
TOWARDS THE IMPLEMENTATION OF VISION-BASED UAS
SENSE-AND-AVOID SYSTEM

Luis Mejias, Jason J. Ford, John Lai
Australian Research Centre for Aerospace Automation (ARCAA)

Queensland University of Technology, QLD 4000, Australia

Keywords: Detection algorithms, Filtering techniques, Filter banks, Obstacle avoidance,
sense-and-avoid.

Abstract

Machine vision represents a particularly attrac-
tive solution for sensing and detecting potential
collision-course targets due to the relatively low
cost, size, weight, and power requirements of the
sensors involved. This paper describes the devel-
opment of detection algorithms and the evalua-
tion of a real-time flight ready hardware imple-
mentation of a vision-based collision detection
system suitable for fixed-wing small/medium
size UAS. In particular, this paper demonstrates
the use of Hidden Markov filter to track and es-
timate the elevation (β) and bearing (α) of the
target, compares several candidate graphic pro-
cessing hardware choices, and proposes an image
based visual servoing approach to achieve colli-
sion avoidance.

1 Introduction

The problem of unmanned aerial vehicle (UAV)
collision avoidance or sense-and-avoid has been
identified by the Office of the Secretary of De-
fense [1] and DeGarmo [2] as one of the most
significant challenges facing the integration of
UAVs into the national airspace. The full poten-
tial of UASs can never be realised unless sense-
and-avoid issues are adequately addressed. A
survey of potential ’sense and avoid’ technolo-
gies for unmanned aerial vehicle (UAV) is pre-
sented in Karhoff et al. [3]. In their analysis,
machine vision emerged as a promising means of

addressing the sense and detect aspects of colli-
sion avoidance. Interestingly, vision is the pri-
mary means by which many organisms perceive
the world and serves as a basis for their interac-
tions therein. However, some studies have shown
(BASI [4]) that it is actually difficult to detect and
avoid a collision using the human visual system.
Hence, it must be recognized that sensing by vi-
sion is not appropriate for all circumstances, for
instance in very low light conditions affect ad-
versely visible spectrum cameras. In addition,
many challenges still need to be overcome, in-
cluding: to guaranteed solution robustness, to
achieve the required computational speed, to re-
solve various ambiguities, etc.

From the last three decades of work a two-
stage processing paradigm has emerged for the
simultaneous detection and tracking of dim, sub-
pixel sized targets. Examples of this two-stage
approach include works by Gandhi et al. [5, 6],
Arnold et al. [7], and Barniv [8], Carnie [9] and
Lai [10]. These two stages are: 1) an image pre-
processing stage that, within each frame, high-
lights potential targets with attributes of interest;
and 2) a subsequent temporal filtering stage that
exploits target dynamics across frames. How-
ever, one of the key limitations of previous detec-
tion work relates to the inability of these previ-
ous approaches to provide higher-level target in-
formation, such as the target’s relative heading in
the image frame.

A second key limitation of this previous work
is that the feasibility of the presented algorithms

1

LUIS MEJIAS, JASON J. FORD, JOHN LAI

have not yet been tested in real-hardware plat-
forms and this remains a key challenge that faces
any vision-based sense and avoid system. To
date, public domain hardware implementation of
vision-based sense and avoid systems have been
limited to a small number, with the most signifi-
cant developments being made by Utt et al. [11];
here, a combination of field programmable gate
array chips and microprocessors using multi-
ple sensors, was tested in a twin-engine Aero
Comander Aircraft. Motivated by these hard-
ware implementation challenges, this paper aims
to exploit the capabilities of data-parallel arith-
metic architectures such as graphics process-
ing units (GPUs) which can outperform current
CPUs by an order of magnitude. As discussed
in Owens et al. [12], GPUs have been proven to
be very capable parallel processing systems and
have been demonstrated in applications ranging
from medical image analysis [13], video process-
ing applications [14, 15], image processing and
robotics [16, 17, 18, 19], through to high perfor-
mance processing applications [20].

