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Abstract

In this research, a Surrogate-Based Optimization
(SBO) method is coupled with reanalysis tech-
niques to improve the computational efficiency
during optimization even further. The reanalysis
techniques are used to speed up a reduction and
a substructuring method, Craig-Bampton, which
is utilized at the analysis step of the proposed
SBO strategy. This strategy is suitable for solv-
ing problems where the modal and the harmonic
responses of structures are required to be modi-
fied. An academic test problem is utilized for the
demonstration.

1 Introduction

In engineering applications, designing and pro-
ducing both economical and efficient products
are necessary in order to be able to withstand
global competition in the market. This is one of
the main motivation of using optimization meth-
ods for many manufacturing companies. Struc-
tural design optimization problems require reli-
able analysis which is generally carried out by
the Finite Element (FE) method. One of the main
difficulties is that optimization of complex struc-
tures often requires numerous computationally
demanding FE analyses.

Direct coupling of an FE model with nu-
merical optimization algorithms is inevitable for
problems which have many design variables, i.e.
large scale optimization problems. If it is fea-
sible to calculate the derivatives, the gradient-
based algorithms are the most suitable because

they require less function evaluations (FE anal-
ysis calls) than the derivative-free algorithms.
On the other hand, efficient and accurate cal-
culation of the derivatives are remaining issues
in their application. Moreover, the analysis of
a structure may fail when some of the design
values are not feasible. For instance, direct
coupling of a Branch and Bound type Mixed-
Integer-NonLinear-Programming (MINLP) algo-
rithm with an FE model might be problematic
when non-integer values are assigned to some of
the design variables.

For small-scale optimization problems (i.e.
problems with small number of design variables),
where the design domain wants to be explored
globally, Surrogate-Based Optimization (SBO)
can be a good alternative to algorithms based on
direct coupling. The motivation of SBO is replac-
ing expensive-to-evaluate FE models with their
fast-to-evaluate approximations in optimization
problems. These approximations are known as
meta-models, surrogate models or response sur-
faces in the literature. When they are defined on
the overall design domain, they are also called
global approximations. Meta-models are built to
predict the trends in the data collected from an FE
model. The data consists of a set of values for the
selected design variables and the response of the
structure for these design values. Therefore, sur-
rogate models can be considered as highly sim-
plified versions of FE models.

Once a surrogate model is built, it is many
orders of magnitude faster to evaluate than the
FE model. Thus, it can be effectively employed
in global optimization schemes. The number of
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function evaluations in an optimization algorithm
is not a big issue due to the simplicity of the sur-
rogate models.

Analytical derivatives of the FE models are
not required for building the surrogates. Addi-
tionally, analytical derivatives of the surrogates
are not essential during optimization. Derivatives
of these can accurately be calculated by the finite
difference approximation.

When an optimization algorithm is directly
coupled with an FE model, evaluation of the
model is done sequentially during the search of
an optimum. On the contrary, the FE model
is only required for generating data for meta-
modeling in SBO. Hence, the data can be gath-
ered all at once by parallel processing.

Data generation is still the challenging step
of surrogate modeling. For obtaining certain ac-
curacy, the total number of the data should be
sufficient. On the other hand, with an increas-
ing number of the design variables, the required
number of data grows rapidly. Accordingly, the
number of the FE analysis calls increases signif-
icantly. In order to reduce this computational
burden, an SBO method is proposed in [2] for
optimizing the dynamic behavior of structures
where global approximations are utilized as sur-
rogates. In the method, a reduction and a sub-
structuring method, Craig-Bampton (CB), is used
for offering solutions to one of the major dif-
ficulties in SBO, the analysis time. Using the
CB method with SBO has the following addi-
tional advantages: (1) Reduction in the total d.o.f.
leads to fast analysis of the complete structure.
Meanwhile, the accuracy of the analyses are pre-
served within a low-frequency range. (2) Inde-
pendent condensation of each substructure en-
courages parallel processing even further. (3)
Preventing unnecessary calculations of the un-
modified substructures, only the modified com-
ponents can be analyzed and coupled with the al-
ready computed ones. (4) For structures having
repeated components, modeling of one compo-
nent is sufficient.

