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Abstract  

In the present paper, buckling behavior of a 
rectangular Functionally Graded Plate (FGP) 
under combined shear and direct loading is 
considered. The total potential energy is derived 
for a FGP in stability condition. Derivation of 
total potential function is based on the classical 
plate theory. Also, in–plane flexibility is 
considered in shear buckling analysis. It is 
assumed that the non-homogeneous mechanical 
properties of the plate graded through thickness 
and are described with a power function of the 
thickness variable. The critical buckling shear 
loads in conjunction with in–plane direct loads 
have been obtained for different ratios and 
power law indices of functionally graded 
materials (FGMs). The results are reduced and 
compared with the results of homogeneous plate 
under similar loading conditions. 

1 Introduction  

   Special composite materials collectively 
known as Functionally Graded Materials 
(FGMs) have been developed due to their 
excellent mechanical and thermal properties. 
These are high performance, heat resistant 
materials able to withstand ultra-high 
temperatures and extremely large gradients used 
in spacecrafts and nuclear plants. FGMs are 
microscopically inhomogeneous where the 
mechanical properties vary smoothly and 
continuously from one surface to the other, 
those novel materials were first introduced in 
1984 [1] and then developed by other scientists 
[3, 4]. Typically, these materials are made from 
a mixture of ceramics and metal. It is apparent 
from the literature survey that the most of the 

conventional researches on FGMs have been 
restricted to thermal stress analysis and 
vibrational behavior of FGM structures. For 
example, buckling of FGMs behavior has been 
investigated less than other aspects. 

The nonlinear equilibrium equations and 
associated linear stability equations were given 
for bars, plates, and shells by Brush and 
Almorth in 1975 [4]. The subject matter of this 
book is the buckling behavior of structural 
members made of isotropic materials subjected 
to mechanical loads.  
Subsequently, many scientists developed 
equilibrium and stability equations for plates 
and shells made of composite layered materials 
and used them for determination of buckling 
and vibrational behavior of structures. A good 
review of developments in laminated composite 
plate buckling was carried by Leissa [5] and 
Taucher [6]. 
 During recent years, many research works have 
considered the buckling analysis of composite 
plates under mechanical and thermal loads. A 
general formulation for the buckling of a 
rectangular anisotropic, symmetric, angle–ply 
composite laminated plate under linearly 
varying, uni-axial compressive force has been 
presented by Pandey et al [7] using the energy 
method. Buckling behavior of composite plates 
subjected to bi-axial loading was experimentally 
determined and numerically analyzed by Kim et 
al [8]. Eslami and Javaheri [9] used the total 
potential energy method to obtain buckling 
behavior of laminated composite cylindrical 
shells under mechanical and thermal loads. 
Birman [10] studied the buckling problem of 
functionally graded composite rectangular 
plates subjected to uniaxial compression so that 
two classes of fibers were used in hybrid 

BUCKLING OF A FUNCTIONALLY GRADED PLATE (FGP) 
UNDER SHEAR AND IN-PLANE DIRECTIONAL LOADING 

Majid Badiey*, M. A. Kouchakzadeh* 
* Aerospace Engineering Department, Sharif University of Technology, 

P.O. Box 11365-8639 Tehran, Iran 
 

Keywords: FEM, FGP, Shear Buckling, Classical Pate Theory, Potential Function. 



M. BADIEY, M. A. KOUCHAKZADEH  

2 

composite material. Linear equations of 
equilibrium for a symmetrically laminated plate 
which are uncoupled have been derived and 
then solved to obtain the critical buckling load 
for simply supported edges condition. 
Javaheri and Eslami [11] studied buckling of 
functionally graded plates subjected to uniform 
temperature rise. They used energy method and 
reached to a closed-form solution. 
Javaheri and Eslami [12] used classical plate 
theory for the buckling analysis of functionally 
graded plates under uniaxial compression. 
Shariat, Javaheri and Eslami [13] derived the 
stability compatibility and equilibrium 
equations. Their approach for buckling analyses 
of FGP subjected to biaxial loading, resulted to 
a closed-form solution.  

