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Abstract

In the present paper, buckling behavior of a
rectangular Functionally Graded Plate (FGP)
under combined shear and direct loading is
considered. The total potential energy is derived
for a FGP in stability condition. Derivation of
total potential function is based on the classical
plate theory. Also, in-plane flexibility is
considered in shear buckling analysis. It is
assumed that the non-homogeneous mechanical
properties of the plate graded through thickness
and are described with a power function of the
thickness variable. The critical buckling shear
loads in conjunction with in—plane direct loads
have been obtained for different ratios and
power law indices of functionally graded
materials (FGMs). The results are reduced and
compared with the results of homogeneous plate
under similar loading conditions.

1 Introduction

Special composite materials collectively
known as Functionally Graded Materials
(FGMs) have been developed due to their
excellent mechanical and thermal properties.
These are high performance, heat resistant
materials able to withstand ultra-high
temperatures and extremely large gradients used
in spacecrafts and nuclear plants. FGMs are
microscopically inhomogeneous where the
mechanical properties vary smoothly and
continuously from one surface to the other,
those novel materials were first introduced in
1984 [1] and then developed by other scientists
[3, 4]. Typically, these materials are made from
a mixture of ceramics and metal. It is apparent
from the literature survey that the most of the

conventional researches on FGMs have been
restricted to thermal stress analysis and
vibrational behavior of FGM structures. For
example, buckling of FGMs behavior has been
investigated less than other aspects.

The nonlinear equilibrium equations and
associated linear stability equations were given
for bars, plates, and shells by Brush and
Almorth in 1975 [4]. The subject matter of this
book is the buckling behavior of structural
members made of isotropic materials subjected
to mechanical loads.

Subsequently, many scientists developed
equilibrium and stability equations for plates
and shells made of composite layered materials
and used them for determination of buckling
and vibrational behavior of structures. A good
review of developments in laminated composite
plate buckling was carried by Leissa [5] and
Taucher [6].

During recent years, many research works have
considered the buckling analysis of composite
plates under mechanical and thermal loads. A
general formulation for the buckling of a
rectangular anisotropic, symmetric, angle—ply
composite laminated plate under linearly
varying, uni-axial compressive force has been
presented by Pandey et al [7] using the energy
method. Buckling behavior of composite plates
subjected to bi-axial loading was experimentally
determined and numerically analyzed by Kim et
al [8]. Eslami and Javaheri [9] used the total
potential energy method to obtain buckling
behavior of laminated composite cylindrical
shells under mechanical and thermal loads.
Birman [10] studied the buckling problem of
functionally graded composite rectangular
plates subjected to uniaxial compression so that
two classes of fibers were used in hybrid
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composite material. Linear equations of
equilibrium for a symmetrically laminated plate
which are uncoupled have been derived and
then solved to obtain the critical buckling load
for simply supported edges condition.

Javaheri and Eslami [11] studied buckling of
functionally graded plates subjected to uniform
temperature rise. They used energy method and
reached to a closed-form solution.

Javaheri and Eslami [12] used classical plate
theory for the buckling analysis of functionally
graded plates under uniaxial compression.
Shariat, Javaheri and Eslami [13] derived the
stability =~ compatibility and  equilibrium
equations. Their approach for buckling analyses
of FGP subjected to biaxial loading, resulted to
a closed-form solution.

The present paper emphasizes on analysis
of buckling behavior of functionally graded
plates under combined shear and direct stress.
The total potential energy is derived for a
rectangular FGM plate in stability condition
based on classical plate theory.

2 Functionally Graded Plate(FGP)
2.1 Composition of FGMs

FGMs are microscopically non-homogeneous
materials in which the mechanical properties
vary smoothly and continuously from one
surface to the other. This is achieved by
gradually varying the volume fraction of the
constituent materials. Typically, these materials
are made from a mixture of ceramics and metal
or a combination of different metals. The
ceramic constituent of the material provides the
high—performance resistance due to its low
thermal conductivity. The ductile metal
constituent, on the other hand, prevents fracture
caused Dby stresses due to high—-temperature
gradient in a very short period of time.