For reducing the analysis time even further,
employing reanalysis methods can also be very
useful. The objective of these methods is to eval-

uate the structural response due to the modifica-
tions in the design variables, using knowledge of
the initial model. Therefore, solving a complete
set of new equations is avoided. Integration of
some reanalysis methods into the CB method is
discussed in [1].

In this research, the SBO method proposed
in [2] is coupled with the reanalysis techniques
introduced in [1]. The structure of the paper is
organized as follows: The CB method and the
reanalysis methods are introduced briefly in Sec-
tion 2 and Section 3. The new SBO method is in-
troduced in Section 4. The final section includes
the demonstration of the introduced concepts.

2 Craig-Bampton Method

The Craig-Bampton (CB) method [3] consists of
breaking up a large structure into several sub-
structures (components), obtaining reduced order
system matrices of each component and then as-
sembling these matrices to obtain the reduced or-
der system matrices of the entire structure.

Assume that an FE model of a structure
is constructed on a domain €2 and is divided
into .S non-overlapping substructures such that
each component is defined on the sub-domain
Q¢. Thus, excepting the nodes on the interface
boundaries, each node belongs to one and only
one component. The linear dynamic behavior of
an undamped component, labeled c, is governed
by the equations,

T8 3 )
My, Mg, dp K Ky dy

where and “b” refer to interior and bound-
ary, respectively. In the formulation, M¢, K¢
and d° are respectively the mass matrix, the stift-
ness matrix and the vector of the local d.o.f of the
component. The vector ¢ represents the external
loads, and the vector g represents the interface
loads between the component ¢ and the neigh-
boring components that ensure compatibility at
the interfaces.
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For reducing the size of the component ma-
trices, K and M€, a subspace spanned by the
columns of T is built in such a way that the so-
lution of Equation (1) can be written in the form:

d¢ ~ chc (2)

where q° is a vector of generalized coordinates
and dim(q°) < dim(d®). T is referred to as a
reduction basis, a transformation matrix or a Ritz
basis.

The CB reduction basis is obtained utilizing
the fixed interface normal modes, [®{ 0|', and
the constraint modes, (¥, Ty

The fixed interface normal modes describe
the internal dynamic behavior of a substructure.
These modes are calculated by restraining all
d.o.f. at the interface and solving an undamped
free vibration problem

(Kf —wiM{){®(}, =0 j=1,2,...,Nr (3)

1

where w;, {®{'} are the jth natural frequency and
the corresponding mode shape respectively, and,
Nt is the truncated number of the normal modes
which is usually a lot less than the actual number.

The motion on the substructure interfaces,
the propagation of the forces between substruc-
tures and the necessary information about the
rigid body motions are defined by the constraint
modes. These modes are calculated by stati-
cally imposing a unit displacement to the inter-
face d.o.f. one by one while keeping the displace-
ment of the other interface d.o.f. zero and assum-
ing that there are no internal reaction forces, i.e.,

] [
el I N T
|:Kbi Kbb Ibb bb

In Equation (4), Ry, is a matrix including the un-

known reaction forces acting on the interface.
Therefore, the Craig-Bampton transforma-

tion matrix T¢y for component c is defined as,

c (I)lC \Illcb
CB—{O Ibb]. 5)

After defining the CB reduction basis T¢g,
first, the right-hand side of Equation (2) is sub-
stituted into Equation (1) and then, Equation (1)

is pre-multiplied by Tg&g". Hence, the re-
duced matrices of each component are defined
by: K¢ =T KTsy, M= TeTMTE.
The external loads and the interface loads are
fo = T¢,"f° and g° = Tgy ' g°, respectively.

In the CB method, the assembly of the com-
ponents is done using the compatibility of the
interface d.o.f. [5]. This implies matching FE
meshes at the interfaces.

