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Abstract 

A new model wing incorporating a fullspan 

trailing edge control surface was designed and 

built to demonstrate active flutter suppression in 

low speed wind tunnels, using an existing small-

scale pitch-plunge flexure mount. Open-loop 

flutter test results agreed well with predictions 

from classical flutter theory, and gentle low 

speed flutter was demonstrated. Closed-loop 

simulations using LQG control to drive the 

trailing edge control surface indicated that 

flutter can be suppressed successfully, despite 

the small size of the model. Physical 

implementation of the controller and its use in 

the wind tunnel flutter tests proved this to be so. 

The LQG flutter controller used to actuate the 

control surface was able to suppress flutter at 

speeds significantly higher than the open-loop 

flutter speed of the model, even when designed 

for that speed. Flutter suppression was 

demonstrated up to a speed 54m/s – an increase 

of 134% over the open-loop flutter speed of the 

model, at which point tests were arbitrarily 

stopped. This paper briefly describes the model 

and LQG controller, then presents and 

discusses some typical test results.  

Nomenclature 

ab  
Distance between mid-chord and elastic 

axis 

,  ,  ,  A B C D  State-space matrices 

b  Airfoil half-chord 

c  
Non-dimensional distance between 

airfoil mid-chord and control surface 

hinge line 

C  Structural damping 

( )C k  
Theodorsen’s function 

,  δ λ  
Coefficients in rational approximation of 

Wagner function 

I  Identity matrix  

k  Reduced frequency (Strouhal number) 

K  Structural stiffness 

1ℓ , 
2ℓ  1

st
 and 2

nd
 Aerodynamic lag state 

L  Unsteady lift force 

δL , λL  
Matrices of Wagner approximation  

function coefficients 

m  Wing mass 

M  Unsteady aerodynamic moment 

Φ  Wagner function 

1Q , 
2Q  

Matrices of terms proportional to 

circulation about the aerofoil 

ρ  Air density 

T  Control surface position function 

u  Control input 

U  Free stream velocity 

ω  Flutter frequency in rad/s 

xα  Non-dimensional distance between 

aerofoil pitch axis and aerofoil CG 

xβ  Non-dimensional distance between 

control surface hinge axis and CG 

 
Subscripts: 

 a  Aerodynamic 

α  Pitch 

β  Control surface angle 

c  Command 

h  Plunge  

s  Structural 
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1. Introduction 

Flutter is an important consideration in the 

design and performance of aircraft. Typically, 

aircraft are limited to a maximum speed that 

they should not exceed to ensure that flutter 

(which may result in the destruction of the 

airframe) is not encountered. Imposing a speed 

restriction on an aircraft is often undesirable, 

whilst ensuring the structure is sufficiently stiff 

to ensure that flutter won’t be encountered in 

the operating airspeed range of the aircraft 

introduces a weight penalty that also acts to 

reduce the flight envelope of the aircraft and 

further limit its performance. An effective 

means of ensuring that flutter is not encountered 

during flight, without restricting the flight 

envelope of an aircraft, is to use primary aircraft 

control surfaces to actively damp out divergent 

oscillations characteristic of flutter.  

It was shown in [1] that binary (pitch-

plunge) flutter models are effective in 

demonstrating the concept of active flutter 

suppression as they exhibit gentle, low-speed, 

well defined flutter. The implementation of 

active flutter control is thus relatively easy, so 

these models also provide a means of evaluating 

the effectiveness of various control laws that 

could be extended and applied to a full scale 

aircraft. A novel active control binary flutter 

wind tunnel model design, as well as its 

mathematical representation and an active 

flutter suppression LQG controller design was 

detailed in [1]. 

This paper presents and describes results 

obtained with the model of [1] from tests 

conducted in the calibration (CWT) and low 

speed (LSWT) wind tunnels at the Council for 

Scientific and Industrial Research (CSIR). 

2. Mathematical Model and 

Controller Design 

Although given in detail in [1], a brief overview 

of the development of a mathematical model of 

the binary flutter system, as well as the state-

space formulation of the model and control 

system design is given in this section for 

completeness. 

2.1. Aeroelastic Model 

Initially, the structural equations of motion of 

the binary flutter model need to be developed to 

be solved simultaneously with equations 

describing the aerodynamic forces acting on the 

model. To do this, Lagrange’s equation (adapted 

to include Rayleigh’s dissipation function) was 

applied to the flutter model depicted in Figure 

2.1 and Figure 2.2, below. 