2.2 Modeling and Problem Description

The FGP considered here is made from a
mixture of ceramic and aluminum. We assume
that the modulus of elasticity E changes in the
thickness direction Z , while the Poisson’s ratio
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v, is assumed to be constant [14, 15]. The

material properties of the functionally graded
plate are introduced as [11]:

E(Z)zEm+Ecm(222:“)k wZ) =",

WhereE,, =E.—E,, Z

1)

is the thickness

coordinates (%h <Z sg) , h is the thickness

of the plate and k is the power index which
takes values greater than or equal to zero. The
variation of the Composition of Ceramics and
metal is linear for k =1. The value of k equal to
zero represents a fully ceramic plate. Subscripts
m and c refers to the metal and ceramic
constituents respectively.

We consider a rectangular thin plate of
length a and, widthb, and thickness h made of
functionally graded material (FGM) in Fig. 1.
The plate is subjected to the in—plane loads N

N, andN

yo Xyo !

X0 !
uniformly distributed along the
edges x=0,a and y=0, brespectively.
Rectangular Cartesian Coordinates (x,y,z) are
assumed for derivatives.

The combination of materials consists of
aluminum and alumina. The young’s modulus
for aluminum and alumina are E_  =70Gpa

andE, =380Gpa  respectively and  The

Poisson’s ratio is chosen to be 0.3 for
simplicity. Also, the plate thickness h is
assumed to be 0.005 m. The plate is assumed to
be simply supported on all edges.

Bucking analyses for mentioned FGP have been
done and the results are illustrated in Figs.2-9.

The effect of parameters %% and power law

index, k, on buckling behavior of rectangular
plate can be observed in these figures, in which
the buckling critical loads of FGP for different
loading conditions as shear loading, in—plane
direct loading, and combination of shear and
direct loading have been illustrated.

3 Analysis

Using the classical plate theory based on Love-
Kirchhoff hypothesis, the strains across the plate
thickness at the distance Z away from the
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Fig.1 Schematic of rectangular plate under combination of shear and transverse loading (A) and shear and longitudinal

loading (B).

middle surface are introduced in Egs. 2 [16].
Ex=¢ex+Zk,, &y=¢6,+2k,, @

Eyy =
Where ¢, ,&, are the normal strains, &, is the

shear strain at the middle surface of the plate,
and k;, are the curvatures.

According to the sunder’s assumption [16], the
general nonlinear strain—displacement relations
can be simplified to give the following terms of
the strains at the middle surface and the
curvatures in terms of the displacement
components u, vand w in the rectangular

coordinates:

Exy + ZKyy

1 1 3
5x:u,x+5ﬂx2 gy =Vy+5 5/ ®
ﬂx =—Wy :By =—W,
kx Z,Bx,x I(y :ﬂy,y

Ey = (u,y +V,x)+ﬂxﬂy
1
kx,y :é(ﬁx,y +:By,x)
Where g, and B, are rotations relative to the

y and xcoordinate directions respectively, and

(,) indicates the partial derivatives [16].

The object of thin—plate theory is to reduce a
three dimensional problem to an approximate
two—dimensional one. The forces and moment
intensities are related to the internal stresses by
the equations:

4)

e N |
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Where N,,N, and N, are in-plane normal
and shearing force intensities respectively. The
symbols and Z, denote stress

component, at any point through the plate
thickness .The Hook’s for a plate is defined as
[16]:

G,,0,

©)

X

5 =I57{g+ua]

Ey ZE[E), +U§x]

L
Y2+ 0) Y

The total potential energy of a plate subjected to
edge loading is the sum of the strain energy U
and the potential energy of the applied loads Q2.
V=Q+U (6)

The strain energy for a plate based on the first
order theory is defined as:

U= %IH[EXEX +0,&, +7,&,]dxdydz @

Introduction of Egs.5 and integration with
respect to z leads to the relation of Eq. 8:

R ®)
Where

Up= C;ff [+ &2+ 2088, + PTngyz)dX gy ©
U,= Dzﬁ [ k,2+ky2 + 20k K, +2(1— )k, 2)lxdly (10)
And
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For a conservative system, Q is the negative of
the work done by the loads as the structure is
deformed.

For sufficiently small loads, the equilibrium of
the FGP is stable. The equilibrium changes from
stable to neutral when the expression for the
total potential energy V ceases to be a relative
minimum.

