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Abstract

The scope of this paper is the investigation
of sub-pixel displacement estimation in cross-
correlation based measurement techniques used
in aerodynamics. We will show, that a system-
atic error will occur when using one-dimensional
sub-pixel displacement estimation algorithms to
decompose elliptically shaped correlation peaks.
First, an analytical description of this error will
be derived and it will be shown, that it can lead
to a systematic influence of more than one pixel.
Additionally, a general linear two-dimensional
Gaussian algorithm based on least squares esti-
mation will be presented to allow for sub-pixel
displacement estimation of elliptically shaped
correlation peaks without any significant bias er-
ror. The performance of the here presented algo-
rithms for sub-pixel displacement estimation, as
well as algorithms provided by commercial soft-
ware packages, will be tested with artificial im-
age pairs of random dot patterns.

1 Introduction

For over 25 years, digital image correlation (DIC)
techniques have been used in scientific research
and developments. In the early 1980s, a group
from the University of Stuttgart [1, 2, 3] used
DIC in photogrammetry and remote sensing to
match homologous image areas with an accuracy
of up to 0.01 pixel. This enables DIC to be a pow-
erful tool for several photogrammetric applica-

tions like automatic tie point transfer, digital ele-
vation models, and relative orientation. The basic
approach of this group is to correlate local im-
age areas two-dimensionally [2]. Instead of the
most commonly used procedure of maximization
of the cross-correlation coefficient, they used a
transformation which minimizes the grey value
differences in a least squares sense [3]. This
approach as well as the work of A. Grün (see
[4]) is also referred to as least squares matching
(LSM). At the same time, researchers from the
University of South Carolina [5] were the first
to use two-dimensional DIC for the evaluation
of deformation measurements. Therefore, they
applied a random speckle pattern to the surface
and recorded the pattern in a reference and a de-
formed state of the object. The cross-correlation
of this image pair yields a measure of surface
displacement. Using a large number of different
subsets for cross-correlation, full-field displace-
ment data can be obtained for the image pair.

In the last few years, the DIC method has
been extended to three-dimensional shape and
deformation measurements by means of a stereo
camera setup. Using at least two synchro-
nized high-speed cameras, it is possible to mea-
sure highly dynamic objects [6]. Besides DIC,
many other optical correlation-based measure-
ment techniques like particle image velocime-
try (PIV) [7, 8, 9, 10], projected pattern corre-
lation (PROPAC) [11, 12], and background ori-
ented Schlieren (BOS) [13, 14] are used in sci-
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entific research. All these techniques have one
thing in common: their accuracy is limited by re-
construction errors due to geometric calibration
of the system and by errors caused by the cor-
relation algorithm itself (see [6]). The high sub-
pixel accuracy of the correlation algorithm can by
achieved by means of sub-pixel displacement es-
timation algorithms [15]. According to [10] we
can expect the sub-pixel accuracy of the correla-
tion of a 32×32 pixel sample from an 8 bit image
to be in the order of 0.1 to 0.05 pixel. Uncertain-
ties in digital image correlation techniques can be
due to random errors, e.g. image noise, or due to
bias errors of the correlation procedure and the
sub-pixel displacement estimation algorithm (see
[16]).

Nowadays, there are a lot of different sub-
pixel displacement estimation algorithms avail-
able. Commonly used algorithms consist of two
one-dimensional fits through the highest value
and its neighbors in both horizontal and vertical
direction. These algorithms are normally referred
to as three-point operators [10], if only the direct
neighbor values are used. Typically curve fitting
with a Gaussian [7, 8, 17] or parabolic [17, 18]
function is used. Gradient-based algorithms, like
suggested by [19, 20], or algorithms based on
ideal interpolation [21, 22] (also referred to as
Whittaker reconstruction) are more general be-
cause no a priori information about the shape of
the peak is needed. Alexander an Ng (see [23])
introduced the centroid operator for the detec-
tion of light stripe location in active triangula-
tion. This algorithm can be used in a one- or
two-dimensional sense and is implemented very
easily. Two-dimensional Gaussian curve fitting
algorithms are first described by [24] for applica-
tions in astronomy and later on by [25] for aero-
dynamic applications. In [26], a two-dimensional
iterative Levenberg-Marquardt fit using corre-
lation values weighted according to the Fisher
transform is presented. Some work has been done
comparing different sub-pixel displacement esti-
mation algorithms (see [15, 17, 18, 20, 27]) and
on the impact of systematic errors in the correla-
tion and peak detection process (see [16, 28]).