 

Figure 2.1   Pitch-Plunge Flutter Aerofoil 

Notation (Derived from [2]) 

 

Figure 2.2   Fluttering Aerofoil Free Body 

Diagram (Derived from [2]) 

Using Lagrange’s method, it can be shown that 

the linearised equations of motion of the system 

are [3]:  

α βα β+ + + + =ɺɺ ɺɺɺɺ
h h

mh mx b mx b C h K h L ............................................(2.1) 

( ) 2

α α β β α α αα β α α + + − + + + = 
ɺɺ ɺɺɺɺ ɺmx bh I c a b mx I C K M ...............(2.2) 

( ) ( )2

β β β β β β βα β β β β + − + + + + − = 
ɺɺ ɺɺ ɺɺɺ

cmx bh c a b mx I I C K M ...(2.3) 

where the forces acting on the aerofoil are the 

unsteady lift ‘L’ (assumed to act at the quarter 

chord position), unsteady pitching moment ‘Mα’ 

and unsteady control surface hinge moment 

‘Mβ’. Theodorsen’s method [4] was used to 

model these forces. This method is limited to 

aerofoils with thin sections of infinite span 

undergoing small oscillations in all vibration 
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modes. Flow over the aerofoil is assumed to 

remain potential and un-separated. In view of 

this, the unsteady lift, pitching moment and 

control surface hinge moment are described in 

terms of the instantaneous configuration of the 

system (position, rate and acceleration of all 

vibration modes) per unit wingspan and are then 

given as [4]: 

( )
( ) ( )

2

1 4

1 1 1
11 102 2       2 π π

ρ π π α β πα β

πρ α β α β

= − − − + − −

 + − + + + 

ɺɺ ɺɺ ɺɺɺ ɺ

ɺ ɺɺ

L b h ba bT U UT

bC k h b a bT U T U
............. (2.4) 

( ) ( ){
( ) ( )

( ) } ( ) ( ) ( )

2 2 2 21
7 18

1 1
1 8 4 112 2

2 2 1 1
4 10 2 2

1 1
11 102

           

          2

           

α

π π

ρ π π α β

π α β

β πρ α

β α β

= − − + + − + − +  

− + − − − + +  

+ − + + − +

+ + 

ɺɺ ɺɺɺɺ

ɺɺ

ɺ ɺ

ɺ

M b abh b a b T c a T

bU a bU T T c a T T

T T U b U a C k h b a

bT U T U

....... (2.5) 

[{
( ) ( ) }

( ) ( )
]

2 2 21
1 13 3 9 1

21 1 1
4 4 11 5 4 102 2

2 1 1
12 112 2

1
10

2 2

           

          

          

β π

π π

π

π

ρ α β

α β β

ρ α β α

β

= − − + − − + −

− − + − −

 + − + + +

ɺɺ ɺɺɺɺ

ɺɺ

ɺ ɺɺ

M b bT h b T b T Ub T T

T a UbT T U T T T

b UT C k h b a bT U

T U

............... (2.6) 

where the ‘T ’ terms are a function of the 

control surface position and can be found in [4]. 

C(k) accounts for lift due to vortices being shed 

off the trailing edge of the wing because of its 

motion, and is expressed in terms of Bessel (or 

Hankel) functions. To model these aerodynamic 

lag effects, a rational approximation to 

Theodorsen’s function is needed. This is 

achieved by solving a two-term approximation 

of Wagner’s function (which is the inverse 

Fourier transform of Theodorsen’s function 

divided by iω, as shown in Equation (2.7)), 

given in Equation (2.8) [5]: 

( )
ω

−1  
Φ =  

 

C k

i
F ............................................................................. (2.7) 

1 2

1 2
1

λ λ

δ δ
− −

Φ = − −
Ut Ut

b be e .................................................................. (2.8) 

 

In Equation (2.8) it is assumed that δ1 = 0.165, 

λ1 = 0.041, δ2 = 0.335 and λ2 = 0.320 as given 

in [5]. Equations (2.1), (2.2) and (2.3) 

(structural equations of the system) are 

combined with Equations (2.4), (2.5) and (2.6) 

(generalised aerodynamic forces) to form the 

equations of motion of the system. Equation 

(2.8) is used to approximate the circulatory lift 

contribution to the unsteady aerodynamic 

forces. The combined equations (not shown) are 

then written in a state-space form so that an 

appropriate control system can be designed, as 

described briefly in §2.2 and  §2.3. 