The present paper emphasizes on analysis 
of buckling behavior of functionally graded 
plates under combined shear and direct stress. 
The total potential energy is derived for a 
rectangular FGM plate in stability condition 
based on classical plate theory. 
 

2 Functionally Graded Plate(FGP) 

2.1 Composition of FGMs 

FGMs are microscopically non-homogeneous 
materials in which the mechanical properties 
vary smoothly and continuously from one 
surface to the other. This is achieved by 
gradually varying the volume fraction of the 
constituent materials. Typically, these materials 
are made from a mixture of ceramics and metal 
or a combination of different metals. The 
ceramic constituent of the material provides the 
high–performance resistance due to its low 
thermal conductivity. The ductile metal 
constituent, on the other hand, prevents fracture 
caused by stresses due to high–temperature 
gradient in a very short period of time. 

2.2 Modeling and Problem Description 

The FGP considered here is made from a 
mixture of ceramic and aluminum. We assume 
that the modulus of elasticity E changes in the 
thickness direction Z , while the Poisson’s ratio 

0υ  is assumed to be constant [14, 15]. The 
material properties of the functionally graded 
plate are introduced as [11]: 

0
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−  , h  is the thickness 

of the plate and k  is the power index which 
takes values greater than or equal to zero. The 
variation of the Composition of Ceramics and 
metal is linear for k =1. The value of k  equal to 
zero represents a fully ceramic plate. Subscripts 
m  and c  refers to the metal and ceramic 
constituents respectively. 

We consider a rectangular thin plate of 
length a  and, width b , and thickness h  made of 
functionally graded material (FGM) in Fig. 1. 
The plate is subjected to the in–plane loads xoN , 

yoN  and xyoN , uniformly distributed along the 
edges 0,  ax =  and 0,  by = respectively. 
Rectangular Cartesian Coordinates ( , ,x y z ) are 
assumed for derivatives. 
 The combination of materials consists of 
aluminum and alumina. The young’s modulus 
for aluminum and alumina are GpaEm 70=  
and GpaEc 380=  respectively and The 
Poisson’s ratio is chosen to be 0.3 for 
simplicity. Also, the plate thickness h  is 
assumed to be 0.005 m. The plate is assumed to 
be simply supported on all edges.  
Bucking analyses for mentioned FGP have been 
done and the results are illustrated in Figs.2-9. 

The effect of parameters ,,
h
b

b
a  and power law 

index, k , on buckling behavior of rectangular 
plate can be observed in these figures, in which 
the buckling critical loads of FGP for different 
loading conditions as shear loading, in–plane 
direct loading, and combination of shear and 
direct loading have been illustrated. 
3 Analysis 
Using the classical plate theory based on Love-
Kirchhoff hypothesis, the strains across the plate 
thickness at the distance Z  away from the 
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middle surface are introduced in Eqs. 2 [16]. 
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Where yx εε ,  are the normal strains, xyε  is the 
shear strain at the middle surface of the plate, 
and ijk  are the curvatures. 
According to the sunder’s assumption [16], the 
general nonlinear strain–displacement relations 
can be simplified to give the following terms of 
the strains at the middle surface and the 
curvatures in terms of the displacement 
components ,  vu and w  in the rectangular 
coordinates: 
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Where xβ  and yβ  are rotations relative to the 
y  and x coordinate directions respectively, and 

(,) indicates the partial derivatives [16]. 
The object of thin–plate theory is to reduce a 
three dimensional problem to an approximate 
two–dimensional one.  The forces and moment 
intensities are related to the internal stresses by 
the equations: 
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Where yx NN ,  and xyN  are in-plane normal 
and shearing force intensities respectively. The 
symbols yx σσ ,  and xyZ  denote stress 
component, at any point through the plate 
thickness .The Hook’s for a plate is defined as 
[16]: 
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The total potential energy of a plate subjected to 
edge loading is the sum of the strain energy U 
and the potential energy of the applied loadsΩ .  