As a result of the oblique projection of circu-

lar dots in the PROPAC technique and also in the
image corners of standard random dot patterns
imaging techniques, elliptically shaped correla-
tion peaks can be obtained. Additionally, state-
of-the-art PIV evaluation techniques like image
deformation methods [9] will lead to elliptically
shaped correlation peaks even if the particles in
the undeformed images are circular. In that case,
the one-dimensional algorithms will introduce a
bias error for the estimated displacement. The
scope of this work will be the investigation of the
introduced bias error in sub-pixel displacement
estimation algorithms using them for elliptically
shaped correlation peaks.

The principles of different algorithms for sub-
pixel displacement estimation are presented in
section 2. Additionally, a general linear two-
dimensional Gaussian algorithm for sub-pixel
displacement estimation is introduced. In sec-
tion 3, an analytical equation for the bias error
due to elliptically shaped correlation peaks is de-
rived. A numerical experiment with different
sub-pixel algorithms on artificial data is carried
out in section 4 and the results of the simulation
are compared with the analytical solution.

2 Sub-pixel displacement estimation

With the two intensity images IA and IB, the
two-dimensional discrete cross-correlation func-
tion Rr,c can be derived as

Rr,c =
1

N2

N

∑
i=1

N

∑
j=1

(IA[i, j]− ĪA)

· (IB[i+ r, j+ c]− ĪB),

(1)

where Ī (with respect to A and B) is the mean
intensity image. Initially, the cross-correlation
peak position at integer level is found at

R0,0 = max(Rr,c) (2)

as the maximum of the array of cross-correlation
values.

A distant point source will appear as an Airy
pattern in the image plane due to the circular
aperture. This Airy intensity distribution can be
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approximated by a Gaussian function. The cross-
correlation between two Gaussian intensity dis-
tributions will result in a Gaussian intensity dis-
tribution. Therefore, the sub-pixel displacement
estimation algorithms based on a Gaussian distri-
bution are used very often.

2.1 One-dimensional sub-pixel displacement
estimation algorithms

2.1.1 Gaussian interpolation

Assuming that the correlation peak of the dis-
placement between the images IA and IB has an
approximate one-dimensionally Gaussian shape
in both the horizontal and vertical cross-section,

δ =
lnR−1 − lnR+1

2(lnR−1 + lnR+1 −2lnR0)
(3)

can be used as an estimator of the fractional dis-
placement in both directions using 3 points (see
[7, 8]).

2.1.2 Blais-Rioux method

The peak detector developed by Blais and Rioux
(see [19]) was originally intended for real-time
applications in low-cost laser triangulation sen-
sors. Therefore Finite Impulse Response (FIR)
filters were used due to their easy implementa-
tion in integrated circuits (ICs). The signal is first
averaged and differentiated numerically by

BR(s) =−R−2 −R−1 +R1 +R2. (4)

It should be mentioned that the filter in Eq. (4)
uses 5 values, but is normally referred to as Blais-
Rioux operator 4th order in the literature. It is
also possible to use different filter lengths com-
bining numerical averaging and differentiating.
The resulting signal BR(s) has a zero-crossing
where Ri has its maximum. Therefore, the sub-
pixel peak position can be calculated using linear
interpolation

δ =
BR(s0)

BR(s0)−BR(s0 +1)
, (5)

where BR(s0)≥ 0 and BR(s0+1)< 0 is satisfied.
The Blais-Rioux method does not use a priori in-
formation about the peak shape like the Gaussian

interpolation. It was demonstrated by different
studies [18, 19, 20], that the Blais-Rioux method
is very robust against noisy data because of its
bandpass character.