According to Trefftz Criterion, the critical load
for a continuous structural system is the lowest
load for which the definite integral of second
variation of V (6V ?) is non positive for at least
one possible variations and at this load the
equilibrium changes from stable to unstable
[16].

An expression for the total potential energy of
the edge-loaded plate is given by Eq. 6.

To obtain the second variation, let:

U=u,+U , v=Vv,+v, w=w,+w, (12

Where (u,,v,,W,) is a configuration on the
primary equilibrium path and (u,,v,,w,) is a
virtual increment.

The second variation of the total potential
energy is sum of all terms in the expression for
the potential energy increment that are quadratic
inu,v, andw,.

For the potential energy of the applied load is
seen to have no quadratic or higher order terms
in the displacement components, so 6 =0
and consequently:

SN =6°U, +5%U, (13)

Thus the final expression for the second
variation may be written as:

87V =Cy [[ F dxdy (14)
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Where
_ 2 2 15
F=u 24y 2+200U, v, (15)
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D
o (20-9)W, ?)
eff

3.1 Buckling Analyses of FGP

Consider a rectangular plate as shown in Fig.1
made of functionally graded material with
simply supported edge conditions. The plate is
subjected to in—plane shear and biaxial loading.
The edge conditions are defined as:

x=0,a: (w=0, u#0, v=0) (16

y=0,a: (w=0, v#£0, u=0)

Now, we define the functional IT equal to:

m=2Ls 40
2

In current study, the problem of the stability of

finite rectangular flat plates under combined

shear and direct loadings is solved by applying

the Reileigh-Ritz method.

The deflection function  (u;,v,,w,) are

expressed by means of a two-dimensional
infinite Fourier Series. The deflection function
w, and the displacement functions u, and v,

satisfying the bounding conditions expressed in
Eqgns. 16 are assumed as:

3 (18)
=3 Sa, sin(Zxsin(>2 y)
a b

3M8 aMs

iu nCos(M x)Sin(n—” y)
a b

n
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V= ZZanSm( x)Cos(— y)

Substltutlng of Eqs. 18 into Eq.17 yields:

(19)

X L, Mmoo 1 Eenta
a’‘—+—)+N a’
B »TRLSUES » Rt

C, & ir b n“a m7z
T Y e VAR VARALEVITR)|
9 e 2am a0

2

2 2 2
n;r a Nz a mvr
+—[ZZ<\ °>< PP R e AN

- °°n127za

D RILECE

NIV aa,

m n pq

(f IO)(q2 -1

Where m+p and n4q are odd numbers.
According to Reileigh-Ritz method, the
coefficientsa,, U . and V. must be chosen to

make the value 7 a minimum, thus:

ol _ ol _ ol 0 (20)
o, oV, oada,,
Three sets of equations will be obtained as:
b abDeﬂ( L bZ) Nx0m47r gam (21-a)

2,2
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Won Y=gy

m? 7[ b mnzz mnz?y, (21-b)
mn 2 mn
n2 a mn
% ” 72\ )] =0
(21-c)
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For every m and n values, a set of linear

algebraic equations will be obtained. The

unknown coefficients a , (in which m=+ p and

n+q are odd numbers), U, and V_  will be

determined through the solution of linear
equations, but the accuracy of computations
depends on the chosen values of m and n.
The set of Eqs.21 are applied to analyze the
buckling behavior of the rectangular plate.

3.1.1 Buckling of FGP Caused by Pure Shear
Loading

If N, and N are set to Zero in Egs. 21, then

the problem is to find the smallest value of N,

to make the structure instable. The coefficients
a,,, U, and V, must be chosen to make the

mn ! mn

values of N, a minimum. For this purpose, the
derivations of N

Xyo

with respect to each of the
andV

coefficientsa,,,, U, . would be equated
to zero. We obtain a system of homogenous
linear equations in unknown coefficients.

This system can be divided into two groups.

One containing constant a.,, for which m+n

are odd numbers and the other for which m+n
are even numbers [17].

Computations show that for shorter plate % <2

this second group (even numbers) gives for
(N,,). the smallest value and for longer plates,

both groups of equations should be considered
[17].