2.2. State-Space Model 

Using time domain control theory, the state-

space equations of motion of the dynamic 

system are [6]: 

 = + 


= 

ɺ uX AX B

Y CX
...............................................................................(2.9) 

where u = βc  is the commanded flap angle. The 

development of the system matrix A, the input 

matrix B and the measurement matrix C is 

beyond the scope of this paper, although they 

are listed in Appendix A for completeness. The 

system consists of eight states viz. the plunge 

deflection, pitch angle, control surface angle, 

their respective rates and two aerodynamic lag 

states (since a two-term approximation to the 

Wagner function is used). In vector notation that 

is: 

 

1 2α β α β =  
ɺ ɺɺ ℓ ℓ

T

h hX ..........................................(2.10) 

During wind tunnel testing, the plunge 

displacement, pitch angle and control surface 

angle were measured and the remaining five 

states were estimated using a Kalman filter. 

Further discussion of this and a brief overview 

of the control system design is given in §2.3. 

2.3. Control System Design 

A linear quadratic Gaussian (LQG) controller 

was designed to suppress flutter. This controller 

consisted of a linear quadratic regulator (LQR) 

controller to calculate feedback gains and a 

Kalman filter to estimate unmeasured system 

states. The controller was designed using the 

control system toolbox in MATLAB™. A 

complete block diagram model of the flutter 

system was also developed in Simulink™ to 

investigate the effect of nonlinearities in the 

system on the model’s closed-loop response. 
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3. Wind Tunnel Model and 

Apparatus 

The wind tunnel model designed to demonstrate 

the principle of active flutter suppression for 

this work was designated as the FAST (Flutter 

with Active Suppression Technology) wind 

tunnel model. It consists of a novel flexure 

mount [1] to provide the structural dynamics, a 

straight wing with a NACA0012 profile and 

trailing edge control surface, a linear actuator to 

drive the control surface, a USB data acquisition 

system and custom software to acquire data, 

estimate system states and apply feedback 

control to the model. A brief overview of each 

of these FAST model components is given in 

the subsections that follow. 

3.1. Wind Tunnel Model 

3.1.1. Pitch-Plunge Flutter Model Mount 

The flexure mount system designed to provide 

the structural dynamics for the FAST model was 

based on Farmer’s [7] design, but uses 

rectangular instead of round flexures. The use of 

rectangular flexures allows the central drag strut 

in the original design to be omitted and makes 

the small size of the FAST wind tunnel model 

feasible. The pitch and plunge frequencies of 

the model can be tailored by adjusting the angle 

of the rectangular flexures, thereby allowing the 

flutter dynamics of the model to be varied. The 

mount also incorporates ballast arms and sliding 

masses that can be used to alter the centre of 

gravity (CG) position and mass inertia of the 

model to enable various flutter cases to be set 

up.  

3.1.2. Active Control Wing 

The new FAST model wing comprised built-up 

carbon fibre and aluminium spars and ribs to 

which a load carrying carbon fibre skin sleeve 

attaches with brass M2 shoulder screws. This 

skin provides additional structural stiffness and 

the required aerodynamic shape. The control 

surface is a bonded structure of carbon fibre 

(intermediate ribs and skins) and aluminium 

(end and central ribs), and rotates in brass 

bushes located in the aluminium ribs. For these 

tests, the control surface was balanced so that its 

centre of mass coincided with its rotation axis. 

The wing parameters are given in Table 3.1 and 

the wing on the flexure mount is shown in 

Figure 3.1. 

Table 3.1   FAST Model Wing Parameters 

Wing Parameter Value 

Wingspan 360mm 

Wing Chord 120mm 

Wing Aspect Ratio 3 

Wing Taper Ratio 1 

Wing Twist 0.0deg. 

Wing Aerofoil Section NACA0012 

Control Surface Span 346mm 

Control Surface Chord 30mm 

 

 

Figure 3.1   FAST Wind Tunnel Model 

3.1.3. Control Surface Actuator and FAST 

Model Instrumentation 

Initially it was decided that a model aircraft 

servo be used to actuate the control surface. 