UV +Ω=  (6) 

The strain energy for a plate based on the first 
order theory is defined as: 

dzdydxU xyxyyyxx ][
2
1 ετεσεσ ++= ∫∫∫  

(7) 

Introduction of Eqs.5 and integration with 
respect to z leads to the relation of Eq. 8: 

bm UUU +=  (8) 

Where 
2 2 21( 2 )2 2
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(B) 

 
Fig.1 Schematic of rectangular plate under combination of shear and transverse loading (A) and shear and longitudinal 
loading (B). 
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For a conservative system, Ω  is the negative of 
the work done by the loads as the structure is 
deformed. 
For sufficiently small loads, the equilibrium of 
the FGP is stable. The equilibrium changes from 
stable to neutral when the expression for the 
total potential energy V  ceases to be a relative 
minimum. 
According to Trefftz Criterion, the critical load 
for a continuous structural system is the lowest 
load for which the definite integral of second 
variation of V ( 2Vδ ) is non positive for at least 
one possible variations and at this load the 
equilibrium changes from stable to unstable 
[16]. 
An expression for the total potential energy of 
the edge-loaded plate is given by Eq. 6. 
To obtain the second variation, let: 

0 1 0 1 0 1,  ,u u u v v v w w w= + = + = +  (12) 

Where ),,( 000 wvu  is a configuration on the 
primary equilibrium path and ),,( 111 wvu  is a 
virtual increment. 
The second variation of the total potential 
energy is sum of all terms in the expression for 
the potential energy increment that are quadratic 
in 1 1,u v and 1w . 
For the potential energy of the applied load is 
seen to have no quadratic or higher order terms 
in the displacement components, so 2 0δ Ω=  
and consequently: 

bm UUV 222 δδδ +=  (13) 

Thus the final expression for the second 
variation may be written as: 
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3.1 Buckling Analyses of FGP 

Consider a rectangular plate as shown in Fig.1 
made of functionally graded material with 
simply supported edge conditions. The plate is 
subjected to in–plane shear and biaxial loading. 
The edge conditions are defined as: 

)( 0,0,0:,0 =≠== vuwax  (16) 

)( 0,0,0:,0 =≠== uvway   

Now, we define the functional Π  equal to: 

V2

2
1 δ=Π  

(17) 

In current study, the problem of the stability of 
finite rectangular flat plates under combined 
shear and direct loadings is solved by applying 
the Reileigh-Ritz method.  
The deflection function ),,( 111 wvu  are 
expressed by means of a two-dimensional 
infinite Fourier Series. The deflection function 

1w  and the displacement functions 1u  and 1v  
satisfying the bounding conditions expressed in 
Eqns. 16 are assumed as: 
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Substituting of Eqs. 18 into Eq.17  yields: 
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Where m p±  and n q±  are odd numbers. 
According to Reileigh–Ritz method, the 
coefficients mna , mnU  and mnV  must be chosen to 
make the value π  a minimum, thus: 
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Three sets of equations will be obtained as: 
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For every m  and n  values, a set of linear 
algebraic equations will be obtained. The 
unknown coefficients pqa  (in which m p±  and 
n q±  are odd numbers), mnU  and mnV  will be 
determined through the solution of linear 
equations, but the accuracy of computations 
depends on the chosen values of m  and n .  
The set of Eqs.21 are applied to analyze the 
buckling behavior of the rectangular plate. 
 

3.1.1 Buckling of FGP Caused by Pure Shear 
Loading  

If xoN  and yoN are set to Zero in Eqs. 21, then 
the problem is to find the smallest value of xyoN
to make the structure instable. The coefficients

mna , mnU  and mnV must be chosen to make the 
values of xyoN a minimum. For this purpose, the 
derivations of xyoN  with respect to each of the 
coefficients mna , mnU  and mnV , would be equated 
to zero. We obtain a system of homogenous 
linear equations in unknown coefficients. 
This system can be divided into two groups. 
One containing constant mna  for which m n±  
are odd numbers and the other for which m n±  
are even numbers [17]. 