For sufficiently large values of m and n, the
convergence is occurred. Values of mand n has
been chosen by trial, using proper software. The
critical shear load for all aspect ratios was
calculated with consideringm=n=>5.

The critical shear stress and the critical normal
stress can be defined as:

— N Xer o N Yer T N XYer (22)
Oxer h Yer h o h
Where
D 72D (23)
N _ k eff , — k eff 1
XCI‘ X b2 Yer y bZ
B 2 D)
Ner — XY b2

The effect of plate thickness (denoted with h)
can be considered in buckling behavior, through
equations 22 and 23.

Figs. 2 and 3 show the critical shear stress
versus power law index, considering the effects

of a and E ratios.



Fig. 2 shows that the critical shear stress
generally decreases by increasing the aspect

ratio % as well the power law indexKk .

For% < 2, the sensitivity of critical shear stress
. a . .

versus aspect ratio b’ is considerable, but for

a o
b > 2, the sensitivity tends to zero.

Whenk =0, representing fully ceramic plate,
the buckling shear stress is considerably larger
than buckling shear stress of FGM plate.

The reason is the high value of the assumed
modulus of elasticity of the ceramic constituent.

2

1.8 -
1.6 b/h=100
1.4
1.2

1
0.8 a/b=2

0.6

BucklingShear Stress(GPa)

0.4
0.2

Power Index k

Fig.2 Critical buckling load of a FGP under pure shear
loading versus power index k and aspect ratio a/b.

Fig.3 shows the effect of % on critical shear

stress. The value of k equal to zero represents a
homogeneous (fully ceramic) plate, then using
Egs.22 and 23 and calculating the k,, for every

aspect ratio a , S0 that, the data of table 1

would be obtained.
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Fig.3 Critical buckling load of a FGP under pure shear
loading versus power index k and thickness ratio b/h.

The similar results for an isotropic plate under
in—plane shear loading have been reported in
[17]. The results of shear buckling behavior of
FGP, in the special casek = 0, are in a good
agreement with the data reported for isotropic
rectangular plate under in-plane shear loading. It
can show the accuracy of results.

Table 1. Comparison between the results of a
homogenous plate (cited on[17]) and a FGP for k=0
under similar loading condition.

a/lb 1 2 3 4

Ter in Current Study Lrr 125 111 107

(GPa)

. 9.02 711 572 543
kcr in Current Study

K reported in ref. 9.35 659 589 567

[17]

Fig. 4 shows that, the critical shear stress

decreases by increasing the % ratio.

3.1.2 FGP under Transverse Direct Loading

Fig.5 shows that the critical buckling transverse
direct stress, decreases by increasing aspect

ratio % and power law indexk .
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The explanations about the effects of power law
index k and aspect ratio % on critical shear

stress in Fig.2, are true for the buckling
transverse direct stress for a functionally graded
plate (FGP). These effects are shown in Fig.5.

3
s k=1
o 2.5 1
w
o b/h=50
N 2
a \
(]
77
15 A
2 b/h=60
= —
o
a 1 b/h=70
o
\ b/h=100
0.5 A
0 T T T
0.9 1.9 2.9 3.9

a/b

Fig.4 Critical buckling load of a FGP under pure shear
loading versus aspect ratio a/b for different values of
power index k.
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0.5
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0.2 -

Buckling Transverse Direct stress

0.1 k=10

0.9 1.9 2.9 alb 3.9

Fig.5 Critical buckling load of a FGP under pure shear
loading versus aspect ratio a/b for different values of
thickness ratio b/h.

3.1.3 Buckling of FGP Caused by Combined
Shear and Direct Loading

This case of loading can be divided into two
groups:
- shear and transverse-direct loading

- shear and longitudinal-direct loading

The above loading conditions are illustrated in
Fig.6 and Fig.8 respectively.

3.1.3.1 FGP under Combined Shear and
Transverse Direct Loading

If the value of N, in Eq. 21 sets equal to zero,

then these set of equations will be used to
analyze the buckling behavior of a FGP under
combined shear and transverse direct loading
which is shown in Fig.1(A).

The coefficientsa U, and V_must be

mn ! mn

chosen to make the value of N, ~a minimum.

This set of equations may be divided into two
groups which are independent of each other, one
group in which m=£n is odd, and one group in
which m+n is even.