For these above reasons, this paper describes
the extension of our previous work through the
implementation of our detection techniques on
GPU devices and the addition of relative bear-
ing and elevation estimation capabilities. Specif-
ically this paper presents 1) a hidden Markov
model (HMM) based filtering approach for the
detection of aerial targets, 2) a control strategy
for collision avoidance based on target dynamics
and estimation of target relative bearing/elevation
angles, 3) an implementation of our HMM detec-
tion algorithm on GPU-based hardware for real-
time target detection, and 4) the characterisation
of data processing speeds on various candidate
GPU devices.

This paper is structured as follows: Sec-
tion 2 describes morphological pre-processing
and HMM temporal filtering techniques. Sec-
tion 3 describes our proposed control strategy and
a technique for estimating target heading infor-
mation. Section 4 provides a description of our
GPU implementation and the optimisation strate-
gies undertaken. Section 5 presents experimental
results illustrating processing rates on a variety

of GPU devices. Finally, some discussions and
conclusions are presented.

2 Detection approach

This paper considers an image pre-processing ap-
proach that exploits grayscale morphological op-
erations to highlight potential targets, and a tem-
poral filtering approach to detect and track per-
sistent features (targets). Next, we describe the
details of these two approaches.

2.1 Morphological pre-processing

In the first stage of processing we use a CMO
morphological filter for low level detection. The
CMO filter is based on operations known as top-
hat and bottom-hat transformations (see [21] for
more details) which at the same time are based in
two basic image processing operations called di-
lation and erosion. Here, a pair of CMO filters us-
ing orthogonal 1D structuring elements is imple-
mented. One CMO filter operates exclusively in
the vertical direction, while the other operates ex-
clusively in the horizontal direction. The vertical
and horizontal structuring elements of the CMO
morphological pre-processing filter are given by
sv = [1,1,1,1,1] and sh = [1,1,1,1,1], respec-
tively. Our implementation of the CMO filter
procedure can be summarised as follows:

for i = 1 to n do
v = D(E(imagei,sv),sv)
h = E(D(imagei,sv),−sv)
imgv = h− v
v = D(E(imagei,sh),sh)
h = E(D(imagei,sh),−sh)
imgh = h− v
resulti = min(imgv, imgh)

end for
where D and E are the two fundamental image
processing operation called dilation and erosion,
respectively (see [21] for more details).

2.2 Temporal filtering

We consider the target detection as evaluating the
likehood of two complementary hypotheses, H1
and H2, where H1 is the hypothesis that there is

2

TOWARDS THE IMPLEMENTATION OF VISION-BASED UAS SENSE-AND-AVOID SYSTEM

a single target in the field of view of the cam-
era, and H2 is the hypothesis that there is no
target. Our filtering approach assume that un-
der the hypothesis H1, the target resides on a 2D
discrete grid, that is the image plane, such as
I = {(i, j) | 1≤ i≤Nv,1≤ j≤Nh}, where Nv and
Nh are the vertical and horizontal resolution of the
2D grid (image height and width, respectively).
Let N = Nv×Nh be total number of grid points,
and the measurements provided by the sensor be
Yk.

In our target detection problem, we repre-
sent a unique HMM state by the target pixel lo-
cation (i, j) in the image, when present. Us-
ing a standard vector representation of an im-
age, let any HMM state m be represented as
m = [(j−1)Nv + i], when the target is at location
(i, j). In addition, let xk denote the state (target
location) at time k. The HMM transition proba-
bilities (i.e likelihood between state transitions)
is described by Amn = P(xk+1 = state m|xk =
state n)∀(m,n) ∈ [1,N]. In addition, initial prob-
abilities πm = P(x1 = state m) ∀m ∈ [1,N] are
used to specify the probability that the target is
initially located in state m. Finally, to complete
the parametrisation let the measurement proba-
bilities Bm(Yk) = P(Yk|xk = state m) ∀m ∈ [1,N]
be used to specify the probability of obtaining
the observed image measurements Yk ∈ [1,N]
(see [22] for more details about the parameteri-
sation of HMMs)