Even if the intensity distribution in front of
the CCD is Gaussian shaped, the resulting signal
is not exactly Gaussian due to the limited fill fac-
tor of CCDs and the pixel integration. Therefore
there may be some advantages in the use of non-
Gaussian algorithms for sub-pixel displacement
estimation.

2.2 Two-dimensional sub-pixel displacement
estimation algorithms

2.2.1 Gaussian regression

A general two-dimensional elliptical Gaussian
function described with six parameters (see [24])
is given by

G(x,y) = Aexp
[
−(x− xe)

2

2σ2
x

−β(x− xe)(y− ye)

σxσy
− (y− ye)

2

2σ2
y

]
,

(6)

where (xe,ye) is the center of the ellipse, σx and
σy are the 1σ-lengths of the axes, A is the peak
amplitude and β contains the information about
the ellipse rotation with respect to the coordinate
axes (x,y). To estimate the six parameters of the
ellipse, Eq. (6) is first rewritten as follows

ln{G(x,y)}= ax2+by2+cxy+dx+ey+ f , (7)

but can also be expressed as a linear system of
equations

y = Ax, (8)
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with the coefficient matrix A

A =




x2
1 y2

1 x1y1 x1 y1 1
...

...
...

...
...

...
x2

1 y2
n x1yn x1 yn 1

x2
2 y2

1 x2y1 x2 y1 1
...

...
...

...
...

...
x2

2 y2
n x2yn x2 yn 1

...
...

...
...

...
...

x2
m y2

1 xmy1 xm y1 1
...

...
...

...
...

...
x2

m y2
n xmyn xm yn 1




, (9)

the observation vector y

y =




ln{G(x1,y1)}
...

ln{G(x1,yn)}
ln{G(x2,y1)}

...
ln{G(x2,yn)}

...
ln{G(xm,y1)}

...
ln{G(xm,yn)}




(10)

and the vector of unknowns x

x =




a
b
c
d
e
f



. (11)

According to the Gauss-Markov theorem and as-
suming zero mean, uncorrelated errors which
have equal variances, the best linear unbiased es-
timator (BLUE) of Eq. (8) is

x̂ = (AT A)−1AT y. (12)

The center position of the ellipse can be derived
from Eqs. (7) to (12) as

xe =
ce−2bd
4ab− c2 , (13)

ye =
cd −2ae
4ab− c2 . (14)

Nobach and Honkanen presented an explicit so-
lution to the Gaussian regression for the special
case of a fit area strictly limited to 3×3 or 9
values respectively (see [25]). The general so-
lution of the problem introduced here is equiva-
lent to the explicit one of [25], but can be further
used for more general fit areas. Moreover there
is no limitation to quadratic areas. The only re-
quirement is that at least six observations must
be used; otherwise Eq. (12) is under-determined.
Compared to the iterative non-linear approach
from [26]), this solution can be implemented very
fast and effectively.

3 Bias errors using one-dimensional algo-
rithms for sub-pixel displacement estima-
tion

The contour lines of a continuous two-
dimensional Gaussian function according to
Eq. (6) in a local coordinate system (x,y)
centered at the highest value of the discrete
cross-correlation function, can be described with
the following parameters: The sub-pixel peak
position (xe,ye) with |xe| ≤ 0.5 and |ye| ≤ 0.5, the
rotation angle α and the numerical eccentricity