These servos have been used in similar research 

(see for example [8]), but can suffer from free-

play in the gears, dead-band, relatively high 

time constants which introduce significant time 

lag into the control system and at the small size 

needed for this model, insufficient capacity to 

cope with the fairly high control surface inertia. 

For these reasons it was decided to use a larger, 
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externally mounted actuator that was powerful 

and fast enough to suppress the estimated flutter 

conditions. This actuator also provides more 

scope for future control algorithm testing and is 

more capable of suppressing flutter significantly 

beyond the open-loop critical flutter speed of 

the model. 

A  Faulhaber™ 1247-020-01 linear DC-

Servomotor was chosen because of its 

impressive performance in terms of load and 

acceleration. The actuator, its mounting bracket, 

and the drive linkage/crank used to change the 

control surface angle are shown in Figure 3.2.  

 

 

Figure 3.2   Control Surface Actuator, 

Actuation Mechanism and Angle Sensor 

Two full strain gauge bridges (SGBs) at the root 

of the FAST model mount (Figure 3.3) are used 

to measure the pitch angle and plunge deflection 

of the wing as it oscillates. The pitch SGB was 

set up to measure differential bending in the 

flexures, not actual torsion of each of the 

flexures, so it gave zero output during pure 

bending of the mount. Thus the plunge SGB 

outputs its maximum signal and the pitch SGB 

outputs zero when the mount experiences pure 

translation and vice versa for pure rotation of 

the mount. Interference between the pitch and 

plunge bridges arising from slight 

misalignments and unaccounted for torsion in 

each flexures was calibrated out.  

A Contelec™ Vert X-13 Hall effect 

rotary sensor with a measurement range of 0° to 

360° and resolution of 0.01° was used to 

measure the control surface angle. This sensor 

was attached to the control surface shaft via a 

flexible coupling, as seen in Figure 3.2. 

 

Figure 3.3   Pitch Angle and Plunge Deflection 

Strain Gauge Bridges 

3.2. Data Acquisition and Control Software 

The FAST model data acquisition (DAQ) and 

control software was written in Microsoft 

Visual™ C# (Express Edition), chosen because 

it is freely available, has built in database 

functionality, supports multi-threaded 

applications and is relatively easy to use. The 

design requirements of the software were to 

acquire data from the National Instruments™ NI 

USB-6211 data acquisition card, calculate 

Kalman state estimates, apply feedback gains 

and calculate control inputs, command the 

control surface actuator and log all data to file. 

Software threading was required to make these 

various components of the program run 

simultaneously at the relatively high frequencies 

required. An example screenshot of the main tab 

of this data acquisition and control application is 

shown in Figure 3.4. 
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Figure 3.4   FAST Model Controller Software 

Interface 

3.3. Wind Tunnels 

Two wind tunnels at the CSIR were used to test 

the active flutter suppression model. Open-loop, 

and the majority of closed-loop wind tunnel 

testing of the FAST model was conducted in the 

CSIR’s calibration wind tunnel (CWT), whilst 

limited closed-loop testing was conducted in the 

CSIR’s low speed wind tunnel (LSWT). A brief 

description of each of these wind tunnels is 

given in §3.3.1 and §3.3.2. 

3.3.1. Calibration Wind Tunnel 

The CWT (shown in Figure 3.5) is a wooden 

blow-down tunnel with a 0.8m by 0.6m 

hexagonal test section. The CWT is ideal for 

flutter testing because of its small size, low 

turbulence and excellent velocity resolution. It 

has a speed range of 0.5 to 35.0m/s that can be 

adjusted by placing various gauzes behind the 

test section. For wind tunnel tests performed on 

the FAST wind tunnel model, only the open 

wind tunnel configuration was used. This was to 

allow the maximum wind tunnel speed to be 

achieved during closed-loop testing. 

 

Figure 3.5   Calibration Wind Tunnel 

3.3.2. Low Speed Wind Tunnel 

The LSWT is a continuous wind tunnel with an 

adjustable atmospheric slot to vary the pressure 

within its 2.1m by 1.5m rectangular test section. 

It has a maximum operating speed of nominally 

120.0m/s. A schematic of the LSWT is shown in 

Figure 3.6, below. 