3 Reanalysis Methods for Updating the CB
Reduction Basis

Updating the fixed interface normal modes:

For updating the initial fixed interface nor-
mal mode set of a substructure, the En-
riched CB method proposed by Masson
et al. [4] is utilized. The idea behind the
method is, first, calculating the residual forces

Ry = [fa(w1),. .., fa(wn;)] acting on the initial
substructure due to the design modifications
where fA(wj) = —[AKii — W?AMii]{q)i}j’

AK;, AM; stand for the introduced modifi-
cations on K; and M; and, wj, {®;} ; are the
jth natural frequency and the corresponding
mode shape of a modified substructure, re-
spectively.  Afterwards, these residual forces
are used to define a correction to the initial
displacement field. However, their exact cal-
culation is not possible by only knowledge
of the initial substructure data.  Therefore,
they are approximated by, first, computing the
residual  forces Ry = [fa(wy), ..., fa(wn,)]
acting on the modified structure where
fa(w;) = —[AK;{w?} AM;]{®?} . The fixed
interface normal modes and the corresponding
eigenvalues of the initial model are represented
by {®{}; and {w)}?, respectively. Then, the
approximate residual forces are defined as
fa(wj) ~ yifa(wr) + ... +yn,fa(wy,) where
y' = {y1,92,...,yn,} is a vector of unknown
coefficients. The residual forces ﬁL can also be
utilized to replace Ry and the corrections to the
displacement field can be imposed using them.
The essential idea of doing this is: if the sub-
space spanned by R;, does not contain the exact
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residual force vectors with respect to a specific
design modification, it may at least contain a
reasonable representation of these vectors. The
approximate correction matrix Rp is then defined
as RD =K, IRL where RL is the reconditioned
form of Ry by Singular Value Decomposition.
Finally, the initial fixed interface normal mode
set is enriched by RD, that is,
P = { ¢! Ro ] :

0 O
This extended set of vectors is then used in the
CB transformation matrix for the condensation of
the modified component.

Updating the constraint modes:

For updating the initial constraint mode set of a
substructure, a method based on the Combined
Approximations (CA) approach is utilized [1].
The idea behind the method is approximating the
residual constraint mode matrix, AWy,, using the
conditioned binomial series expansion. A brief
description of the procedure is as follows:

The t¢th  residual constraint mode
{AW;,}; is approximated in the space
spanned by the vectors of the basis
H, = [{Ari}, ..., {Arn}], t=1,2,... N

where

{Arl}t = K;lRt, {Ark}t = —KglAKii{Ark_l}t.

In the formulation, k£ = 2,3, ..., N, indicates the
number of the basis vector (binomial series term),
N, is the total number of the binomial series
terms used in the approximation and R; is the ¢th
column of R = ~AK;¥) — AKj,. The initial
constraint mode matrix is represented by W} .

Having defined the basis H;, { AW;, }, can be
approximated as

{AW}e =~ {Ar }oyn + ..o+ {Ary, Hyen,
= H;y,
(6)

where y; = {y:i1,Vs2,--, YN, } 1S @ vector of
unknown coefficients. These coefficients can be
obtained by solving a linear system of equations

H/ (K; + AK;)H,y: =
H} (—AK;{¥)}; — {AKip})

whose size is much smaller than that of the orig-
inal one (the original system has the same size
as Equation (4)). When this system is solved
for y; and the solution is inserted back into
Equation (6), the tth residual constraint mode
{AW; }; is computed approximately. Perform-
ing the above defined operations for each residual
constraint mode, the CA approach of the residual
constraint mode matrix AWy, is defined as

