
27TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
 

1 

 

 

 
Abstract  

A novel approach for the optimization of air 
race trajectories that takes into account the 
highly non-linear nature of the dynamics of the 
participating aircraft is presented. For the 
optimization an enhanced, scalable multi-
fidelity simulation model is utilized which is a 
sequential model extending the translation and 
position dynamics by different representations 
for the attitude and the rotational dynamics in 
the inner loop of the flight system. The scalable 
inner loop can either contain linear transfer 
functions for the load factors and the roll rate, 
linear state-space models for the longitudinal 
and the lateral motion of the aircraft or the fully 
non-linear rotational and attitude dynamics. 
With the sequential structure of the model, the 
complexity level of the inner loop and thus the 
optimization time and quality can easily be 
adapted to the required level. Furthermore, 
inversion controllers for the different loops are 
incorporated in the simulation model that 
enable the development of a procedure for the 
generation of robust and suitable initial guesses 
for the optimization with full non-linear  
6-Degree-of-Freedom simulation models. The 
novel approach allows for the solution of highly 
complex trajectory optimization problems where 
classical methods failed mainly due to stiffness 
problems. The full dynamic order of the flight 
system considered is taken into account such 
that the resulting optimal race trajectory is truly 
achievable. 

1  Introduction 
Over the past years, air race events have 

become increasingly popular and even a global 

air race world series has been established with 
great success. These air races are attracting a 
large audience, thus enhancing the popularity 
and the fascination for aerospace in the public. 
The basic procedure of the regarded air races is 
as follows: after passing a starting point, which 
can be defined by a significant landmark, the 
aircraft consecutively have to fly a course 
defined by inflatable pylons at minimum time. 
The pylons form gates which either are to be 
passed wings level (level gate), or at 90° bank 
angle (knife edge gate). Other features are the 
“quad”, consisting of two pylon pairs to be 
passed from perpendicular directions or the 
slalom which is a chicane built of a sequence of 
single pylons requiring rapid changes in turn 
direction. Furthermore, re-alignment and 
aerobatic maneuvers like vertical rolls or Half 
Cuban Eights are included to re-position the 
aircraft with respect to the track. The race ends 
by passing a finish gate which in many cases is 
equal to the start gate or again a significant 
landmark. 

In order to win such a competition, the 
pilot has to find the fastest possible flight course 
through the gates, i.e. he tries to finish the race 
course in the minimum possible flight time. As 
the best trajectories only become apparent 
during training and at the race itself, shaped by 
the pilots’ experience, it would be beneficial to 
know the optimum (i.e. minimum time) 
trajectory for a given aircraft right before the 
first aircraft enters the course and flight path 
optimization is the only efficient means to 
compute the optimal race track. This does not 
only help the pilots to find their best strategy but 
also the organizer and the local authorities to 
assess the track with respect to the single most 
important criterion that is safety. Moreover, so 
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far the trajectory flown could only be judged by 
the final race time but no clear insights could be 
gained which parts of the race course flown 
deviate the most from the optimal trajectory and 
thus would offer room for improvement. 
Therefore, knowing the optimal race trajectory 
would be very interesting for the pilots, the 
planners, the evaluators as well as for the 
spectators. 

The task of finding the necessary control 
inputs to produce the minimum race time for a 
specific air race track represents a typical multi-
phase trajectory optimization problem that is to 
find the control inputs such that the resulting 
state histories become optimal with respect to a 
certain objective, here the final race time. Over 
the last decades, a vast number of trajectory 
optimization problems have been solved, mainly 
utilizing point-mass models (see e.g. [1], [7], 
[8], [9], [11], [13]) or only a single maneuver 
over a very short time span with a full  
6-Degree-of-Freedom simulation model has 
been optimized ([5], [12], [14]). But for air race 
trajectories with their inherent, highly non-
linear nature and flight at the limits of the 
envelopes and with frequently saturated 
controls, point-mass models can no longer 
adequately represent the dynamic order of the 
considered flight system. For the simulation and 
the optimization of air race trajectories it is 
mandatory to take into account the true attitude 
and the rotational dynamics of the flight system 
to achieve a realistic representation of the real 
aircraft. With the utilization of full, non-linear 
6-Degree-of-Freedom simulation models for the 
optimization of trajectories over a long time 
span as it is the case for air races, optimization 
tasks suffer from many severe problems ranging 
from poor convergence properties to the 
difficulty of finding initial guesses for the 
optimal solutions. Thus, a novel approach has to 
be chosen for the optimization of air race 
trajectories. 

