformly fine, and its Cp distribution seems to 

be the best among the three results. However, 

the suction peak at the leading edge is not well 

resolved in the case of HexaGrid due to the 

insufficient grid resolution. The grid of 

MEGG3D is fine near the leading and trailing 

edges, but it is coarse in the middle of wing. As 

a result, the Cp distribution is smeared due to 

the coarse grid. The grid of UPACS is also fine 

near the leading and trailing edges, but it is 

anisotropic and relatively coarse in the span-

wise direction. Therefore, the pressure 

distribution is smeared in the span-wise 

direction. The merit of using uniformly fine grid 

is pointed out from the comparison. It seems to 

be better and more efficient to use a little more 

uniform grid, decreasing number of grid near 

the leading and tailing edges, than that defined 

by the gridding guidelines. 

The Cp distributions of the three grids are 

almost same at the tail wing. However, the 

friction of HexaGrid is less than the others 

probably due to the coarse grid at the leading 

edge. 

 

 
Fig. 11. Cp contours (HexaGrid+TAS on 

medium grid at CL=0.500) 
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Fig.12 Cp distribution on the main wing at the 

cross-section of η=0.50 
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Fig.13 Cf distribution on the main wing at the 

cross-section of η=0.50 
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5.2 CL-αααα, CL-CD polar curve 

Figure 14 shows the CL-α graph, where the 

three results are compared. The result of 

HexaGrid agrees well with those of MEGG3D 

and UPACS except for the attack angle of 4a 

since the flow separation become large at the 

attack angle. The separation line is largely 

different among the three grids. The result of 

HexaGrid shows the largest separation and its 

flow pattern is close to UPACS result. 

 Figure 15 shows the CL-CD polar curve. 

The result of HexaGrid is close to that of 

UPACS except for the attack angle of 4 deg. 

The difference is less than 5 counts, which is 

quite good 
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Fig. 14 CL-α 
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Fig. 15 CL-CD 

5.3 Grid convergence 

Drag coefficients are computed at CL=0.500 for 

the coarse, medium, and fine grids. The Free 

stream Mach number is 0.85 and the Reynolds 

number based on the reference length, Cref, is 5 

millions. 

Drag coefficients for the three grids are 

shown in Fig. 16, where HexaGrid+TAS is 

compared with MEGG3D+TAS and UPACS. 

Total drag is a summation of pressure drag and 

friction drag. The horizontal axis is the grid 

index, 1/(number of grid nodes)
(2/3)

.  The result 

of HexaGrid shows good grid convergence and 

the predicted drag coefficients are between the 

results with MEGG3D+TAS and UPACS (Fig. 

16). The drag predicted with the automatic grid 

generation has almost the same accuracy as that 

with the manual grid generation. Although the 

pressure drag of HexaGrid+TAS is close to that 

of MEGG3D+TAS (Fig. 17), the friction drag 

behavior of HexaGrid is different from the 

others (Fig. 18). The friction drags of 

MEGG3D+TAS and UPACS have good 

convergence tendency, whereas that of 

HexaGrid shows different trend with finer grid. 

One of the reasons is the difference in grid 

stretching along the solid surface. MEGG3D 

and UPACS use high stretching factors for grid 

near the edges, and HexaGrid can not produce 

grid of similar property. 

 

0.0265

0.0270

0.0275

0.0280

0.0285

0.0290

0.0295

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05

1/(Gridsize)^(2/3)

C
D

HexaGrid+TAS
MEGG3D+TAS
UPACS

 
Fig. 16 Grid convergence of total drag 
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Fig. 17 Grid convergence of pressure drag 
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Fig. 18 Grid convergence of friction drag 

 

5  Conclusions 

Generally, HexaGrid results are in good 

agreement with the other results. From the 

pressure and friction distributions, it is evident 

that the flow characteristics, such as shock wave 

on the wing’s upper surface, are very well 

captured. Relatively higher grid resolution and 

isotropic property of the grid is found to be very 

helpful in this region. On the other hand, the 

same property is also responsible for lack of 

resolution near leading and trailing edges, in 

comparison to the other methods that support 

grid face stretching. 

The results of HexaGrid are quite close to 

that of UPACS, which is a structured grid, when 

there is no or little flow separation. The 

difference is less than 5 drag counts, which is 

very good, considering that this is the result of 

automatic grid generation. These results give us 

a strong indication that a grid generation that is 

both automatic and suitable for accurate Navier-

Stokes computation can indeed be achieved, at 

least for flight conditions similar to the case 

presented here. Work on grid quality is 

currently underway to improve the results even 

further. 
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