A\Ilib = [{A‘I]ib}la {A\Pib}g, ceey {A\Ilib}Ns]-

Hence, the approximate constraint mode matrix
is given by

U~ {‘Il?bjLA\Pib } :
Lo

It is possible to automatize the calculation of
the constraint modes. To do that,first, a value
is assigned to the initial number of the basis
vectors in the CA approach. Next, the num-
ber of FLoating-point OPerations (FLOPs) is
counted [1]. This number is compared with the
number of FLOPs of the exact analysis. The
CA approach is used only when it requires less
FLOPs than the exact analysis. If it is compu-
tationally efficient to be employed, the residual
constraint mode matrix AWy, is calculated using
CA. The accuracy of the approximation is veri-
fied [1]. If the accuracy is not satisfactory and the
number of FLOPs of CA is still less than the exact
analysis when a new vector is added to the basis
H;, it is extended with this vector. The reanaly-
sis is performed again. Otherwise, the constraint

modes are computed with the exact analysis.
4 Surrogate-Based Optimization Method

The solution process of the SBO method is as il-
lustrated in Figure 1. It starts with the problem
analysis which involves, first, understanding the
problem under consideration. Then, selection of
the design variables and parameterization of the
computational model are carried out. Finally the
objective function and the constraints are defined.

The second step is to generate the surrogate
model. Here, firstly a set of sample points is se-
lected from the design space which is called De-
sign of Experiments (DOE). In the method, Latin
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Fig. 1 Schematic illustration of the SBO method.
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Fig. 2 Schematic illustration of the analysis step of the SBO method.

Hypercube Sampling (LHS) scheme is utilized to
generate the DOE set. Afterwards, for each sam-
ple point, the FE model is run and data is gath-
ered for training the surrogate. At the analysis
step, the Craig-Bampton (CB) method is used as
a CMS technique. Furthermore, reanalysis meth-

ods are considered for efficient calculation of the
CB transformation matrices of the modified com-
ponents. The followed steps at the analysis phase
are shown schematically in Figure 2. For the dy-
namic analysis of a structure, first, the complete
structure is divided into components. Then the
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parameterized FE model of each component is
built. If there are similar components, only one
of them is modeled. Afterwards, the design val-
ues of the complete structure are distributed to
components based on the design variables cap-
tured in the component models. An FE model
standing for similar components may get multi-
ple configurations for its design variables. The
next step is the calculation of the reduced system
matrices of each component for the assigned de-
sign values. In the proposed scheme, libraries are
used to store the information about the already
analyzed components. Hence, unnecessary anal-
yses are prevented. Before generating the system
matrices of a given component design, first, the
corresponding library is checked. If the requested
information is not there, it is computed and stored
in the library. In the computation, first of all, the
transformation matrix, consisting of the normal
and the constraint modes, is calculated. The nor-
mal modes can be computed either using the ex-
act analysis methods or using the Enriched Craig-
Bampton (ECB) method. Unfortunately, there
is no automated switch from ECB to the exact
methods based on the accuracy and/or the com-
putational efficiency of ECB. On the other hand,
calculation of the constraint modes, either by the
exact or the approximate methods, can be auto-
mated. The approximate constraint modes are
calculated using the Combined Approximations
(CA) approach. After the transformation ma-
trix is determined, the reduced component matri-
ces are computed. The given component design,
its transformation and the reduced matrices are
saved in the component library. This procedure is
repeated for each component and the correspond-
ing configurations. This ensures that all the nec-
essary information to generate the reduced sys-
tem matrices of the complete structure is readily
available in the libraries for further use. There-
after, the stored reduced matrices are gathered
from the libraries for the given structure design
and assembled to obtain the reduced matrices of
the entire structure. Finally, the dynamic analysis
of the structure is performed.

After defining the data set, a suitable meta-
modeling approach is selected and the unknown

parameters of the chosen meta-model are de-
termined using the available data. In proposed
method, Neural Networks are employed for this
purpose.

Having generated the surrogate model, the
next step is the optimization where the global
optimum is sought using a Multi-Level Hy-
brid Optimization (MLHO) scheme. In MLHO,
a stochastic derivative-free global optimization
method, the Genetic Algorithm (GA), is em-
ployed to locate the global optimum. A gradient-
based method, Sequential Quadratic Program-
ming, is initialized with the solution of GA to find
an exact optimum solution.