The HMM detection is achieved propagating
recursively an un-normalised probabilistic esti-
mate (αi

k = P(Y1,Y2, ...,Yk|xk = state m)) of the
i target state (xi

k) over time (see [23]). The proce-
dure can be summarised as follows:

for m = 1 to N do
initialisation: αm

1 = πmBm(Y1)
recursion: for k > 1

α
m
k =

[
N

∑
n=1

α
n
k−1Amn

]
Bm(Yk)

end for
Two probability measures that facilitates the de-
tection of the target are used: 1) the probability
of measurement up to time k assuming H1

P(Y1,Y2, ...Yk|H1) =
N

∑
m=1

α
m
k (1)

and 2) the conditional mean filtered estimate of
the state state m given measurements up to a time
k assuming H1

x̂m
k = E [xk = state m|Y1,Y2, ...,Yk,H1]

=
αm

k

∑
N
n=1 αn

k
(2)

where E[.|.] denotes the mathematical condi-
tional expectation operation (see [24] for more
details). Equation 1 may be interpreted as an in-
dicator of target presence and equation 2 as a in-
dicator of likely target locations. For computa-
tional efficiency, equation 2 can be evaluated di-
rectly from the following expression (see [22] for
more details):

x̂k = NkBk(Yk)Ax̂k−1 (3)

where Nk is a scalar normalisation factor;
Bk(Yk) is a N × N matrix such as Bk(Yk) =
diag(Bm(Yk)) ∀m ∈ [1,N]; A is a N ×N matrix
with elements Amn; and x̂k is a N×1 vector with
elements x̂m

k ∀m∈N. In addition, note the follow-
ing relationship between the normalisation fac-
tor Nk and the probability of measurements up to
time k assuming H1:

P(Y1,Y2, ..,Yk|H1) =
k

∏
l=1

1
Nl

(4)

For a HMM based detection approach we will
let ηk denote a test statistic for declaring the pres-
ence of a target which is given by the follow-
ing exponentially weighted moving average filter
with a window length of L:

ηk =

(
L

L+1

)
ηk−1 +

(
1

L+1

)
log
(

1
Nk

)
(5)

We found that L = 10 offered good detection
performance and smoothed out the transient re-
sulted from noisy behaviour in the state tran-
sition. When ηk exceeds a predefined thresh-
old, the HMM detection algorithm considers the

3

LUIS MEJIAS, JASON J. FORD, JOHN LAI

target to be present and located at state γk =
arg maxm(x̂m

k) at time k. The definition of ηk
and γk is motivated by the filtering quantities dis-
cussed earlier.

A total of four independent filters operating
over the same pre-processed image data were im-
plemented [25]. This filter bank approach is less
well characterised than the standard single HMM
filter, and its application has not been prevalent in
the context of dim-target detection from imaging
sensors. The transition probability parameters of
each filter in the HMM filter bank are designed to
handle a range of slow target motion. These type
of target motions correspond to transition proba-
bility matrices that only have non-zero probabil-
ities for self-transitions and transitions to states
nearby in the image plane (all other transitions
have zero probability). Furthermore, it is impor-
tant to note that the implemented HMM filter ex-
ploits the following probabilistic relationship be-
tween target location xk and the pre-processed
measurements Yk:

Bm(Yk) =
P(Y m

k |xk = state m)

P(Y m
k |xk 6= state m)

,∀m ∈ [1,N] (6)

In equation 6, we can note that P(Y m
k |xk =

state m) and P(Y m
k |xk 6= state m) can both be de-

termined on a single-pixel basis (rather than re-
quiring the probability of a whole image, rep-
resenting a computational advantage). In order
to construct the measurement probability matrix
Bk(Yk), estimates of the probabilities P(Y k

m|xk =
state m) and P(Y k

m|xk 6= state m) are required.
The latter describes the prior knowledge about
the distribution of pixel values in the absence of
a target (i.e. the noise and clutter distribution),
while the former captures the prior knowledge
about the distribution of values at pixels contain-
ing a target. The required probabilities for Bk(Yk)
are trained directly from sample data. The proba-
bility P(Y k

m|xk 6= state m) is estimated as the aver-
age frequency that each pixel value resulted from
a non-target location. Using a similar procedure,
P(Y k

m|xk = state m) is estimated as the average
frequency that each pixel value measurement re-
sulted from a target location.