This approach requires a simulation model 
of special structure. The outer loop contains the 
position and translation equations of motion 
followed by a scalable inner loop that represents 
the rotation and attitude equations of motion of 
the flight system. In the simulation model, three 
alternatives for the inner loop are implemented: 

first, linear transfer functions for the load 
factors and the roll rate, second, linear state-
space models for the lateral and longitudinal 
motion and third, the full non-linear attitude and 
rotational dynamics. Additionally, inversion 
controllers for each inner loop are incorporated 
into the simulation model. With this scalable, 
multi-fidelity simulation model the complexity 
of the inner loop can easily be changed so that 
the fidelity of the entire simulation model and 
the computational effort for solving an 
optimization task can be adapted to the 
appropriate level while it is ensured that the full 
dynamic order of the flight system is taken into 
account for the optimization task. Thus, the 
resulting optimal trajectory is highly realistic. 
Furthermore, with the utilization of the 
mentioned simulation model for optimization 
tasks, a procedure for the generation of very 
good initial guesses for the solution of 
optimization problems based on the full non-
linear simulation model can be established. 
Therefore, the optimal solution found for one 
complexity level is used as the starting solution 
for the higher level of complexity, thus 
improving the convergence time and stability 
for this optimization task since the applied 
starting solution presumably comes close to the 
final optimal solution. 

In order to get as close as possible to 
reality, the simulation model also accounts for 
atmospheric effects like offset in the ambient 
temperature and pressure as well as for static 
and convective wind fields since the 
atmospheric conditions have a great influence 
on the optimal trajectory. 

In the paper at hand, first the simulation 
model with its different alternatives for 
modeling the linear inner loop is described. 
Then, the trajectory optimization problem for air 
races utilizing this simulation model is 
formulated. Next, a procedure for generating 
good initial guesses for the various optimization 
problems is introduced. Finally, results of 
solved air race trajectory optimization problems 
are shown demonstrating the capability of the 
proposed approach. 
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2  Simulation Model 
In this chapter, the scalable multi-fidelity 

simulation model that constitutes the basis for 
the optimization procedure to be explained in 
chapter 4 is described. Basically, the simulation 
model is divided into two parts that are an outer 

loop containing the position and translation 
equations of motion and an inner loop 
representing the attitude and rotation dynamics 
of the flight system. For the inner loop, three 
different alternatives are implemented and later 
on used for the optimization tasks: first, a linear 
inner loop that consists of linear transfer 
functions for the load factors and the roll rate, 
second, an inner loop with linear state-space 
models for the longitudinal and lateral motion of 
the aircraft and third a non-linear inner loop 
modeling the full attitude and rotational 
dynamics. The structure of the simulation model 
with its scalable inner loop is depicted in Fig. 1. 

For conventional non-linear 6-Degree-of-
Freedom simulation models, both the position 
and translation equations of motion and the 
attitude and rotation equations of motion are 
given with respect to the NED-Frame, i.e. that 

the inner loop and the outer loop are modeled 
“in parallel”. In contrast to these standard 
simulation models, the herein presented 
simulation model features a sequential structure, 
where the inner loop is modeled in series to the 
outer loop, providing the input to the outer loop: 

the load factors in the Intermediate Kinematic 
Flight-Path Frame K̅. This means that the 
attitude and rotation dynamics are not given 
with respect to the NED-Frame as usual but 
with respect to the Kinematic Flight-Path  
Frame K. The innovative structure of the 
simulation model is illustrated in Fig. 2. Since 
the inputs to the outer loop always remain the 
same irrespective of the modeling of the inner 
loop, the sort of modeling for the inner loop can 
easily be altered without affecting the outer 
loop. This specific structure allows for an easy 
adjustment of the simulation model to the 
required level of accuracy and complexity, to 
the desired computation time or computational 
robustness or to the aircraft data available for a 
specific simulation or optimization task. At the 
same time it is ensured that in principal the full 
dynamic order of the respective flight system is 

Outer Loop
with Translation & Position EoM

Non-Linear Inner Loop
with Rotation & Attitude EoM

Linear Inner Loop
with Linear State-Space Models

Linear Inner Loop
with Linear Transfer Functions

Fig. 1. Simulation Model Structure with Scalable Inner Loop 

Conventional Approach

New Approach

Rotation 
Dynamics

Attitude 
Propagation 
w.r.t. K-Frame

Translation 
Dynamics

Position 
Propagation

w.r.t. NED-Frame

Rotation 
Dynamics

Translation 
Dynamics

Position 
Propagation

w.r.t. NED-Frame

Attitude 
Propagation 

w.r.t. NED-Frame

Fig. 2. Sequential Structure of the Simulation Model
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taken into account for the optimization task so 
that the resulting optimal trajectory is highly 
realistic. 