ε =
√

u2 − v2

u
, (15)

where u and v denote the length of the semi-
major axis and the semi-minor axis respectively.
Using one-dimensional algorithms for sub-pixel
displacement estimation means searching for the
sub-pixel position of the maximum along the x
and y coordinate axis respectively. As clearly
seen in Fig. 1, this maximum position in each di-
rection is given by the point of tangency between
the coordinate axis and the corresponding con-
tour line. Thus, one-dimensional algorithms will
result in the biased peak position (xp,yp), with

xp = xe − yeε2 sinαcosα
1− ε2 cos2 α

, (16)

yp = ye − xeε2 sinαcosα
1− ε2 sin2 α

(17)
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Fig. 1 Graphical illustration of the bias error us-
ing a one-dimensional sub-pixel displacement es-
timation algorithm in the case of an elliptically
shaped correlation function.

or in the bias vector, the position difference be-
tween (xe,ye) and (xp,yp)

dr =−ε2 sinαcosα

[
ye

1−ε2 cos2 α
xe

1−ε2 sin2 α

]
(18)

and its absolute value

‖dr‖= ε2 sinαcosα

·
√(

ye

1− ε2 cos2 α

)2

+

(
xe

1− ε2 sin2 α

)2 (19)

respectively.
Fig. 2, 3 and 4 illustrate the bias error for dif-

ferent types of ellipses graphically. Note that for
a fixed center position (xe,ye) and eccentricity
ε the bias error varies for different rotation an-
gles α. Additionally, the bias error increases for
higher eccentricities and center positions further
away from the coordinate origin. The bias error
disappears for rotation angles α = 0 (this means
axially-oriented ellipses) or ε = 0 (which corre-
sponds to a circle). The variation of the absolute
value of the bias error vector ‖dr‖ with varying
rotation angles α is shown in Fig. 5 for difference
types of ellipses. Again, it can be noticed that the
error increases along with higher eccentricities.
In some cases, the error can exceed values of one
pixel.

(a) (b)

Fig. 2 Example of the bias error using
a one-dimensional sub-pixel displacement es-
timation algorithm. The ellipse center is
at xe = ye = 0.25 pixel, the eccentricity is
ε = 0.866 (u = 2v) and the rotation angle:
(a) α = 15◦, (b) α = 45◦.

(a) (b)

Fig. 3 Example of the bias error using
a one-dimensional sub-pixel displacement es-
timation algorithm. The ellipse center is
at xe = ye = 0.5 pixel, the eccentricity is
ε = 0.866 (u = 2v) and the rotation angle:
(a) α = 30◦, (b) α = 45◦.

(a) (b)

Fig. 4 Example of the bias error using
a one-dimensional sub-pixel displacement es-
timation algorithm. The ellipse center is
at xe = ye = 0.5 pixel, the eccentricity is
ε = 0.9428 (u = 3v) and the rotation angle:
(a) α = 30◦, (b) α = 45◦.

5



F. BLUMRICH

(a)
0 30 60 90 120 150 180

0

0.2

0.4

0.6

0.8

1

1.2

1.4

α [°]

dr
 [p

ix
]

ε = 0.9798
ε = 0.9682
ε = 0.9428
ε = 0.866
ε = 0.7454
ε = 0.6614

(b)
0 30 60 90 120 150 180

0

0.2

0.4

0.6

0.8

1

1.2

1.4

α [°]

dr
 [p

ix
]

ε = 0.9798
ε = 0.9682
ε = 0.9428
ε = 0.866
ε = 0.7454
ε = 0.6614

(c)
0 30 60 90 120 150 180

0

0.2

0.4

0.6

0.8

1

1.2

1.4

α [°]

dr
 [p

ix
]

ε = 0.9798
ε = 0.9682
ε = 0.9428
ε = 0.866
ε = 0.7454
ε = 0.6614

(d)
0 30 60 90 120 150 180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α [°]

dr
 [p

ix
]

ε = 0.9798
ε = 0.9682
ε = 0.9428
ε = 0.866
ε = 0.7454
ε = 0.6614

Fig. 5 Absolute value of the bias error (in pixel)
using a one-dimensional sub-pixel displacement
estimation algorithm for different rotation angles
and eccentricities. Ellipse center (in pixel) at:
(a) xe = 0.5, ye = 0.5, (b) xe = 0.0, ye = 0.5,
(c) xe = 0.5, ye = 0.25, (d) xe = 0.25, ye = 0.0.