3 Control task and target dynamics estima-
tion

Once the target is detected and sequentially
tracked, we extract the target dynamics using a
standard projective model. Using this model, and
with due consideration of distortion models, we
attempt to find the unit vector r and its orienta-
tion α (bearing) and β (elevation) (Figure 2a and
b, respectively). The value of these quantities
in successive stages can be used to infer prop-
erties of the target motion. Our motion model for
the camera is shown in Figure 1 and this is used
to present the following relationships. The point
T = (X ,Y,Z) in camera coordinates is projected
into the image (x,y) by

x
y
1

=
f
Z

X
Y
Z

 (7)

where (x,y) is the location in the image of the
projected point and f > 0 is the focal length.
More realistic models could take into consider-
ation all the camera intrinsic parameters, e.g, the
coordinates of the principal point (cv,cu) and ra-
tio of pixel dimension γ, but these models are
prone to accumulated error in the parameters. Let
us denote the velocity of a observed target point,
Vi = Ṫ , in camera coordinates as Ṫ =−(Vi+ω×
Pi), where Ṗ = (Ẋ ,Ẏ , Ż) and ω = (ωx,ωy,ωz).
Note that Vi = −V is the velocity in body frame,
if and only if the object is static w.r.t the body
frame. If we develop the equation for Ṫ and com-
bine it with the derivative w.r.t time of equation 7,
we obtain [

ẋ
ẏ

]
= L

[
V
ω

]
(8)

where

L =

[
− f

Z 0 u
Z

uv
f −(u2

f + f) v

0 − f
Z

v
Z (v2

f + f) −uv
f −u

]
(9)

4

TOWARDS THE IMPLEMENTATION OF VISION-BASED UAS SENSE-AND-AVOID SYSTEM

and

[
V
ω

]
=


Ẋ
Ẏ
Ż
ωx
ωy
ωz

 . (10)

This is the optical flow equation that re-
lates the feature velocities (ẋ, ẏ) with the cam-
era (aircraft) translational and angular veloc-
ities (V,ω). The matrix L in (eq. 9) that
relates these magnitudes is sometimes called
interaction matrix [26]. The above model takes
into consideration the linear and angular veloc-
ities and is applicable in most cases where it is
desired to control 6 d.o.f. motion. This model
presents non-linearities in the interaction matrix
and depends on the unknown features depth that
cannot be measured directly. This represents a
classical problem in IBVS (Image Based Visual
Servoing), the estimation or approximation of the
Image Jacobian [27][28]. In practice it is useful
to linearise this model and use an approximate
inverse of this matrix L+ (or pseudoinverse [29])
or alternatively, a cylindrical representation could
be used [30].

Fig. 1 Camera projection model.

Here, we will use a hybrid approach (i.e. both
cylindrical and cartesian). Our control task is to
move the actuator (camera/aircraft) away from
the features (target). We achieve this using an ex-
ponential control law. Let’s define f̂ (s) as the er-
ror vector between current feature point s = (x,y)

Fig. 2 Camera geometry for estimation of bear-
ing (α) and elevation(β). a) shows the top view
of the plane Y-Z for estimation of α. b) shows the
side view of the plane X-Z for estimation of β

and the desired feature point s∗ = (x∗,y∗), such
that f̂ = (s− s∗). Using equations 8 and 9, we
can express the control law such as

δ =−λL+ f̂ (11)

where λ is a positive gain and L+ is the pseu-
doinverse of L. The error function is defined as
exponential function such as

f̂ =±φmaxek(s−s∗) (12)

where k is a positive gain such that k = k1,∀ s ∈
[0,width/2] and k = −k2 elsewhere, and φmax
is the commanded maximum heading. In our
case, s∗ = width/2 which correspond to the point
s∗ = (0,width/2). The error function described
by Equation 12 has the form shown in Figure 3.