 

Figure 3.6   Low Speed Wind Tunnel 

4. Results 

The results from the set up and calibration, as 

well as wind tunnel testing of the FAST wind 

tunnel model are presented in this section. Prior 

to wind tunnel testing of the FAST model, the 

pitch and plunge SGBs and the control surface 

angle sensor were calibrated, and the transfer 

function of the control surface actuator and 

actuation mechanism was determined. These 

results are presented in §4.1 and §4.2, 
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respectively. The anticipated open-loop flutter 

speed of the FAST model was calculated and 

various closed-loop simulations performed for 

various model configurations before wind 

tunnel testing of the model commenced. Results 

from these calculations and simulations are 

briefly discussed in §4.3. Thereafter, selected 

results from open- and closed-loop wind tunnel 

testing of the FAST model in the CWT and 

LSWT are presented in §4.4. 

4.1. Transducer Calibrations 

The two SGBs at the root of the FAST model 

flexure mount were calibrated using a 

specifically designed calibration jig. The 

purpose of the jig was to fix the pitch degree of 

freedom of the mount whilst allowing motion in 

the plunge degree of freedom and vice versa. 

The model mount was calibrated with the static 

deflection of the wing-mount combination as 

the mean calibration point in both the plunge 

and pitch degrees of freedom. The two SGB’s 

were calibrated by loading the model whilst 

holding the pitch angle fixed and measuring the 

response from each SGB to a pure plunge 

displacement and then fixing the plunge 

displacement whilst measuring their response to 

a change in the models pitch angle. Cross terms 

where also measured where, the model was 

allowed to pitch and plunge simultaneously. The 

plunge and pitch calibration surfaces are shown 

in Figure 4.1 and Figure 4.2, respectively. 

 

Figure 4.1   Plunge Strain Gauge Bridge 

Calibration Data and Fitted Surface 

 

Figure 4.2   Pitch Strain Gauge Bridge 

Calibration Data and Fitted Surface 

Plots of the residuals of each of these calibration 

surfaces showed that each fit was good and that 

both the pitch angle and plunge deflection strain 

gauge bridges are highly linear within the 

allowed deflection range of the mount. 

4.2. Control Surface and Actuation 

Mechanism Transfer Function 

The measured phase and normalised magnitude 

of the sub-system from a swept-sine input (from 

1.0 to 12.0Hz.) using a TTi function generator 

(TG2000) was evaluated with a GenRad 2515  

Computer-Aided Test System and plotted on a 

Bode diagram. A 2
nd

 order Bessel filter was then 

fitted to the measured data to determine an 

approximate analytical transfer of the control 

surface and its actuation mechanism (see Figure 

4.3). To validate the calculated analytical 

transfer function of the sub-system, the 

measured response of the control surface to a 

step input was compared to the step response 

predicted by the 2
nd

 order Bessel filter. Figure 

4.4 shows the good correlation obtained. 
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Figure 4.3   Control Surface and Actuation 

Mechanism Bode Diagram 
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Figure 4.4   Control Surface and Actuation 

Mechanism Step Response 

4.3. Open-Loop Flutter Predictions and 

Closed-Loop Simulations 

The open-loop modal damping and frequencies 

of the FAST model were determined as a 

function of airspeed (see Figure 4.5) by solving 

the eigensolution of the state-space model of the 

system for various model configurations. This 

allowed the anticipated flutter speed of the 

model to be determined when evaluated at a 

case of zero damping. 

Extensive simulations of the open- and 

closed-loop dynamics of the FAST model were 

done using models developed in both 

MATLAB™ and Simulink™ before wind 

tunnel tests were conducted. The purpose of 

these simulations was to establish the open-loop 

dynamics of the model and thereafter determine 

the anticipated effect and robustness of the 

implemented active flutter suppression 

controller. The advantage of the Simulink™ 

model was that the effect of nonlinearities (such 

as free-play, dead-band, time delays, etc.) that 

cannot be modelled easily in a sate-space 

system, could be investigated. The response of 

the model to an initial disturbance, impulse 

input and step input calculated from the 

MATLAB™ state-space model showed the 

control system to be robust at, and above the 

anticipated critical open-loop flutter speed of 

the model. The Simulink™ model showed that 

the controller was robust enough to not allow 

actual nonlinearities in the system to destabilise 

it and cause divergent oscillations of the model. 
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Figure 4.5   Open-Loop Damping and 

Frequency Response (Baseline CG Position) 