Since the calculated optimum is not directly
related with the FE model but the surrogate
model, the results need to be validated. In or-
der to do that, the response of the FE model is
obtained by the computed optimum design val-
ues. This is then compared with the response
of the surrogate model for the same design val-
ues. If the accuracy is acceptable, the scheme is
stopped. Otherwise, the data set is extended with
the optimum design values and the corresponding
response of the FE model. New parameters for
the selected surrogate model are computed using
the extended data set and the optimization step
is repeated. This procedure is iterated until the
validation results are acceptable.

S Demonstration of the Concepts

For the demonstration of the introduced concepts,
an idealized fuselage structure, shown in Fig-
ure 3, is utilized. The structure is composed of 8
identical components and it is free at the bound-
aries. A component consists of a cylinder skin in-
cluding a floor panel, frames and stiffeners whose
geometry is as illustrated in Figure 3.

The reduced system matrices of the entire
structure are obtained by only modeling one com-
ponent. The FE model of a component is gen-
erated in the commercial FE software ANSYS.
Its system matrices are calculated for the defined
design variables and then they are transferred to
MATLAB. For obtaining the reduced system ma-
trices of the components, first of all the trans-
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Fig. 3 Test problem. (Left) Component model, (Middle) Selected structure under applied force, (Right)

First bending mode of the initial design.

formation matrices are computed and afterwards
condensation is performed. In the transforma-
tion matrices 18 fixed interface normal modes are
used. The number of the nodes on one interface
of a component is 37. After the reduced matrices
of all the components are obtained, these matri-
ces are assembled and the reduced system matri-
ces of the entire structure are gathered.

The skin, floor and frames are modeled using
a 4-node shell element which has 6 d.o.f. at each
node and is suitable to analyze thin to moderately
thick shell structures. The stiffeners with 7 cross-
section are modeled with a three dimensional
beam element which has 6 d.o.f. at each node.
It allows different cross sections and permits the
end nodes to be offset from the centroidal axes
of the beam. The cross section width and height
of the stiffeners (h) in the components (see Fig-
ure 3) are defined as the design variables and all
the stiffeners of a component are assumed to have
the same design values. Therefore, there exist 8
design variables in total in the overall structure.
Each component has one design variable. For the
initial design hg,, ¢ = 1,2, ..., 8 are set to 0.05m.

There is a harmonic force acting on the struc-
ture. The applied load has an amplitude of 100
kN and is in the y-direction. It is applied on the
top interface node of the 4th component C, and
the 5th component C; as shown in Figure 3. For
the harmonic response analysis, structural damp-
ing with an energy dissipation of 3% is assumed
which is imposed directly on the reduced stiff-
ness matrix of the structure.

For the harmonic response analysis, focus is
on the frequency range of 10 — 30 Hz. This in-

terval involves the first bending frequency of the
initial design. Figure 3 shows the mode shape of
this frequency. The objective is to reduce the am-
plitude of the displacement response in this fre-
quency range, thereby decreasing the displace-
ment response of the structure for the first bend-
ing mode. The nodes that lie on the top and the
bottom interface of the components are selected
to prescribe the objective function. Figure 3 il-
lustrates the nodes corresponding to the interface
of a component. The selected nodes are identi-
fied with squares around them. The displacement
magnitudes in the y-direction are computed for
these nodes in the frequency range of 10 — 30 Hz
and then summed up. The response curve that
represents the “frequency-displacement magni-
tude” relationship of the initial design is plotted
in Figure 4. The results displayed in the figure
are obtained by the full FE analysis performed in
ANSYS.

The objective function of the problem is de-
fined as minimizing the total area, A(h), beneath
the response curve. The area beneath the re-
sponse curve is 0.95 m.Hz for the initial design.