The value of α (Figure 2a) and β (Figure 2b)
can be computed as follows. From Figure 2a, tar-
get relative bearing can be defined as

α = tan

(
y− width

2
f

)
(13)

and target relative elevation (Figure 2b) as

β = tan

(
x− height

2
f

)
(14)

where (x,y) is the location of the target in the im-
age plane, f > 0 is the camera focal length, and
width and height are the image dimensions. In

5

LUIS MEJIAS, JASON J. FORD, JOHN LAI

Fig. 3 Control signal in the feature space

order to infer the evolution of target in the image
plane we use the α̇ and β̇. This type of informa-
tion is useful in determining whether the target
represents a real collision threat or not. Further-
more, note that α and β have a role in relation to
Equation 12 through the target location (x,y).

The above control approach is currently un-
der lab testing and will soon be tested on a real
platform.

4 Algorithm implementation

As mentioned in section 2, our HMM based
detection filter involves two processing stages.
The first stage, the morphological processing
stage implementation involves a mathematical
compute-intensive task that requires little flow
control. The second stage, the temporal filter-
ing stage is again compute-intensive. In the work
here, the HMM filter has been implemented using
a SIMD (Single Instruction, Multiple Data) ap-
proach to allow flight ready real-time operation.
In our implementation, we have used the Com-
pute Unified Device Architecture (CUDA [31])
which is a Nvidia application programming in-
terface (API) that allows us to exploit the paral-
lelism of a GPU device.

The implementation flow is sequential and
begins with the CPU host transferring the current
image to the GPU device memory. The GPU host

then schedules a parallel set of operations. After
the GPU device operations have been scheduled,
the CPU is free to perform other tasks while it
waits for the image processing operations to com-
plete. During this CPU ‘wait time’, the GPU ex-
ecutes the scheduled operations in the order re-
quested but will perform these operations in par-
allel and will finish these operations significantly
sooner than if these operations were instead per-
formed on the CPU. Once the GPU has com-
pleted its operations, the CPU then requests the
resultant output and stores this in RAM. The pro-
gram flow for the detection filter, as described
above, is shown in Figure 4.

Fig. 4 HMM filter GPU implementation archi-
tecture.

With the motivation of understanding the
scalability to future hardware and how to achieve
real-time filter implementation on cheaper graph-
ics processing units, we have examined some op-
timisations strategies, as well as different GPU
models. We have implemented the filter using
CUDA Kernels, which are a special type of C
function that are executed N times in parallel
by N different CUDA threads [31]. Threads are
grouped into blocks, and should communicate
only with threads in the same block using quick
access L1 cache type memory.

The block size (and therefore the number of
threads per block) is limited and can be optimised
to suit the task, the amount of cache memory re-
quired, and the particular GPU limit. Therefore,

6

TOWARDS THE IMPLEMENTATION OF VISION-BASED UAS SENSE-AND-AVOID SYSTEM

GTX280 8800GTS 9500GT
Number of 30 12 4
Multiprocessors
Compute 1.3 1.0 1.1
Capability
Average Frame 150Hz 53Hz 11Hz
rate
Optimised 1024 768 768
Threads per
Block
Optimised min 60 24 8
no. of Blocks
Improvement x20 x7 x1.5
over CPU-based
computing

Table 1 Performance results in three GPU hard-
ware versions

we observed the following: a) to avoid un-utilised
warps and to maximumise utilisation of blocks,
the number of threads per block should always
be a multiple of 32, b) To optimise block utilisa-
tion we must ensure, at least, an equal number of
blocks as multiprocessors. c) Finally, we should
choose as high as possible number of threads per-
block, obviously limited by the compute capabil-
ity and the available registers.