(a) (b) (c)

Fig. 6 Correlation procedure with a simulated
image pair of known displacement: (a) artifi-
cal image with random dot pattern, (b) artifi-
cal image with random dot pattern displaced by
(∆x, ∆y), (c) resulting cross-correlation function.

4 Verification by numerical experiment

To verify the results so far, synthetic images with
random dot patterns were generated. This was
done using a Gaussian intensity distribution ac-
cording to Eq. (6) for every single particle. So
it is possible to generate image pairs with known
constant sub-pixel displacement (see Fig. 6(a)–
(b)) and calculate the resulting cross-correlation
function (see Fig. 6(c)) according to Eq. (1). Note
that this discrete correlation function is not ex-
actly Gaussian shaped due to the image sampling
at discrete pixel positions.

A simulation with elliptically shaped parti-
cle images over different displacements (∆x, ∆y),
reaching from -0.5 to +0.5 pixel in each direction
was carried out. Using a step size of 0.05 pixel,
this results in 441 different displacement vectors.
For every displacement vector, 37 different rota-
tion angles α (reaching from 0◦ to 90◦ with a step
size of 2.5◦) and 121 different sub-pixel center
positions of the particles were used. For every
combination of displacement vectors, rotation
angles and center positions, the cross-correlation
of the synthetic image pair was calculated and
evaluated with the sub-pixel displacement esti-
mation algorithms described in section 2. Thus,
the error of the sub-pixel displacement estimation
is

‖dsim
r ‖=

√
(∆x− xp)2 +(∆y− yp)2, (20)

where (∆x, ∆y) is the known displacement and
(xp,yp) the calculated displacement of the sub-
pixel displacement estimation algorithm. Us-
ing one-dimensional sub-pixel displacement es-
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Fig. 7 Sub-pixel displacement estimation error
using the one-dimensional Gaussian algorithm:
(a) mean, (b) maximum, (c) minimum, (d) stan-
dard deviation.

timation algorithms and assuming that the cross-
correlation itself has no systematic error, this er-
ror should be the same as the analytical one cal-
culated with Eq.(19), since the known displace-
ment (∆x, ∆y) corresponds to the sub-pixel peak
position (xe,ye). For every displacement vec-
tor, the mean, maximum, minimum and the stan-
dard deviation of the sub-pixel displacement es-
timation error ‖dsim

r ‖ for different rotation angles
and center positions was calculated. Using real
data, the rotation angle and the center position of
the particles is normally unknown, therefore the
maximum can be used as a conservative estimate
of the sub-pixel displacement estimation error.

The result of the simulation using elliptical
particle images with an eccentricity of ε = 0.866
is displayed in Fig. 7–9 as a contour plot.
Note that the one-dimensional Gaussian algo-
rithm (see Fig. 7) using 3 values according to
Eq. (3) provides nearly the same result as the
one-dimensional Blais-Rioux method (see Fig. 8)
with a filter length of 5 (see Eq. (4)–(5)). The
maximum error is about 0.4 pixel in both cases,
but the minimum error when applying the Blais-
Rioux algorithm is much higher. This is due
to the non-exact linear interpolation used by the
Blais-Rioux method whereas the minimum error
of the Gaussian algorithm is very low, because
the model used for the fit is the same as for gener-
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Fig. 8 Sub-pixel displacement estimation er-
ror using the one-dimensional Blais-Rioux algo-
rithm: (a) mean, (b) maximum, (c) minimum,
(d) standard deviation.

ating the synthetic images. Hence, even the max-
imum error of the two-dimensional Gaussian al-
gorithm (see Fig. 9(b)) using 9 values in a 3×3
area is in the order of computational accuracy.