4.4. Wind Tunnel Results 

Three model configurations were tested in the 

CWT, whilst limited flutter boundary extension 

tests were performed in the LSWT. The FAST 

model configurations tested in the CWT were a 

baseline CG position configuration, a forward 

CG position configuration and an aft CG 

position configuration. Initially, open-loop wind 

tunnel testing was performed to observe the 

dynamics of the model and validate its state-

space representation used in the controller 

design. Thereafter, closed-loop wind tunnel 

testing was performed for all three 

configurations up until the maximum operating 

speed of the CWT. Limited flutter boundary 

extension tests of the FAST model in its 

baseline CG position configuration were then 

performed in the LSWT because of its higher 
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operating speed. Selected results from open- and 

closed-loop tests performed in both the CWT 

and LSWT are given in §4.4.1 and §4.4.2, 

below. 

4.4.1. Calibration Wind Tunnel Results 

The open-loop flutter speed of the FAST model 

was carefully approached by analysing its sub-

critical response at wind tunnel speeds well 

below its anticipated flutter speed. The power 

spectral densities (PSD’s) were calculated from 

the sub-critical time response of the plunge 

displacement and pitch angle to determine the 

modal frequency and damping of the model. 

This data was then used to calculate the 

simplified Zimmerman flutter margin and 

predict an open-loop flutter speed for each 

FAST model configuration. A half-power 

bandwidth method was also used to analyse the 

sub-critical data and predict a flutter onset speed 

for the wind tunnel model in each of CG 

position configurations tested. 

Once the critical flutter speed was safely 

approached, the model was allowed to flutter (as 

shown for example in Figure 4.6) so that data 

could be recorded to validate the mathematical 

model of the system used in the flutter 

suppression controller design.  
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Figure 4.6   Open-Loop Flutter (Baseline CG    

Position; Uf = 24.28m/s) 

A plot of the normalised PSDs as a function of 

airspeed from the pitch angle SGB is shown in 

Figure 4.7 to illustrate how the two modal 

frequencies of the model converged on its flutter 

speed as the wind tunnel speed increased.  
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Figure 4.7   Combined Normalised Open-Loop 

PSDs (Pitch SGB, Baseline CG Position) 

The calculated and measured flutter speeds and 

flutter frequencies of the FAST model in each 

CG position configuration tested are tabulated 

in Table 4.1 and Table 4.2, respectively. 

Table 4.1   FAST Model Open-Loop Flutter 

Speeds 

Flutter Speed 

m/s 

FAST Model 

Configuration 

(CG Position) 
P-k 

Solution 

Eigen 

Solution 

Actual 

Value 

Baseline 21.70 23.51 23.01 

Forward 19.58 20.18 21.40 

Aft 27.87 29.75 30.00 

 

Table 4.2   FAST Model Open-Loop Flutter 

Frequencies 

Flutter Frequency 

Hz. 

FAST Model 

Configuration 

(CG Position) 
P-k 

Solution 

Eigen 

Solution 

Actual 

Value 

Baseline 5.98 5.98 5.83 

Forward 6.15 6.06 6.13 

Aft 6.32 6.12 6.02 
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Closed-loop wind tunnel testing of the FAST 

model in the CWT was conducted once open-

loop testing had been completed and the 

mathematical model of the system had been 

validated. During initial closed-loop wind 

tunnel tests, the control algorithm was activated 

and the wind tunnel speed set to the open-loop 

flutter speed with the FAST model held fixed. 

The model was then released to determine if the 

control law would prevent it from fluttering.  

Having shown the FAST model would 

not flutter at (or slightly above) its open-loop 

critical flutter speed at each CG position 

configuration, the control law was deactivated 

and the model allowed to flutter for a short 

period of time. Once the model had established 

a flutter cycle the control system was re-

activated to demonstrate its effectiveness in 

suppressing flutter. Figure 4.8 shows the 

response of the model near its critical open-loop 

flutter speed before and after the active flutter 

suppression feedback controller was activated.  