Table 1 shows the optimisation choices in
terms of No. of blocks and threads for different
GPU models and also the performance increase
over standard CPU implementation for 3 differ-
ent CUDA enabled GPU devices. We have ap-
proached the optimisation in terms of trying to
understand the working principles of the GPU
hardware and CUDA API parallelism to max-
imise its potential for the task we are dealing
with, rather than optimising the detection algo-
rithm for this particular GPU hardware. Future
potential improvements include efforts to limit
the use of conditional branches in the temporal
filtering stage. In the next section, we will exam-
ine the processing rate of our proposed detection
algorithm on the three candidate GPU devices.

5 Filter performance on GPU Hardware

In this section we consider the processing rates
that can be achieved by various GPU hardware
when running our proposed HMM detection al-
gorithm. We express the processing rates in
terms of the average frame rate obtained when
processing 1024-by-768 pixel images encoded at
8 bits per pixel. For comparison purposes, we
have established that a standard C implementa-
tion of the detection algorithm running on a CPU-
based computing device1 is able to process im-
age frames at an average rate of approximately
7.58 frames per second (these figures are pro-
vided purely for illustrative purposes and do not
reflect a fully optimised C implementation). This
will serve as a baseline for comparison with pro-
cessing rates on GPU hardware.

The CUDA implementation of our detection
algorithm (as described in an earlier section)
was tested on three candidate NVIDIA GeForce
GPUs: 1) GTX 280; 2) 8800 GTS; and 3) 9500
GT. Table 1 illustrates the frame rates achieved
on these three candidate GPUs.

These results demonstrate that GPUs have
the potential to greatly accelerate the rate at
which image processing tasks are performed. We
also highlight that faster processing rates were
achieved on GPUs with more multiprocessors.
Motivated by this, we have selected a NVIDIA
GeForce 9600 GT GPU (low-power version) for
use in our flight-ready hardware configuration
(this hardware is currently being integrated onto
a UAV platform). This GPU offers a good
balance between processing performance, power
consumption and size. It has 8 multiprocessors, a
compute capability of 1.1, and consumes only 59
Watts of power.

Figure 5 illustrates the relationship between
processing rates and the number of multiproces-
sors based on data from Table 1. We can use
this figure to roughly estimate the processing rate
that can be achieved by the 9600 GT GPU (with-

1Intel Pentium IV processor @ 3.2 GHz with hyper-
threading; 1 Gb SDRAM @ 666 MHz; Linux Ubuntu 32-
bit operating system

7

LUIS MEJIAS, JASON J. FORD, JOHN LAI

out the need to perform extensive simulations).
Given that the GPU has 8 multiprocessors, we
anticipate that it will be able to process image
information at a rate of approximately 30 Hz,
which will be sufficient for real-time target de-
tection. We highlight that there is scope for fur-
ther improvement of this rate, as we have yet to
exploit advanced GPU code optimisation tech-
niques (such as pipelining and dynamic memory
allocation methods).

0

20

40

60

80

100

120

140

160

0 10 20 30 40

P
ro

ce
ss

in
g

R
at

e
 (

H
z)

Number of Microprocessors

9500 GT

GTX 280

9600 GT
8800 GTS

8

Fig. 5 Relationship between processing rate and
number of multiprocessors.

6 Acknowledgements

This research was supported under Australian
Research Council’s Linkage Projects funding
scheme (project number LP100100302). En-
gineering and flight testing carried out in sup-
port of this research was provided by the Smart
Skies Project, which is funded, in part, by the
Queensland State Government Smart State Fund-
ing Scheme

7 Conclusions

In this paper we have proposed a HMM-
based target detection algorithm, a target head-
ing/elevation estimation approach, and a collision
avoidance control strategy. Furthermore, we have
described an approach for implementing our de-
tection algorithm on GPU hardware, and demon-

strated the advantages of GPU devices over tradi-
tional CPU-based computing hardware in achiev-
ing real-time processing speeds. We are cur-
rently engaged in the integration of flight-ready
hardware onto a suitable UAV platform, and plan
to conduct closed-loop collision avoidance flight
trials in the near future to verify our proposed de-
tection algorithm and control strategy.