Furthermore, environmental influences like 
deviations from the standard atmosphere or 
static and convective wind fields are accounted 
for in the simulation respectively the 
optimization model in order to achieve flight 
paths that are as realistic as possible. Especially 
the influence of wind fields on the optimal 
trajectories is very significant and therefore 
cannot be omitted. 

In addition to the outer loop with the 
translation and position equations of motion and 
the inner loop with the attitude and rotation 
dynamics, the simulation model is augmented 
by inversion controllers for the respective loops 
that are essential for the optimization procedure 
given below. The inversion controllers are based 
on a dynamic inversion of the principal physical 
causal chains of dynamic flight systems. At this, 
a causal chain describes the relation between a 
control surface deflection and a change in the 
position of the aircraft, e.g. the relation between 
an elevator deflection and the resulting change 
in the aircraft’s altitude. With the dynamic 
inversion controller, the corresponding control 
surface deflections for given state time histories 
can be computed so that the flight system 
follows the prescribed state profiles. In the 
simulation model, inversion controllers for the 
outer loop as well as inversion controllers for 
the inner loop with its different depths of 
modeling are implemented. 

A detailed description of the simulation 
model including the incorporated inversion 
controllers can be found in Ref. [2]. 

3  Statement of the Optimization Problem 
In general, an optimal control problem can 

be stated as follows: Determine the optimal 
control history 

( ) m
opt t R∈u  (1)

and the corresponding optimal state 
trajectory 

( ) n
opt t R∈x  (2)

that minimize the Bolza cost functional 

( )( ) ( ) ( )( )∫+=
ft

t
ff dttttLtteJ

0

,,, uxx  (3)

subject to the state dynamics 

( ) ( ) ( )( )tttft ,,uxx =  (4)

the initial and final boundary conditions 

( ) ( )( ) qttt R∈= 00000        ,, ψ0uxψ  (5)

( ) ( )( ) p
fffff ttt R∈= ψ0uxψ        ,,  (6)

the interior point conditions 

( ) ( )( ) k
iii ttt R∈= r0uxr        ,,  (7)

and the equality and inequality conditions 

( ) ( )( ) r       ,, R∈= eqeq ttt C0uxC  (8)

( ) ( )( ) s       ,, R∈≤ ineqineq ttt C0uxC  (9)

For the air race trajectory optimization 
problem, the Bolza cost functional reduces to a 
Mayer functional since the only objective is to 
minimize the final time: 

ftJ =  (10)

Finally, the state vector and control vector 
for the inner loop with the full, non-linear 
attitude and rotational dynamics are: 

[
]TTKKKKK

K

rqp
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,,,,,,,, 3210=x  (11)

[ ] T

CMDT ,,,, δζξη=u  (12)

The initial boundary conditions for the 
optimization problem are given by the position 
of the start gate, whereas the final boundary 
conditions are determined by the location of the 
finishing gate and the direction the finishing 
gate has to be passed by the aircraft: 

( )
( ) 0rr

0rr
=−
=−

FinalGatef

StartGate

t
t0  (13)
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The requirement that the pilot has to fly 
through certain gates in a certain direction and 
at given bank angles imposes interior point 
conditions to the trajectory optimization 
problem. Basically, there are two different types 
of gates, level gates and knife edge gates. Level 
gates have to be passed wings level, i.e. with the 
kinematic bank angle μK equal to zero whereas 
knife edge gates have to be flown through with 
a bank angle μK  = 90°. The resulting conditions 
read: 

( )
( ) °=

°=°−

0

090

LevelGateK

ateKnifeEdgeGK

r

r

μ

μ  (14)

By separating the entire race trajectory at 
these gates into multiple phases, the interior 
point conditions are transformed into final 
boundary conditions for each phase. The phases 
then have to be connected to the preceding 
phases to guarantee the continuity of the state 
and the control time histories: 