The sub-critical response on the FAST 

model in its baseline CG position configuration 

with the control algorithm activated was also 

evaluated.  The model was given an initial 

displacement and then allowed to oscillate 

freely at increasing wind tunnel speeds. The 

combined PSDs of the time series data obtained 

from these tests (see Figure 4.9) show the 

effectiveness of the control in separating the two 

modal frequencies of the model as well as 

adding damping to the system. 
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Figure 4.8   Closed-Loop Response (Baseline 

CG Position; U = 24.52m/s) 
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Figure 4.9   Combined Normalised Closed-

Loop PSD’s (Pitch SGB, Baseline CG Position) 

Having demonstrated the effectiveness of the 

feedback controller designed in suppressing 

flutter, flutter boundary extension tests were 

conducted in the CWT. It was shown that the 

model could still be stabilised at the maximum 

operating speed (35.60m/s) of the CWT with a 

controller designed for the critical open-loop 

flutter speed of the model in each CG position 

configuration. 
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Figure 4.10   Closed-Loop Response (Baseline 

CG Position; U = 35.60m/s) 

4.4.2. Low Speed Wind Tunnel Results 

Based on the excellent closed-loop response of 

the FAST model in the CWT, it was decided 

that the closed-loop control effectiveness of the 

baseline CG position configuration and the 

extent to which the flutter boundary of the 

FAST model could be extended, be tested in the 

LSWT. The LSWT was chosen because of its 
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higher operating speed (maximum nominally 

120.0m/s). The FAST model was tested up to 

53.91m/s in the LSWT. Testing beyond this 

point was deemed unsafe although the control 

law was still very effective at suppressing flutter 

at this speed. The damped closed-loop response 

of the model, after it was given an initial 

displacement at this wind tunnel speed of 

53.91m/s, is shown in Figure 4.11. 
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Figure 4.11   Closed-Loop Response (Baseline 

CG Position; U = 53.91m/s) 

5. Discussion  

Overall, the results obtained from open- and 

closed-loop testing of the FAST model in both 

the CWT and LSWT at the CSIR were very 

successful.  

All transducers used to measure system 

states were carefully calibrated and a plot of the 

residuals showed them to be linear within their 

operating ranges. The transfer function (2
nd

 

order Bessel filter) fitted to the measured 

response of the control surface actuator and 

actuation mechanism matched the measured 

response of this sub-system well. The step 

response of the control surface and its actuation 

mechanism showed that there was no lag, or any 

overshoot in this system. It was also determined 

from Figure 4.4 that the system has a rise time 

of 72ms and a settling time of 133ms. 

Open-loop simulations of the FAST 

model performed in MATLAB™ showed that 

the calculated flutter speed of the FAST model 

in its baseline CG position configuration was 

23.51m/s at a frequency of 5.98Hz. Similarly, 

the calculated flutter speed for a forward CG 

position configuration was 20.18m/s at a 

frequency of 6.06Hz. and the calculated flutter 

speed and flutter frequency for the aft CG 

position were 29.75m/s and 6.12Hz., 

respectively. Closed-loop simulations 

performed in Simulink™ showed the model to 

be stable after being given an initial 

displacement, step input and impulse input. The 

controller was also shown to be robust to actual 

nonlinearites such as actuator free-play, 

saturation and rate limitation. 

Open-loop wind tunnel testing in the 

CWT showed the flutter speed and frequency of 

the FAST model to be 24.28m/s and 5.77Hz for 

the baseline CG position, which correlated well 

with the predicted values of 23.51m/s and 

5.98Hz., respectively. For the forward CG 

position configuration, open-loop flutter was 

encountered at a speed of 21.40m/s and 

frequency of 6.13Hz. These values are in good 

agreement with the predicted flutter speed and 

frequency from an eigensolution of the state-

space model of the system of 20.18m/s and 

6.06Hz., respectively. Open-loop testing 

concluded with the model in an aft CG  

configuration, for which flutter occurred  at a 

speed of 30.00m/s and a frequency of 6.02Hz., 

again   matching the predicted flutter speed of 

29.75m/s and frequency of 6.12Hz. well. 

Having validated the mathematical 

model of the FAST model used in the active 

flutter suppression feedback controller design, 

closed-loop wind tunnel testing was performed. 

During these tests, with the feedback controller 

was activated, flutter could not be induced up to 

the maximum operating speed of the CWT in 

any of the open-loop model configurations.  