The constraints of the problem are as follows:

e Keeping the first bending frequency around
22 Hz. This constraint is defined as
22 — e < f7(h) < 22 4 € where € = 0.02.

e Keeping the total final mass of the stiff-
eners less than the total initial mass
of the stiffeners. This is given as,
S L [pVi(hg,)] < 23 where V;(h,) is the
total volume of the stiffeners in component
C; and p 1s the density of the stiffeners.
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e Preserving the mode shape of the first
bending frequency. This is assured by the
MAC criterion. MAC;(h) > 0.9.

e Having a symmetric final configura-
tion. This constraint is prescribed by
forcing the design variables of the com-
ponent pairs; C;-Cg, Co-C;, C3-Cg,

C4-C5s to have similar values. This
is imposed by:  hy —hy, <107
hs(g_v —hy, <1074, j=1,2,...,4.

7) J

e The upper and the lower bounds for
the design variables are selected as
001 <h,, <0.1, +=1,2,...,8.

In the optimization problem, 3 surrogate
models are used. These surrogates stand for
A(h), f7(h) and MAC,(h).

The DOE set Dt of the whole structure has 81
designs where each design defines a new struc-
ture configuration.

At the analysis step of the SBO method, the
transformation matrix of each modified compo-
nent is computed using one of the following
methods:

Exact: The fixed interface normal modes and
the constraint modes of the Craig-Bampton (CB)
transformation matrix are computed by exact
analysis methods all over again.

ECB+CA: The initial fixed interface normal
mode set is extended using the Enriched Craig-
Bampton (ECB) method. The constraint modes
are approximated by the Combined Approxima-
tions (CA) approach. The minimum number of
the basis vectors are set to 3. The accuracy of the
modes are verified and if it is not satisfactory, the
set of the CA basis vectors is extended with a new
vector and the reanalysis step is repeated.
ECB+CA Automated: The initial fixed interface
normal mode set is extended using the Enriched
Craig-Bampton (ECB) method. For the calcula-
tion of the constraint modes, the automated up-
date scheme defined in Section 3 is used. The
minimum number of the basis vectors are set to 3
in the CA approach.

After the transformation matrix of a compo-
nent is calculated using one of the above meth-

ods, condensation of the component matrices are
performed.

The responses, A(h), fz(h) and MAC(h),
of the structure for each configuration in Dy are
calculated using the assembled reduced compo-
nent system matrices and the training data sets
are gathered for meta-modeling.

3 separate libraries are used for storing the
transformation, the reduced stiffness and the re-
duced mass matrices of each new component de-
sign. The first library is for component C,, the
second one is for components Cy, Cs, ..., C; and
the third one is for Cg.

The following cases are considered.

Case 1: The optimization problem is solved
twice. First, the Exact approach is used for the
calculation of the transformation matrices dur-
ing the analysis step of the SBO method. In the
second solution, instead of the Exact approach,
the ECB+CA Automated approach is used. The
performance of the SBO method is evaluated re-
garding the accuracy of the results and the com-
putation time. In short, in Case 1, the computa-
tional efficiency and the accuracy of the reanaly-
sis methods are tested. It is important to empha-
size that the number of FLOPs for the exact anal-
ysis of the constraint modes is smaller than that
of the CA approach in the selected structure. Ac-
cordingly, in the CA Automated approach, the
constraint modes are always computed by the ex-
act analysis.

Case 2: As mentioned in Case 1, the constraint
modes are always computed by the exact meth-
ods in the CA Automated approach. In order
to examine the accuracy of the CA method, the
ECB+CA approach is used in the analysis step
of the SBO method. The final design configu-
ration and the corresponding analysis results are
compared with the solutions found in Case 1.

In all the test cases, the NN model is em-
ployed with 25 hidden layer neurons.

The search for optimum is repeated until the
relative errors between the responses of the FE
model and that of the surrogates are smaller than
0.005 for the computed optimum design values.
The relative error is computed with respect to the
FE analysis results.
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Before calculating the reduced system matri-
ces of the components for the optimum design
values, first the libraries are checked for simi-
lar component designs. These designs are sought
with a relative error tolerance of 107, The rela-
tive error is calculated with respect to the investi-
gated optimum design.