( ) ( )
( ) ( ) ni       tt

ni       tt

iiifi

iiifi
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,...,20
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−−
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where n denotes the number of phases, tf,i 
the final time of the i-th phase and t0,i the initial 
time of the i-th phase. Additionally, equality and 

inequality conditions have to be fulfilled along 
the flight path for an air race. Among others, the 
most important inequality path conditions result 
from safety regulations and require that a certain 
load factor limit must not be exceeded and that a 
minimum distance to the crowd has to be 
maintained. Further, inequality conditions affect 
the performance limits of the aircraft, i.e. the 
maximum roll rate or the maximum angle of 
attack. These conditions are cast in the 
following form: 
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4  Description of the Optimization Procedure 
A challenging task for the solution of every 

optimization problem is the creation of an initial 
guess that comes as close as possible to the 
optimal solution in order to guarantee stability 
and robustness of the optimization process as 
well as good convergence properties. The above 
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described simulation model allows for the 
setting up of an optimization  procedure that is 
well suited for the generation of a good initial 
guess for the optimization of air race trajectories 
with full non-linear 6-Degree-of-Freedom 
simulation models. This novel procedure is 
described in the following, an overview of the 
various steps performed during this procedure is 
depicted in Fig. 3. 

First, an optimal solution for the race 
course utilizing the point-mass model without 
an inner loop has to be found. The race course is 
divided into several phases, where each phase is 
defined as the flight path segment between two 
succeeding gates. An optimal solution for the 
first phase is computed using a homotopy 
procedure: at first, an optimization problem is 
solved where the starting gate and the next gate 
are positioned in line such that the aircraft can 
pass the two gates straight and level. Then, the 
position of the second gate and the attitude of 
the aircraft when flying through this gate are 
gradually changed until they meet the final 
boundary conditions given by the real position 
and type of the second gate. The final state and 
control values of the first phase are then utilized 
as the initial values for the second phase and an 
optimal solution for the second phase is 
computed just in the same manner as it has been 
computed for the first phase. This procedure is 
repeated until the last phase of the air race track 
is reached. Then, the computed states and 
controls of all the phases are put together, 
giving a quite good initial guess for the 
optimization of the whole air race trajectory 
based on the point-mass model 

When the optimal air race trajectory for the 
point-mass model has been computed, the 
modeling complexity of the simulation model 
respectively its inner loop is increased step by 
step. First, the linear inner loop with transfer 
functions for the load factors and the roll rate is 
incorporated into the simulation model. The 
load factors and the roll rate that result from the 
optimization based on the point-mass model are 
set equal to the load factors and roll rate 
command inputs that are now the input signals 
to the inner loop with linear transfer functions. 
By simulating the air race trajectory with the 
“optimal” command inputs obtained from the 

optimization with the point-mass model without 
any inner loop, the resultant simulated trajectory 
deviates from the optimal trajectory found for 
the point-mass model since now the simulation 
model features an inner loop with linear transfer 
functions. Hence, for the simulation task error 
feedbacks are implemented in the simulation 
model to force the simulated trajectory for the 
model with linear transfer functions onto the 
optimal trajectory found for the model without 
inner loop. Of course, the control history 
resulting from the simulation is unlikely to be 
optimal since the cost function is not yet 
minimized by optimization, but an initial guess 
for the optimization task utilizing a model with 
linear transfer functions has been generated that 
fulfills all boundary conditions and might 
already come close to the final optimal solution. 

Once the optimal solution for the air race 
trajectory utilizing a simulation model with the 
attitude and rotational dynamics represented by 
linear transfer functions has been computed, the 
obtained time histories for the controls can then 
be used as command inputs for the simulation of 
the air race trajectory taking into account an 
simulation model that features an inner loop 
with linear state-space models augmented by the 
appropriate inversion controller. Again, the 
simulated trajectory is likely to deviate from the 
optimal trajectory found for the model with 
linear transfer functions since now linear state-
space models are incorporated into the 
simulation model. Thus, the modeling fidelity is 
increased and in contrast to the optimization 
based on linear transfer functions for the inner 
loop, the coupling between the states in the 
longitudinal motion respectively the coupling 
between the states in the lateral motion is now 
incorporated in the simulation model. Due to 
this reason, error feedbacks are used to force the 
aircraft model with state-space models onto the 
optimal trajectory based on a model with 
transfer functions.  