In Tab. 1, a comparison of the maximum pixel
errors of the numerical experiment with the ana-
lytical solution from Eq. (19) is provided for dif-
ferent eccentricities ε and known displacement
(∆x,∆y) (corresponding to a peak center position
(xe,ye)). The maximum pixel errors of the one-
dimensional algorithms (Blais-Rioux and Gaus-
sian algorithm) match very well the analytical
description of the one-dimensional elliptical sub-
pixel displacement estimation error ‖dana

r ‖. The
differences between the analytical equation and
the numerical experiment are in the order of mag-
nitude of 0.01 pixel for the Blais-Rioux algorithm
and 0.002 pixel for the Gaussian algorithm, re-
spectively. As already noticed, the error increases
for higher eccentricities ε and can reach nearly
one pixel for ε = 0.9682.

To further verify the results given in Fig. 7–8
and Tab. 1, the simulated elliptically shaped par-
ticle images are evaluated with two commercial
PIV evaluation software packages (see Tab. 2).
These software packages (denoted by † and ‡
respectively) were tested extensively during the
PIV challenge 2 (see [29]), where they performed
better than most of their competitors. Both pack-
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Fig. 9 Sub-pixel displacement estimation error
using the two-dimensional Gaussian algorithm:
(a) mean, (b) maximum, (c) minimum, (d) stan-
dard deviation.

ages provide the one-dimensional Gaussian algo-
rithm (as a three-point operator), whereas pack-
age ‡ seems to be in quite good accordance to the
analytical error. The software package † tends to
over-estimate the bias error in case of ε = 0.7454,
but for ε = 0.9682 the error is smaller the ana-
lytical one. For using the one-dimensional Gaus-
sian algorithm with both packages, the bias error
clearly exceeds the expected accuracy of 0.1 to
0.05 pixel given by [10]. The best result over-
all with the commercial PIV evaluation software
packages is achieved by using the centroid oper-
ator with a kernel size of 9×9 pixel. The error
of the centroid operator is always smaller than
0.05 pixel. The good result obtained by means
of the centroid algorithm is due to the fact that all
values inside the two-dimensional interrogation
kernel are used to estimate the sub-pixel peak po-
sition and thus this operator is capable to handle
with arbitrarily rotated elliptically shaped corre-
lation peaks.

In Tab. 3 a comparison of the two-
dimensional linear Gaussian algorithm intro-
duced in section 2.2.1 and the two-dimensional
non-linear iterative Levenberg-Marquardt algo-
rithm using correlation values weighted accord-
ing to the Fisher transform introduced by [26]
is given. Both algorithms are able to handle
elliptical correlation peaks without any signifi-

Table 1 Overview of the maximum pixel errors in
elliptical sub-pixel displacement estimation us-
ing one-dimensional algorithms.

1D Blais-Rioux 1D Gaussian Analytical error (1D)

xe ye ε maxα(‖dana
r ‖)

0.25 0.0 0.7454 0.1068 0.1041 0.104

0.25 0.25 0.7454 0.1307 0.136 0.1358

0.5 0.5 0.7454 0.2672 0.272 0.2716

0.25 0.0 0.866 0.1958 0.1873 0.1875

0.25 0.25 0.866 0.2016 0.2125 0.2125

0.5 0.5 0.866 0.4112 0.425 0.425

0.25 0.0 0.9428 0.3363 0.3328 0.334

0.25 0.25 0.9428 0.3416 0.3415 0.3423

0.5 0.5 0.9428 0.6851 0.683 0.6846

0.25 0.0 0.9682 0.4682 0.4675 0.4667

0.25 0.25 0.9682 0.4729 0.4717 0.4705

0.5 0.5 0.9682 0.9433 0.9435 0.9409

Table 2 Comparison of the sub-pixel displace-
ment estimation errors (in pixel) of different al-
gorithms provided by two commercial PIV eval-
uation software packages denoted by † and ‡
respectively. The simulated image shift was
(∆x, ∆y) = (0.5, 0.5) pixel.