5.1 Results and Discussions

Case 1:

The results of Case 1 are summarized in Table 1.
The “frequency-displacement magnitude” curves
that correspond to the final configurations are
shown in Figure 4. To validate the results, the
response of the structure is calculated in ANSYS
using the full FE analysis for the final design val-
ues. These solutions are also presented in Fig-
ure 4.

Both of the final configurations are feasible.
These configurations have almost the same de-
sign values. The optimal configuration is stiffest
in the middle while the stiffness decreases to-
wards the free ends of the structure. The total
area beneath the “frequency-displacement mag-
nitude” curve is reduced by almost 14% in both
Exact and ECB+CA Automated.

The total required time for the optimiza-
tion process decreases around 30% when the
ECB+CA Automated approach is utilized in the
SBO method.

As observed from the results, the total num-
ber of the iterations required in the SBO method
are very low.

The accuracy and the computational
efficiency of the SBO method with
ECB+CA Automated approach is very sat-
isfactory for the selected problem.

Case 2:
The results of the SBO method with the
ECB+CA approach are summarized in Table 2.
The “frequency-displacement magnitude”
curve that corresponds to the final configuration
is plotted in Figure 5.
The final design is very similar to those

Table 2 Summary of Case 2 results.

H ECB+CA
. . 0.01,0.01,0.059,0.1
Final Design (m) %0.1 0.059, 0.01 0.01%
Final Area (m.Hz) 0.8215
Final Mass (kg) 21.9
Total # of iterations 6

—Initial Design — ANSYS Full
0.2¢ ---Final Design - ECB+CA ||
- - Final Design — ANSYS Full

0.15¢

0.17

Sum of Displacement Magnitudes (m)

10 15 20 25 30
Frequency (Hz)

Fig. 5 Results of Case 2. The CB transforma-
tion matrices are computed by the ECB+CA ap-
proach in the SBO method.

obtained in Case 1 and it fulfills all the con-
straints. The total area beneath the “frequency-
displacement magnitude” curve is reduced by al-
most 14%.

As seen in Figure 5, the accuracy of
ECB+CA is satisfactory compared to the full FE
analysis results for the final design values.

6 Summary and Conclusions

The contribution of this research is proposing so-
lutions to one of the major difficulties, analysis
time, in structural optimization by taking the ad-
vantage of effective structural analysis and re-
analysis techniques in an SBO scheme.
Integration of two reanalysis techniques into
the Craig-Bampton (CB) method is introduced.
This is then used at the analysis step of a
Surrogate-Based Optimization strategy for im-
proving the computational efficiency during op-
timization. The strategy is demonstrated by an
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Table 1 Summary of Case 1 results.

[ Exact ECB+CA Automated
Final Design (m) [0.01,0.01,0.058,0.1, [0.01,0.01,0.063, 0.1,
£ 0.1,0.058,0.01,0.01}  0.1,0.063,0.01, 0.01]
Final Area (m.Hz) 0.8238 0.8161
Final Mass (kg) 21.7 22.5
Total # of iterations 4 4
Computation time 5hO6min 3h34min

— Initial Design — ANSYS Full
- --Final Design — Exact (CB) ||
- - Final Design — ANSYS Full

Sum of Displacement Magnitudes (m)

20
Frequency (Hz)

— Initial Design — ANSYS Full
- --Final Design - ECB+CA Automated||
- - Final Design — ANSYS Full

0.2f

0.15¢

0.1f

Sum of Displacement Magnitudes (m)

20 25
Frequency (Hz)

15

Fig. 4 Results of Case 1. (Left) The CB transformation matrices are computed by the Exact approach in
the SBO method, (Right) The CB transformation matrices are computed by the ECB+CA Automated

approach in the SBO method.

academic test problem.

The results of the test case are very promis-
ing for the application of the proposed strategy on
small-scale optimization problems where the dy-
namic behavior of large complex structures wants
to be modified. It is believed that the efficiency of
the strategy will be more pronounced when tested
on more complex problems.
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