Computations show that for shorter plate 2<
b
a  

this second group (even numbers) gives for 
crxyN )(  the smallest value and for longer plates, 

both groups of equations should be considered 
[17]. 
For sufficiently large values of m  and n , the 
convergence is occurred. Values of m and n  has 
been chosen by trial, using proper software. The 
critical shear load for all aspect ratios was 
calculated with considering 5m n= = .  
The critical shear stress and the critical normal 
stress can be defined as: 
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The effect of plate thickness (denoted with h) 
can be considered in buckling behavior, through 
equations 22 and 23. 
Figs. 2 and 3 show the critical shear stress 
versus power law index, considering the effects 

of 
b
a  and 

h
b  ratios. 
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Fig.6 Interaction curve for buckling shear stress and 
transverse direct stress of a FGP versus power index k in 
two distinct regions of Tension and Compression. 

Also it is shown that for a specific value of 
shear stress, the required value of direct stress, 
to cause the FGP, unstable, decreases with 
increasing the power law index k. The reason is 
that, the modulus of Elasticity of FGP decreases 
as the power law index increases. 
In Fig.7, critical shear stress versus transverse 
direct stress has been plotted for different values 

of aspect ratio
b
a . For example, for a square 

plate, 1=
b
a  under a constant critical shear 

stress,   the value of transverse direct stress, to 
cause the plate unstable, is considerably greater 
than the corresponding value of the plate with 
higher aspect ratio. This value decreases by 
increasing the value of aspect ratio. 
In other words, as it is seen in Fig.7, the curve 
of critical shear stress versus direct stress will 
be shifted to left hand with increasing the aspect 

ratio
b
a . For aspect ratios greater than 4, it was 

demonstrated that the curves are not shifted to 
left and also the shape of the curves are not 

changed versus aspect ratio
b
a . This curve treats 

like a boundary which is plotted in Fig.7. The 

reason is that, this boundary curve illustrates the 

buckling behavior of a strip )1( >>
b
a  under 

shear and transverse–direct stress. 

 

Fig.7 Interaction curve for buckling shear stress and 
transverse direct stress of a FGP versus aspect ratio a/b  in 
two distinct regions of Tension and Compression. 

Fig. 7 shows two regions of loading, at the right, 
hand critical shear stress and compressive direct 
stress and at the left, critical shear stress and 
tensile direct stress. 
Comparison between two regions reveals that 
the critical shear stress for a plate subjected to 
tension along the y–axis, is greater than the 
corresponding value, for the plate subjected to 
compression. This expression is illustrated in 
Fig.7.  
This conclusion confirms that, applying the 
tensile load in conjunction with shear load has a 
stabilizing influence on shear buckling 
phenomenon of FGPs under combined shear 
and directional loading. 
Fig.7 shows that, an instability caused by a 
shear buckling load could be transformed to a 
stability condition depending on the type of 
transverse directional load which may be tensile 
or compressive. 
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3.1.3.2 FGP under Combined Shear and 
Longitudinal Direct Loading 

If 
0yN  is set equal to zero in Eq.21, the same 

procedure for combination of shear and 
transverse loading is carried out which the set of 
homogeneous linear equations given by the 
Rayleigh– Ritz method is obtained. The results 
of this case of loading are observed in Fig.8. 

 

Fig.8 Interaction curve for buckling shear stress and 
longitudinal direct stress of a FGP versus power index k 
in two distinct regions of Tension and Compression. 

Same as the previous data for transverse direct 
loading, the effect of longitudinal direct stress 
on shear buckling behavior of the FGP has been 
considered in a compression-tension range, 
which is highlighted on Figs.8-9. 
 In Fig.8, each curve represents the critical shear 
stress versus longitudinal direct stress for 

4, 100a b
b h
= =  and different values of power 

indices. In this Figure, every point represents an 
instability condition, caused by  combined shear 
and longitudinal-direct stress. It is shown that 
the shear buckling occurs depending on the 
value of direct stress according to the 
composition of ceramic and metal. 

Also it is shown that for a specific value of 
shear stress, the required value of longitudinal 
stress, to cause the FGP, unstable, decreases 
with increasing the power law index k. The 
reason is that, the modulus of Elasticity of FGP 
decreases as the power law index increases. 
In Fig.9, critical shear stress versus longitudinal 
direct stress has been plotted for different values 

of aspect ratio
b
a . For example, for a square 

plate 1=
b
a  under a constant critical shear 

stress,   the value of longitudinal direct stress, to 
cause the plate unstable, is considerably greater 
than the corresponding value of the plate with 
higher aspect ratio. This value decreases by 
increasing the value of aspect ratio. 