In general, the method is to choose the

numerical values of %,%,k and N, or N, for

a FGP, and set the determinant equal to zero,
and solve for the lowest value of N, . It is

noticeable that the effect of transverse-direct
load on shear buckling behavior of the FGP has
been considered in a compression-tension range,
which are highlighted on Figs.6-7.

In Fig.6, each curve represents the critical shear
stress versus transverse direct stress for

%:4, %:100 and different values of power

indices. In this Figure, every point represents an
instability condition, caused by combined shear
and transverse-direct stress.

This figure reveals that for a FGP with a known
geometry, the shear buckling occurs depending
on the value of transverse direct stress according
to the composition of ceramic and metal.
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Fig.6 Interaction curve for buckling shear stress and
transverse direct stress of a FGP versus power index k in
two distinct regions of Tension and Compression.

Also it is shown that for a specific value of
shear stress, the required value of direct stress,
to cause the FGP, unstable, decreases with
increasing the power law index k. The reason is
that, the modulus of Elasticity of FGP decreases
as the power law index increases.

In Fig.7, critical shear stress versus transverse
direct stress has been plotted for different values

of aspect ratio%. For example, for a square

a -
plate, le under a constant critical shear

stress, the value of transverse direct stress, to
cause the plate unstable, is considerably greater
than the corresponding value of the plate with
higher aspect ratio. This value decreases by
increasing the value of aspect ratio.

In other words, as it is seen in Fig.7, the curve
of critical shear stress versus direct stress will
be shifted to left hand with increasing the aspect

ratio%. For aspect ratios greater than 4, it was

demonstrated that the curves are not shifted to
left and also the shape of the curves are not

. a .
changed versus aspect ratlog. This curve treats

like a boundary which is plotted in Fig.7. The
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reason is that, this boundary curve illustrates the
buckling behavior of a strip (% >>1) under

shear and transverse—direct stress.

12
Tz

b/h=100
k=1

Buckling Zhear Stress (GPa)

ab=3 - 0.4 -

alb=4,5,6 7
0.2 A
Tension Compression
-0.4 -0.2 0 0.2 0.4

Tranverse Direct Stress(GPa)

Fig.7 Interaction curve for buckling shear stress and
transverse direct stress of a FGP versus aspect ratio a/b in
two distinct regions of Tension and Compression.

Fig. 7 shows two regions of loading, at the right,
hand critical shear stress and compressive direct
stress and at the left, critical shear stress and
tensile direct stress.

Comparison between two regions reveals that
the critical shear stress for a plate subjected to
tension along the y-axis, is greater than the
corresponding value, for the plate subjected to
compression. This expression is illustrated in
Fig.7.

This conclusion confirms that, applying the
tensile load in conjunction with shear load has a
stabilizing influence on shear buckling
phenomenon of FGPs under combined shear
and directional loading.

Fig.7 shows that, an instability caused by a
shear buckling load could be transformed to a
stability condition depending on the type of
transverse directional load which may be tensile
or compressive.
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3.1.3.2 FGP under Combined Shear and
Longitudinal Direct Loading

If N, is set equal to zero in Eq.21, the same

procedure for combination of shear and
transverse loading is carried out which the set of
homogeneous linear equations given by the
Rayleigh— Ritz method is obtained. The results
of this case of loading are observed in Fig.8.

a/b=4
b/h=100

BucklingSheay/Stress(GPa)

Tension

-0.8 0.2
Longitudinal Direct Stress(GPa)

Fig.8 Interaction curve for buckling shear stress and
longitudinal direct stress of a FGP versus power index k
in two distinct regions of Tension and Compression.

Same as the previous data for transverse direct
loading, the effect of longitudinal direct stress
on shear buckling behavior of the FGP has been
considered in a compression-tension range,
which is highlighted on Figs.8-9.

In Fig.8, each curve represents the critical shear
stress versus longitudinal direct stress for

%:4, %:100 and different values of power

indices. In this Figure, every point represents an
instability condition, caused by combined shear
and longitudinal-direct stress. It is shown that
the shear buckling occurs depending on the
value of direct stress according to the
composition of ceramic and metal.