Subsequent tests for each CG position 

configuration, with the control system 

deactivated, demonstrated that a developed 

flutter cycle of the model could be suppressed 

within less than 3s upon reactivation of the 

control system. Based on these good results, 

flutter boundary extension tests were conducted 

in the LSWT with the model in its baseline CG 

position. These tests were conducted to a 

maximum tunnel speed of 53.91m/s (29.63m/s 

above the critical open-loop flutter speed of the 

model). Up to this speed flutter was suppressed, 

demonstrating an increase in the flutter 
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boundary of 134.3% (or 2.34 times) with a 

controller designed for the predicted critical 

flutter speed (23.51m/s) of the model. This 

translates to flutter suppression at a dynamic 

pressure 448.9% above (or 4.69 times) that 

experienced by the FAST model at its critical 

open-loop flutter speed.  

6. Conclusions 

Based on the good open- and closed-loop wind 

tunnel results obtained from the FAST wind 

tunnel model, it has been demonstrated that 

active flutter suppression is both a feasible and 

attractive means of increasing the flutter 

boundary of an aircraft. Because of its gentle 

and well defined flutter characteristics, the 

FAST model can be easily and safely used as 

both a flutter suppression demonstrator and 

testbed for various active flutter control 

algorithms. 
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Appendix A: State-Space Matrices 

The state-space matrices given in §2.2 are listed below for convenience. The system matrix of the 

binary flutter system is: 

1 1 1

3 3 3 3 3 2

11 1

11 2 1

11 1

11 2 1

δ

δ
λ

δ

− − −

× × ×

−− −

−− −

 
 − − −
 
 
 =  
 
 − + −

+ 
− + −  

M C M K M

A I 0 0

Q MQ M C Q Q M K

Q MQ M C Q Q M K

L

L
L

L

................................................................................................ (A1) 

and the input matrix is: 

1

5 1

β
−

×

 
=  

 

KM
B

0
................................................................................................................................................................... (A2) 

The measurement matrix is: 

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

 
 =  
  

C ..................................................................................................................................... (A3) 

The mass, damping and stiffness matrices given in Equation (A1) are: 

= − 


= − 
= − 

s a

s a

s a

M M M

C C C

K K K

................................................................................................................................................................ (A5) 

where the structural matrices in Equation (A5) are: 

( )
( )

2

2

α β

α α β β

β β β β

 
 

= − + 
 − + 

s

m mx b mx b

mx b I c a b mx I

mx b c a b mx I I

M .................................................................................................... (A6) 

0 0

0 0

0 0

α

β

 
 

=  
 
 

h

s

C

C

C

C ........................................................................................................................................................ (A7) 

0 0

0 0

0 0

α

β

 
 

=  
 
 

h

s

K

K

K

K ...................................................................................................................................................... (A8) 

and the “aerodynamic” matrices in Equation (A5) are
1
: 

( ) ( )

1

3 21
7 18

1 13 3

1
2

π
π

ρ π π

π

 − 
 

= − + + −   
 
 −  

a

a T
b

b a b a b T c a T

T bT bT

M ......................................................................................................... (A9) 

                                                 
1
 It is shown in [4] that ( )1

13 7 12
T T c a T= − + −   , thus the aerodynamic mass matrix is symmetric as required. 
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( )

( ) ( ) ( )

( )( ) ( )

4 11

2 1 1
8 1 4 112 2

1
12 9 1 4 12 11 4 122

2
2 1

2 2

1
2

2

π
π

ρ π π

π

 
− − − − 

 
= + − − + − +   

 
 − + + − − −    

a

a T T
b

b U a ba a b T T c a T aT

T b T T T T a bT T T

C ................................................. (A10) 

( )

( )

10

2 2 1
10 42

12 5 10 4 12

22
0

0 2 2

1
0

π

ρ π

π

 − − 
 

= + − 
 
 − − − −   

a

T

b b

b U a aT T

T T T T T

K ................................................................................................... (A11) 

The matrices in Equation (A1) that account for aerodynamic lag are: 

( )1 1
1 112 2

1 π= −  b a bTQ ........................................................................................................................................... (A12) 

[ ]1
2 100 π= U TQ ....................................................................................................................................................... (A13) 

( ) ( )

1 2

2 1 1
1 22 2

12 1 12 2

2 2

2 2δ

πδ πδ

ρ π δ π δ
δ δ

 
 
 

= − + − + 
 
 
 

b b

b U a a

T T

L .................................................................................................................. (A14) 

1

2

0

0

λ

λ

λ

 − 
=  

 −  

U

b

U

b

L .................................................................................................................................................... (A15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