 

Fig.9 Interaction curve for buckling shear stress and 
longitudinal direct stress of a FGP versus aspect ratio a/b 
in two distinct regions of Tension and Compression. 

Fig. 9 shows two regions of loading, at the right, 
hand critical shear stress and compressive direct 
stress and at the left, critical shear stress and 
tensile direct stress. 
Comparison between two regions reveals that 
the critical shear stress for a plate subjected to 
tension along the x–axis, is greater than the 
corresponding value, for the plate subjected to 
compression. This expression is illustrated in 
Fig.9.  
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This conclusion confirms that, applying the 
tensile load in conjunction with shear load has a 
stabilizing influence on shear buckling 
phenomenon of FGPs under combined shear 
and longitudinal loading. 
Fig.9 shows that, an instability caused by a 
shear buckling load could be transformed to a 
stability condition depending on the type of 
longitudinal directional load which may be 
tensile or compressive. 

4 Conclusions 

Buckling behavior of rectangular functionally 
graded plates under a combination of shear and 
direct loading was studied in this paper. The 
total potential function for stability regime was 
derived using classical plate theory. It was 
assumed that the non-homogeneous mechanical 
properties of the plate, graded through 
thickness, are described by a power function of 
the thickness variable. 
It is concluded that: 
1. For a simply supported FGP under pure 

shear loading: 
1.1 The results of shear buckling behavior in 

the special case of 0k =  are in a good 
agreement with the data reported for 
isotropic rectangular plate under in–
plane shear loading. It can show the 
accuracy of FEM computations. 

2.1 The critical shear stress generally 
decreases by increasing the power index 
k, the reason is the high value of the 
assumed modulus of elasticity of the 
ceramic constituent. 

3.1 Also, the critical shear stress generally 
decreases by increasing the aspect ratio 

b
a  as well as 

h
b  ratio. 

4.1 For aspect ratios 2<
b
a , the sensitivity of 

critical shear stress versus aspect ratio is 

considerable, but for ,2>
b
a  the 

sensitivity tends to zero. 
2. The results of FGPs under combination of 

shear and direct loading (transverse and 
longitudinal) demonstrated that, for a 

specific value of shear stress, the required 
value of direct stress, to make the FGP, 
unstable, decreases with increasing the 
power law index k. The reason is that, the 
modulus of Elasticity of FGP decreases as 
the power law index increases. 

3. The results of FGPs under combination of 
shear and transverse loading, reveals that, in 
a constant critical shear stress, the value of 
transverse direct stress, to make the plate 
unstable, is considerably greater than the 
corresponding value of the plate with higher 
aspect ratio. In other words, as it was shown, 
the curve of critical shear stress versus 
transverse direct stress will be shifted to left 

hand with increasing the aspect ratio
b
a . For 

aspect ratios greater than 4, it was 
demonstrated that the curves are not shifted 
to left and also the shape of the curves are 

not changed versus aspect ratio
b
a . This 

curve behaves like a boundary which is 
plotted in Fig.7. The reason is that, this 
boundary curve illustrates the buckling 

behavior of a strip )1( >>
b
a  under shear and 

transverse–direct stress. 
4. The shear buckling analyses of FGPs under 

combination of shear and direct loading 
(transverse and longitudinal), were 
investigated for two regions of loading 
including compressive direct stress and 
tensile direct stress. Comparison between 
two regions reveals that the critical shear 
stress for a plate subjected to tension along 
the y–axis or x-axis, is greater than the 
corresponding value, for the plate subjected 
to compression. 
This conclusion confirms that, applying the 
tensile load in conjunction with shear load 
has a stabilizing influence on shear buckling 
phenomenon of FGPs under combined shear 
and directional loading. This result could be 
used in practical engineering problems to 
control the shear buckling behavior of 
structures. 
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