Centroid† 1D Gaussian† 1D Gaussian‡ Analytical error

ε α ‖dana
r ‖

0.7454 10◦ 0.0357 0.35 0.1635 0.1138

0.7454 20◦ 0.033 0.3813 0.2203 0.1996

0.7454 45◦ 0.0247 0.4154 0.3442 0.272

0.8660 10◦ 0.032 0.4019 0.3025 0.2442

0.8660 20◦ 0.0413 0.46 0.4371 0.3805

0.8660 45◦ 0.0309 0.4965 0.4951 0.4243

0.9428 10◦ 0.0441 0.523 0.5774 0.5566

0.9428 20◦ 0.0518 0.6065 0.7182 0.683

0.9428 45◦ 0.0276 0.5817 0.5886 0.5657

Table 3 Comparison of the sub-pixel dis-
placement estimation errors (in pixel) of two-
dimensional Gaussian algorithms. The simulated
image shift was (∆x, ∆y) = (0.5, 0.5) pixel.

2D Gaussian 2D iterative Gaussian Analytical error (1D)

ε α (see section 2.2.1) (see [26]) ‖dana
r ‖

0.7454 10◦ 0.0121 0.019 0.1138

0.7454 20◦ 0.01 0.0082 0.1996

0.7454 45◦ 0.0018 0.0093 0.272

0.8660 10◦ 0.0153 0.0222 0.2442

0.8660 20◦ 0.0114 0.0263 0.3805

0.8660 45◦ 0.0008 0.0043 0.4243

0.9428 10◦ 0.0133 0.0084 0.5566

0.9428 20◦ 0.011 0.0066 0.683

0.9428 45◦ 0.0021 0.0392 0.5657
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cant bias error. Using the linear Gaussian al-
gorithm from section 2.2.1, the maximum sub-
pixel displacement estimation error in case of
arbitrarily rotated elliptical particles is always
smaller than 0.015 pixel. For the non-linear itera-
tive Levenberg-Marquardt algorithm, the error is
smaller than 0.04 pixel. The bias error of both
algorithms are always smaller as the expected
accuracy of 0.1 to 0.05 pixel given by [10] and
should, therefore, be used in any application of
cross-correlation based measurement techniques
in aerodynamics where elliptically shaped corre-
lation peaks can occur instead of the most com-
monly used one-dimensional three-point estima-
tors.

5 Summary and conclusions

Using one-dimensional sub-pixel displacement
estimation algorithms in each coordinate direc-
tion will introduce a bias error in the estimated
two-dimensional displacement in case of arbitrar-
ily rotated elliptically shaped correlation peaks.
An analytical equation of this bias error was
therefore derived. It depends on the center po-
sition (xe,ye), the eccentricity ε and the rotation
angle α of the ellipse and can lead to a system-
atic influence of more than one pixel. A gradient-
based algorithm for sub-pixel displacement esti-
mation, the so-called Blais-Rioux method, which
was originally developed for application in laser
triangulation, was applied to cross-correlation
based measurement techniques. This approach
does not use a priori information about the shape
of the correlation peak. To avoid bias errors
in sub-pixel displacement estimation of ellip-
tically shaped correlation functions, a general
linear two-dimensional Gaussian algorithm was
presented, which has a systematic error (in case
of arbitrarily rotated elliptical particles) always
smaller than 0.015 pixel. It should be noted that
two-dimensional algorithms assuming a circular
shaped correlation peak will lead to the same re-
sult as one-dimensional algorithms in case of ar-
bitrarily rotated elliptical peaks. Hence, the pre-
sented general two-dimensional linear Gaussian
algorithm should be implemented in commercial

software packages for data evaluation in experi-
mental aerodynamics because it is very accurate
and easy to implement. Future research could be
the investigation of gradient-based algorithms on
a two-dimensional domain and the investigation
of the robustness of Gaussian algorithms in the
presence of noise.
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