References

[1] Office of the Secretary of Defense, “Unmanned
systems roadmap,” Tech. Rep., Department of
Defense, 2007.

[2] M. T. DeGarmo, “Issues concerning integration
of unmanned aerial vehicles in civil airspace,”
Tech. Rep., The MITRE Corporation, 2004, MP
04W0000323.

[3] B.C. Karhoff, J.I. Limb, S.W. Oravsky, and A.D.
Shephard, “Eyes in the domestic sky: An as-
sessment of sense and avoid technology for the
army’s warrior unmanned aerial vehicle,” April
2006, pp. 36–42.

[4] BASI, “Limitations of the sense and avoid prin-
ciple,” Tech. Rep., The Bureau of Air Safety
Investigation, 1991.

[5] T. Gandhi, M.-T. Yang, R. Kasturi, O. Camps,
L. Coraor, and J. McCandless, “Performance
characterisation of the dynamic programming
obstacle detection algorithm,” IEEE Trans.
Image Process., vol. 15, pp. 1202–1214, May
2006.

[6] T. Gandhi, M.-T. Yang, R. Kasturi, O. Camps,
L. Coraor, and J. McCandless, “Detection of
obstacles in the flight path of an aircraft,” IEEE
Trans. Aerosp. Electron. Syst., vol. 39, pp. 176–
191, Jan. 2003.

[7] J. Arnold, S. W. Shaw, and H. Pasternack, “Ef-
ficient target tracking using dynamic program-
ming,” IEEE Trans. Aerosp. Electron. Syst., vol.
29, pp. 44–56, Jan. 1993.

[8] Y. Barniv, “Dynamic programming solution for
detecting dim moving targets,” IEEE Trans.
Aerosp. Electron. Syst., vol. AES-21, pp. 144–
156, Jan. 1985.

[9] R. Carnie, R. Walker, and P. Corke, “Image pro-
cessing algorithms for uav “sense and avoid”,”

8

TOWARDS THE IMPLEMENTATION OF VISION-BASED UAS SENSE-AND-AVOID SYSTEM

in IEEE Int. Conf. on Robotics and Automation,
Orlando, May 2006.

[10] J. Lai and J. J. Ford, “Relative entropy rate
based multiple hidden markov model approxi-
mation,” IEEE Trans. Signal Process., vol. 58,
pp. 165–174, 2010.

[11] J. Utt, J. McCalmont, and Mike Deschenes,
“Development of a sense and avoid system,”
American Institute of Aeronautics and Astro-
nautics (AIAA), 2005.

[12] J. D Owens, D. Luebke, N. Govindaraju,
M. Harris, J. Krger, A. E. Lefohn, and T. J. Prur-
cell, “A survey of general-purpose computa-
tioin on graphics hardware,” Tech. Rep., Eu-
rographics 2005, Styate of the Art Reports, Au-
gust 2005.

[13] Lei Pan, Lixu Gu, and Jianrong Xu, “Implemen-
tation of medical image segmentation in cuda,”
in Technology and Applications in Biomedicine,
2008. ITAB 2008. International Conference on,
May 2008, pp. 82–85.

[14] Wei-Nien Chen and Hsueh-Ming Hang,
“H.264/avc motion estimation implmentation
on compute unified device architecture (cuda),”
in Multimedia and Expo, 2008 IEEE Interna-
tional Conference on, 23 2008-April 26 2008,
pp. 697–700.

[15] P. Kehoe and A.F. Smeaton, “Using graph-
ics processor units (gpus) for automatic video
structuring,” in Image Analysis for Multimedia
Interactive Services, 2007. WIAMIS ’07. Eighth
International Workshop on, June 2007, pp. 18–
18.