In the next step of the optimization 
procedure, the time histories found by 
simulating the trajectory for the model with 
linear state-space models, inversion controller 
and error feedbacks in turn can be used as 
command inputs for the optimization of the air 
race track utilizing the simulation model with 
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linear state-space models supplemented by the 
appropriate inversion controller as inner loop. 

Computing the optimal race trajectory for 
this level of the simulation model in turn yields 
time histories for the control surface deflections. 
Now, these time histories serve as initial guess 
for the optimization of the air race trajectory 
utilizing the simulation model with linear state-
space models in the inner loop but without the 
corresponding inversion controller.   

Stepping forward in the optimization 
procedure, the control surface commands that 
are optimal for the simulation model with the 
state-space models (but without inner-loop 
inversion controller) are then used as command 
inputs for a simulation based on the model with 
the non-linear inner loop. As before, the 
resulting deviations from the optimal trajectory 
for the simulation model with state-space 
models are corrected by suitable error 
feedbacks, giving a time history for the controls 
that is not optimal for the increased modeling 
fidelity but that results in a sub-optimal 
trajectory that obeys all boundary conditions 
Thus, the resulting control surface deflection 
time histories can be utilized as quite good 
initial guesses for the optimization of an air race 
trajectory based on a full 6-Degree-of-Freedom 
simulation model with non-linear attitude and 
rotational dynamics without any inversion 
controller where the control surface deflections 
are the directly commanded inputs. 

By the approach described, both the 
stability and the robustness of the optimization 
process and the convergence properties of the 
various optimization tasks can be increased 

significantly since for each step in the entire 
optimization procedure very good initial guesses 
for the optimal solution can be derived from the 
preceding step, while the optimization task itself 
starts with a comparably simple optimization 
problem. 

5  Results 
As mentioned above, wind has a great 

influence on the optimal race trajectory. This 
can be shown very illustrative for an aircraft 
flying the Half Cuban Eight. Without any wind, 

the aircraft accomplishes the Half Cuban Eight 
exactly in the vertical plane, while with 
crosswind the aircraft pulls up against the wind 
and flies down with the wind. This means that 
the plane in which the aircraft flies the Half 
Cuban Eight is inclined towards the direction 

Fig. 4. Half Cuban Eight without wind (blue) 
and with wind (grey) 

Fig. 5. Optimized Race Track
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where the wind comes from. The described 
effect can be seen in Fig. 4. Here, an optimal 
trajectory for a Half Cuban Eight that is not 
influenced by any wind is depicted in 
comparison to the optimal trajectory for a Half 
Cuban Eight with wind where the wind blows 
from the west with the aircraft initially heading 
northward. Furthermore, the result shows the 
capability of the developed approach to 
optimize aerobatic maneuvers.  

The above stated trajectory optimization 
problem has been solved using a direct multiple 
shooting method. As mentioned above, the 
complete air race track has been divided into 
sixteen phases, where the single phases have 
been defined as the flight path segments 
between the various gates. The optimized air 
race trajectory is shown in Fig. 5. 

Although the race track is two-
dimensional, i.e. the race gates are all on the 
same level, the resulting optimal trajectory is 
three-dimensional. This is especially true for the 
270°-turn that is necessary for flying through 
the “quad”: here, the aircraft pulls up in order to 
shorten the flight time for this maneuver. A 
complete air race track consists of two rounds 
and thus the optimization is also done for two 
rounds, but in Fig. 5 the second round is omitted 
for illustration purposes. 

6  Conclusion 
With the newly developed approach that is 

the utilization of a point-mass simulation model 
supplemented by rotation dynamics with 
scalable fidelity, the dynamic order of the flight 
system used for the simulation and optimization 
of air race trajectories can easily be adjusted to 
the required level of accuracy. Furthermore, an 
optimization procedure is presented where the 
complexity of the simulation model used for the 
optimization is increased step-by-step while the 
optimal solution that has been found for a 
specific level of complexity is utilized as initial 
guess for the subsequent level of complexity. 
Since the initial guesses are quite close to the 
particular optimal solution of the optimization 
task, the robustness and the stability of the 
optimization procedure is guaranteed.  

Especially for the optimization of 
trajectories based on a full non-linear 6-Degree-
of-Freedom simulation model, difficulties that 
would result from the instantaneous usage of 
such a simulation model for an air race 
optimization task can be avoided. The capability 
of the novel approach has been demonstrated by 
the optimization of an aerobatic maneuver, the 
Half Cuban Eight, and the optimization of an 
entire air race course. 
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