Also it is shown that for a specific value of
shear stress, the required value of longitudinal
stress, to cause the FGP, unstable, decreases
with increasing the power law index k. The
reason is that, the modulus of Elasticity of FGP
decreases as the power law index increases.

In Fig.9, critical shear stress versus longitudinal
direct stress has been plotted for different values

of aspect ratio%. For example, for a square

a .
plate 521 under a constant critical shear

stress, the value of longitudinal direct stress, to
cause the plate unstable, is considerably greater
than the corresponding value of the plate with
higher aspect ratio. This value decreases by
increasing the value of aspect ratio.

Lo}
z

1
I

Buckling Shear Stress (GPa)

Tension Compression

-0.4 -0.2 0 0.2 0.4

Longitudinal Direct Stress (GPa)

Fig.9 Interaction curve for buckling shear stress and
longitudinal direct stress of a FGP versus aspect ratio a/b
in two distinct regions of Tension and Compression.

Fig. 9 shows two regions of loading, at the right,
hand critical shear stress and compressive direct
stress and at the left, critical shear stress and
tensile direct stress.

Comparison between two regions reveals that
the critical shear stress for a plate subjected to
tension along the x-axis, is greater than the
corresponding value, for the plate subjected to
compression. This expression is illustrated in
Fig.9.



This conclusion confirms that, applying the
tensile load in conjunction with shear load has a
stabilizing influence on shear buckling
phenomenon of FGPs under combined shear
and longitudinal loading.

Fig.9 shows that, an instability caused by a
shear buckling load could be transformed to a
stability condition depending on the type of
longitudinal directional load which may be
tensile or compressive.

4 Conclusions

Buckling behavior of rectangular functionally
graded plates under a combination of shear and
direct loading was studied in this paper. The
total potential function for stability regime was
derived using classical plate theory. It was
assumed that the non-homogeneous mechanical
properties of the plate, graded through
thickness, are described by a power function of
the thickness variable.

It is concluded that:

1. For a simply supported FGP under pure

shear loading:

1.1 The results of shear buckling behavior in
the special case ofk =0 are in a good
agreement with the data reported for
isotropic rectangular plate under in-
plane shear loading. It can show the
accuracy of FEM computations.

2.1 The critical shear stress generally
decreases by increasing the power index
k, the reason is the high value of the
assumed modulus of elasticity of the
ceramic constituent.

3.1 Also, the critical shear stress generally
decreases by increasing the aspect ratio

a b .
— as well as — ratio.
b h

4.1 For aspect ratios% < 2, the sensitivity of
critical shear stress versus aspect ratio is
considerable, but for % >2, the

sensitivity tends to zero.
2. The results of FGPs under combination of
shear and direct loading (transverse and
longitudinal) demonstrated that, for a

M. BADIEY, M. A. KOUCHAKZADEH

specific value of shear stress, the required
value of direct stress, to make the FGP,
unstable, decreases with increasing the
power law index k. The reason is that, the
modulus of Elasticity of FGP decreases as
the power law index increases.

The results of FGPs under combination of
shear and transverse loading, reveals that, in
a constant critical shear stress, the value of
transverse direct stress, to make the plate
unstable, is considerably greater than the
corresponding value of the plate with higher
aspect ratio. In other words, as it was shown,
the curve of critical shear stress versus
transverse direct stress will be shifted to left

hand with increasing the aspect ratio%. For

aspect ratios greater than 4, it was
demonstrated that the curves are not shifted
to left and also the shape of the curves are

not changed versus aspect ratio%. This

curve behaves like a boundary which is
plotted in Fig.7. The reason is that, this
boundary curve illustrates the buckling

behavior of a strip (% >>1) under shear and

transverse—direct stress.

The shear buckling analyses of FGPs under
combination of shear and direct loading
(transverse  and  longitudinal),  were
investigated for two regions of loading
including compressive direct stress and
tensile direct stress. Comparison between
two regions reveals that the critical shear
stress for a plate subjected to tension along
the y—axis or x-axis, is greater than the
corresponding value, for the plate subjected
to compression.

This conclusion confirms that, applying the
tensile load in conjunction with shear load
has a stabilizing influence on shear buckling
phenomenon of FGPs under combined shear
and directional loading. This result could be
used in practical engineering problems to
control the shear buckling behavior of
structures.
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