[16] P. Michel, J. Chestnut, S. Kagami, K. Nishi-
waki, J. Kuffner, and T. Kanade, “Gpu-
accelerated real-time 3d tracking for humanoid
locomotion and stair climbing,” in Intelli-
gent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, 29
2007-Nov. 2 2007, pp. 463–469.

[17] P. Carr, “Gpu accelerated multimodal back-
ground subtraction,” in Computing: Techniques
and Applications, 2008. DICTA ’08.Digital Im-
age, Dec. 2008, pp. 279–286.

[18] S. Fukui, Y. Iwahori, and R.J. Woodham,
“Gpu based extraction of moving objects with-
out shadows under intensity changes,” in
Evolutionary Computation, 2008. CEC 2008.

(IEEE World Congress on Computational In-
telligence). IEEE Congress on, June 2008, pp.
4165–4172.

[19] J. Fung and S. Mano, “Openvidia: parallel gpu
computer vision,” in Proceedings of the 13th
annual ACM international conference on Multi-
media, 2005.

[20] Zhe Fan, Feng Qiu, A. Kaufman, and
S. Yoakum-Stover, “Gpu cluster for high perfor-
mance computing,” in Supercomputing, 2004.
Proceedings of the ACM/IEEE SC2004 Confer-
ence, Nov. 2004, pp. 47–47.

[21] R. C. Gonzalez, R. E. Woods, and S. L. Eddins,
Digital Image Processing using MATLAB, chap-
ter Morphological Image Processing, pp. 334–
377, Pearson Prentice Hall, Upper Saddle River,
NJ, 2004.

[22] R. J. Elliott, L. Aggoun, and J. B. Moore, Hid-
den Markov Models: Estimation and Control,
Springer-Verlag, Berlin, 1995.

[23] L. R. Rabiner, “A tutorial on hidden markov
models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77,
pp. 257–286, 1989.

[24] P. Billingsley, Probability and Measure, Wiley,
New York, 3rd edition, 1995.

[25] J. Lai, J. J. Ford, P. O’Shea, and R. Walker,
“Hidden markov model filter banks for dim tar-
get detection from image sequences,” in Digi-
tal Image Computing: Techniques and Applica-
tions (DICTA), 2008.

[26] B. Espiau, F. Chaumette, and P. Rives, “A new
approach to visual servoing in robotics,” in
IEEE Transaction on Robotics and Automation,
June 1992, vol. 8, pp. 313–326.

[27] A. C. Sanderson and L. E. Weiss, “Adaptative
visual servo control of robots,” In Robot Vision
(A. Pugh, ed), pp. 107–116, 1983.

[28] Lee Weiss, Dynamic Visual Servo Control of
Robots: An Adaptive Image-Based Approach,
Ph.D. thesis, Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA, April 1984.

[29] F. Chaumette and S. Hutchinson, “Visual servo
control. i. basic approaches,” Robotics Automa-
tion Magazine, IEEE, vol. 13, no. 4, pp. 82 –90,
dec. 2006.

[30] M. Iwatsuki and N. Okiyama, “A new formu-
lation of the visual servoing based on cylindri-

9

LUIS MEJIAS, JASON J. FORD, JOHN LAI

cal coordinated system,” IEEE Transactions on
Robotics and Automation, vol. 21, no. 2, pp.
266–273, April 2005.

[31] NVIDIA, “Cuda (compute unified device archi-
tecture) programming guide 2.0,” 2009.

Copyright Statement

The authors confirm that they, and/or their company or
organisation, hold copyright on all of the original ma-
terial included in this paper. The authors also confirm
that they have obtained permission, from the copy-
right holder of any third party material included in this
paper, to publish it as part of their paper. The authors
confirm that they give permission, or have obtained
permission from the copyright holder of this paper, for
the publication and distribution of this paper as part of
the ICAS2010 proceedings or as individual off-prints
from the proceedings.

10

